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 s overview

THEORY

PART I: features
• color spaces
• color feature detection
• saliency detection.

APPLICATIONS

IMAGE CLASSIFICATION
• combining color and shape

IMAGE SEGMENTATION
• deviations from the

PART II: color constancy
• bottom-up color constancy
• top-down color constancy
• color constant features

reflection model

OBJECT RECOLORING
•complex reflection models
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Application I: Image ClassificationApplication I: Image Classification

- robust color features
- color saliency
- how to combine features

Coloring Color Feature Extraction, ECCV 2006.
Top-down color-attention for object recognition, ICCV 09.

from images to frequency histogram

•Compute visual words:
• detect local regions from a set of images.
• describe every local region by a descriptor

• texture
• color

• cluster all descriptors into visual words

Given a new image:
• detect local regions from a set of image.
• assign every region to its nearest visual word.
• compute visual word-image histogram

assign to visual 
word N
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Bag of Visual Words representation
Bag-of-Words

representation

Feature Detection

normalize 
patches

No spatial relations.

Bag of Visual Words
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learninglearning

feature detection
codewords dictionarycodewords dictionary

recognitionrecognition

feature detection
& representation

image representation

categorycategory
decisiondecision

category modelscategory models
(and/or) classifiers(and/or) classifiers

Slide credit: Li Fei-Fei

SIFT + color

Feature Detection

Shape Description

Color Description

S
IF

T

+

van de Weijer, Schmid, ECCV 2006

?

What color descriptor should we add ?
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Color Descriptors -Hue

Shape descriptor

• SIFT :

• robust update:  the update can also be derived from error analysis:
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HSI:
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Projection of f on O3 is the intensity. Let f´ the
projection on the plane O1-O2, its length is the
satutation and its angle the hue. 
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• hue is invariant for specularities and shadow-shading effects.

Robust hue descriptor

The red bobsled is 

co
un

t

hue

dominated by the blue 
sky and blue snow.

at

hue

sa

saturation
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Feature descriptor

• SIFT :

• robust update:  the update can also be derived from error analysis:
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Photometric Invariant Color Description
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Color Descriptors –Color Names

learning color names

task: Object colors in many images are often not explicitly labeled. Can we label 
these image automatically with color names ? 

Ebay user: “Find me all yellow cars ?” 
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learning color names

From linguistic studies it is known that the development of color names follows a 
similar pattern for all languages.

white

black

red

green

yellow

blue brown

purple

pink

orange

Development color names in languages:

grey

The english language has 11 basic color terms.

learning color names

• Use google image to assemble a set of weekly labeled images.

black greenblue orangebrown purple white

Images retrieved with Google imagefalse positives



27/09/2010

10

learning color names

…Labeled input images:

yellow yellow red

PLSA-bg

…
LAB-histogram 
representation:

……

Color name 
distribution:

yellow red

learning color names

Lab-based color names1

google-based

main differences are for 
the chromatic color 
names

1. Benavente et al. JOSA 2008
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retrieval of color names

EER cars shoes dresses pottery overall

lab1 91 97 97 92 94.0

google 93 99 99 94 96.4

Ebay data set of 4 categories: shoes, cars, dresses, and pottery.

1.Menagaz, Eurasip 2007

retrieval of color names

EER cars shoes dresses pottery overall

lab1 91 97 97 92 94.0

google 93 99 99 94 96.4

Errors are mainly due to absence of lightness estimation, which is a 
very little studied problem in computer vision.

Images courtesy John McCann
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Color name descriptor

• Achromatic colors are very abundant in the world, about 45 % (67 % 
with brown) .

RGBh
rgb

• when using photometric invariance always consider discriminative power.

statistics based 40.000 corel images.

RGBhue
g

CN

• Achromatic colors are very abundant in the world, about 45 % (more 
than 60 % with brown) .

Color name descriptor

RGBh
rgb

• when using photometric invariance always consider discriminative power.

statistics based 40.000 corel images.

RGBhue
g

CN
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• test color names for image classification on a flower data set of 1360 images 
over 17 classes.

Color name descriptor

dataset flower
method color shape color & shape
HSV-SIFT - - 78
hue 40 65 79
opponent 39 65 79
color names 57 65 81

references: color naming

 B. Berlin, P. Kay. Basic Color terms: their universality and evolution. Berkeley:
University of California, 1969.

 A. Mojsilovic. A computational model for color naming and describing color
composition of images. IEEE TIP 14(5), 2005.

K Y i K B d I i t f i l f b i K. Yanai, K. Barnard, Image region entropy: a measure of visualness of web images
associated with on concept, ACMMM 2005.

 R. Benavente, M.Vanrell, R. Baldrich. Parametric fuzzy sets for automatic color
naming, JOSA 25(10), 2008.

 G. Menegaz, A. L. Troter, J. Sequeira, and J. M. Boi, “A discrete model for color
naming,” EURASIP Journal on Advances in Signal Processing, vol. 2007, 2007.

 J. van de Weijer, Cordelia Schmid, Jakob Verbeek, Diane Larlus. Learning Color
Names for Real-World Applications. IEEE TIP 2009.
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SIFT + color

Feature Detection

Shape Description

Color Description

S
IF

T

+

C
N

hu
e/

C

van de Weijer, Schmid, ECCV 2006

Results soccer data set:

898658color 
names

847558Hue

Shape & 
Color

ColorShape

van de Weijer, Schmid, ECCV 2006
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Results flower data set:

• test color names for image classification on a flower data set of 1360 
images over 17 classes.

dataset flower
method color shape color & shape
HSV-SIFT - - 78
hue 40 65 79
opponent 39 65 79
color names 57 65 81

van de Weijer, Schmid, ECCV 2006

Results: Pascal Challenge 2007

Concatenation seems not the best method to 
combine color and shape. 

SIFT: 53.3 %
SIFT+hue : 54 % Marszalek Pascal 2007
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• We use Probabilistic Latent Semantic Analysis (pLSA) to compute 
the semantic likelihood of an image.

An image is modeled as a mixture of semantic topics:

plsa-based image segmentation

g p

imagevisual word semantic topics

     | | |
z

p w d p w z p z d

   
1

| |
M

m

m

p w z p w z




image-specific 
mixture 
proportions

sky

airplain

grass

building
{texture, color, position}

   |
w

p d p w dlikelihood image

results segmentation

• color and shape obtain almost equal results.
• the combination of color (56%) and shape (61%) improves 
results significantly (75 %).

J. Verbeek, B. Triggs
Region classification with Markov field aspect models. CVPR 07.
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Combining Color and Shape in BOW

F. Shahbaz Khan, Joost van de Weijer, Maria Vanrell
Top-down color-attention for object recognition, ICCV 09.

feature combination

desired properties: 

• vocabulary compactness is the property of having a separate• vocabulary compactness is the property of having a separate 
vocabulary for each of the different cues.

• feature binding involves combining information from different cues 
at the local level (not at the image level).
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Image  
Representation Color Shape words

Feature normalization

F.Ext/F.Desc

Feature 
detection

early fusion

p

shape

color

late fusion
Color/Shape Voc

shape words

Color words

Color + Shape 
words

Shape Voc

Color Voc 

Image  
Representation Color Shape words

Feature normalization

F.Ext/F.Desc

Feature 
detection

early fusion

p

shape

color

late fusion

X Vocabulary Compactness
 Feature Binding

 Vocabulary Compactness
X  Feature BindingColor/Shape Voc

shape words

Color words

Color + Shape 
words

Shape Voc

Color Voc 
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early vs. late fusion

Color-Shape Independency Color-Shape Dependency

Color-Shape Vocabulary Color-Shape Vocabulary

Early Fusion

Shape  Vocabulary Color Vocabulary Shape VocabularyColor  Vocabulary

 Late Fusion

human visual system

• different visual cues such as color and shape are processed in 
parallel (contrary to most computer vision approaches)

• the binding of the cues is done in the presence of visual attention.

• visual attention has both a bottom-up and top-down task-driven 
component.
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human visual system

courtesy Jeremy Wolfe

Classical bag-of-words approach:

Shape Feature 
Extraction

Top down color attention:Top-down color attention:

C t 1

Category-specific 
histograms

Color 
Attention 

Maps
Category:
Butterfly

Category 1
Shape Feature 
Extraction
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Shape Feature 
Extraction

Top-down color attention:

Classical bag-of-words approach:

Color 
Attention 

Maps

Category 1

Top-down color attention:
Category-specific 
histogramsCategory:

Butterfly

Shape Feature 
Extraction

Category 1

Category 2

Category:
Flowers

Shape Feature 
Extraction

Top-down color attention:

Classical bag-of-words approach:

Category:
Flowers

Category:
Flowers

Top-down color attention:

final histogram representation 
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Standard Bag-of-Words:    
1

w      ,  w
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 

Top-down color attention:

     
1
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 Top-down CA:

j

Where              c cp class w p w class p class

   
1

|  ,
class

M
c s c

jjI
p w class Σ Σ δ w w




Color  Feature 
Extraction

 c
jwclassp Feature Binding

• Color is not explicitly coded, but is present 
in the relative height of the shape-words for 
the various classes.

Top-down color attention:

 jwclassp

Color 
Attention 

Maps

 Vocabulary Compactness

• Summing the histograms for all classes 
results in standard BOW.

Category :
Butterfly


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Input image

Bottom-up and Top-down Color Attention

standard 
BOW



Shape 
feature 

extraction

bottom-up color 
attention map



top-down color attention 
maps

 1,classxat
 xab

 1,classIwn s

• The statistics of     is computed by looking of the 40.000 images of the 
Corel database.

xf

bottom-up color attention:

color boosting:

J. van de Weijer, Th. Gevers, A. Bagdanov, Boosting color saliency in image feature detection, 
IEEE PAMI 2006.
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bottom-up color attention:

decorrelation whitening

color boosting:

derivatives
RGB color space

derivatives
opponent color space

derivatives
color boosted space

J. van de Weijer, Th. Gevers, A. Bagdanov, Boosting color saliency in image feature detection, 
IEEE PAMI 2006.

bottom-up color attention:

examples:

input image color edges color boosted edges
bottom-up attention
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Standard Bag-of-Words:    
1

w      ,  w
M
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n I w


 

Bottom-up and top-down color attention

     
1

,        ,     ,
M

s s s
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j
n w I class a x class w w


 Color Attention:

j

     t , ,b
j j ja x class a x a x class

bottom-up top-down

Standard Bag-of-Words:    
1

w      ,  w
M

s s s
j

j

n I w


 

Bottom-up and top-down color attention

     
1

,        ,     ,
M

s s s
j j

j
n w I class a x class w w


 Color Attention:


j

     t ,    ,b
j j ja x class a x a x class

1 


 weight color vs. shape

weight BU vs. TD attention

bottom-up top-down
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Experiments

Experimental Setup BOW

Image classification: 

Color predominance Soccer data set

Color and shape parity Flower data setColor and shape parity Flower data set

Shape predominance Pascal Voc 2007 / 2009

Comparison:

Early Fusion, Late Fusion

OpponentSIFT, WSIFT

Feature Detection:

DOG detector (Soccer and flower data set)

Multiscale Grid, Harris-Laplace and DoG (pascal 2007)

Feature Extraction:

SIFT (Shape), Color Names( Color), Hue (Color)

Learning:

Intersection kernel
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“Bag of words” 
representation

O1 O2 O3 freq.

[Van de Sande CVPR2008, PAMI2010]

OpponentSIFT

SIFT 128D SIFT 128D SIFT 128D 

+ +
K-MEANS 

OppSIFT 384D 

Color Predominance

Soccer Data set:
Recognize the soccer team present in the image

Most dicriminative cue is player’s outfitMost dicriminative cue is player’s outfit

Seven classes (40 images per class)

Training: 25 images per class, Testing: 15 images per class
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Color Predominance

Method Voc Size Score

SIFT 400 50

Early Fusion 1200 88

Late Fusion 400+300 86

C-SIFT 1200 72

OpponentSIFT 1200 82

TD(SIFT,CN) 400,300 88

TD(SIFT,HUE) 400,300 82

Best result reported 89 (Van de Weijer ICIP 07)

TD(SIFT,{CN,HUE}) 400,{300,300} 94

CA(SIFT,CN) 400,300 91

CA(SIFT,HUE) 400,300 88

CA(SIFT,{CN,HUE}) 400,{300,300} 96

Flower Data set:
Recognize the flower-species in the image

Both color and shape are vital

Color and Shape Parity

Both color and shape are vital

Seventeen classes (80 images per class)

Training: 60 images per class, Testing: 20 images per class
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Color and Shape Parity

Method Voc Size Score

SIFT 1200 63

Early Fusion 2000 85y

Late Fusion 1200+300 84

C-SIFT 2000 77

OpponentSIFT 2000 83

TD(SIFT,CN) 1200,300 86

TD(SIFT,HUE) 1200,300 86

TD(SIFT,{CN,HUE}) 1200,{300,300} 87

best reported 89% by Xie CVPR 2010 

( ,{ , }) ,{ , }

CA(SIFT,CN) 1200,300 90

CA(SIFT,HUE) 1200,300 89

CA(SIFT,{CN,HUE}) 1200,{300,300} 91

Pascal Voc 2007:
Recognize objects from number of object classes in realistic scenes

Shape is the dominant cue

Shape Predominance

Twenty classes (9963 images), Training:  5011, Test: 4952

Animal: bird, cat, cow, dog, horse, sheep 

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train 

Indoor: bottle, chair, dining table, potted plant, sofa, tv

Person: person
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Shape Predominance

Method Voc Size Mean AP

SIFT 4000 53.7

TD(SIFT,CN) 4000,500 56.8

TD(SIFT,HUE) 4000,300 56.6

TD(SIFT,{CN,HUE}) 4000,{500,300} 57.5

CA(SIFT,CN) 4000,500 57.5

CA(SIFT,HUE) 4000,300 57.0

CA(SIFT,{CN,HUE}) 4000,{500,300} 58.0

Shape Predominance
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PASCAL 2009

• Feature Extraction: 
• SIFT [Lowe IJCV04]

• HUE [Van de Weijer ECCV06]

Pipeline overview

• Color Names [Van de Weijer CVPR07]

• Gist [Torrelba IJCV03]

• Color SIFT [Van de sande CVPR08]

• Codebook Construction:
• Kmeans Vocabulary with compression [Vedaldi ECCV08]

• Assignment:• Assignment:
• Soft Assignment [VanGemert ECCV08]

• Spatial Pyramids:
• 1x1 (Whole Image) , 2x2 (Image Quarters) [Lazebnik CVPR06], 1x3 (Horizontal Bars)
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Pipeline overview

Map on 2009 Val

Classification Results

SIFT 51.0

Color Attention 56.2

Color Attention +ColorSIFT + 59.4

+ 5 %

+ 3 %

GIST+Pyramids
+ 3 %
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Map on 2009 test

Classification + Detection

Map on 2009 test

CVC-Flat (Classification) 60.2

CVC-Flat+ESS+HOG 61.1 + 0.9 %

(Classification+Detection)
 0.9 %

[Harzallah, Schmid ICCV 09]

Conclusions

• We presented a method to combine color and shape information. Color is 
used as an attention cue to modulate the shape features.

• The attention maps are computed from task-specific top-down color attention• The attention maps are computed from task-specific top-down color attention 
and image statistics based bottom-up color attention.

• Method combines the advantages of early and late fusion:

Vocabulary Compactness

Feature Binding

• The approach is shown to outperform both early and late fusion on severalThe approach is shown to outperform both early and late fusion on several 
data sets.
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Application II: Color Image SegmentationApplication II: Color Image Segmentation

Deviations from the dichromatic 
reflection model:

• jpeg compression
• unknown gamma 

Describing Reflectances for Colour Segmentation Robust to Shadows, Highlights, and Textures, E. Vazquez 
et al. PAMI 2010.

gamma correction

• The dichromatic reflection model is only valid for linear images.

• Gamma correction needs to be applied

out in
f f

• Gamma correction needs to be applied
before processing:

• When gamma is unknown one often assumes
sRGB with 2.2 

• Many computer vision operators are designed on non-linear 
images and gamma correction could deteriorate results (e.g. SIFT 
descriptor). 
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gamma correction

uncorrected – linear image

gamma correction

gamma corrected
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The human visual system is more sensitive for brightness than 
color changes. For this reason compression algorithms apply 
chroma subsampling.

jpeg compression

Thi i fl ll l

Y

This influences all color 
representations: hue, 
saturation, opponent
colors.

Cb,Cr

quality:      100 50 10

• Often specularities are clipped, invalidating the reflection 
model for these values.

• Advisable to reject clipped RGB values (>250) before 

specularity clipping

processing.

• Some information is still left after clipping and might be used 
[Werman 2010, CGIV 2010]
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Problem statement: segmentation often fails in the presence of 
shadows and highlights

introduction

Source :The Berkeley Segmentation Dataset and Benchmark [Martin01]

Dichromatic model

Distributions formed by a single-colored object have a 
physically determined shape in colour histogram-space.
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Shape of the distribution is described by dichromatic reflection 
model.

Dichromatic model

Highlight

Shading

Dichromatic 
reflection model

Problems:
- Non-linearities (gamma, compressions, camera aberrations, interreflections)

Dichromatic model

Non     
linearity

- Gaps (abrupt geometrical variations) 

Gaps
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An example on a complex scene

Color histogram representation

?

colors on an image colors in a histogram

Original Dominant 
structures 

Color histogram representation

g
histogram structures 

appear

Greenish Completely 
structure 
disappear

p y
data 
disintegration
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The method is designed to avoid the main shortcomings of the 

Ridge Based Distribution Analysis (RAD) 

dichromatic model.

- Creaseness computation: to avoid gap problem

- Ridge extraction: to avoid limitations of linear assumption.  

Distribution

3D view

MLSEC-ST 
operator 
[Lopez00]

Creaseness

Ridge extraction 

3D view Creaseness

3D view

Structure Tensor (ST):
Computes the dominant gradient orientation in a neighbourhood of size proportional to a Gaussian with 

standard deviation σd

Vectors in opposite directions reinforce one another, 
whereas those regions with neither attraction nor 
repulsion remains unchanged. C
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Distribution

3D view

MLSEC-ST 
operator 
[Lopez00]

Creaseness

Ridge extraction 

MLSEC:
Computes the creaseness values as the divergence of the dominant orientations previously computed. A 

grade of concavity/convexity of ST, in a neighbourhood of size proportional to σi

3D view Creaseness

3D view

Dominant gradient 
orientation 

Normalization factor

C

Normal vector

Distribution

3D view

MLSEC-ST 
operator 
[Lopez00]

Creaseness

Ridge extraction 

3D view

Distribution

Creaseness

3D view

Creaseness

2D view 2D view
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Ridge extraction 

Ridge extraction algorithm:
1. Find a local maxima.  mi

2. Add this local maxima to the list of ridge 
points.  R={mi}

3. Remove mi from the original distribution.
4.If we reach a flat area stop. Else, go to 1. Flat 

region

Creaseness

2D view

Ridges found

2D view

RAD clustering

2D view 2D view

Ridges in 
distribution

Ridges in 
distribution
Clustering 

2D idistribution

2D view

distribution

3D view
2D view
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RAD: results

RAD: results
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RAD: (σi, σd)  - From a soft undersegmentation to a soft oversegmentation.

RAD: results

RAD: set #1
6.04 s.

RAD: set #2
5.99 s.

Original Image

RAD: set #7
6.44 s.

RAD: set #10
6.35 s.

RAD: results

Original image

Human segmentationRAD 3RAD 2RAD 1
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• Comparison with Mean Shift (MS)
– MS is a well-known and widely used segmentation method.

Performance evaluation

– MS and RAD are feature based methods which look for structures 
in the histogram.

• Qualitative evaluation on Berkeley image DB

• Quantitative evaluation using GCE [Martin01]Q g [ ]

RAD: set #1 RAD: set #2 RAD: set #3

Comparing RAD and MS

Human 
Segmentation

MS: set #1 MS: set #2 MS: set #3

Segmentation
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Comparing RAD and MS

Original image RAD MS

Original image RAD MS MS

Quantitative comparison using Global Constancy Error (GCE) 
proposed by Martin et al. 

(Berkeley Segmentation Dataset and Benchmark 01)

Quantitative comparison

• GCE takes care of the refinement between different segmentations.

Original image Human segmentation #1 Human segmentation #2 Human segmentation #3
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Global Constancy Error for several state-of the-art methods: 

GCE

Quantitative comparison

Human segmentation 0.080

RAD(our approach) 0.204

Seed positioning (Micusık,  ECCV06) 0.209

Affinity functions (Fowlkes CVPR03) 0.214

Mean shift (Comaniciu, PAMI02) 0.259Mean shift (Comaniciu, PAMI02) 0.259

nCuts (Shi – PAMI00) 0.336

Eduard Vazuez et al.  PAMI 2010

• RAD is a physics-based feature space segmentation method 
that extracts the Ridges formed by a dominant colour in an 
image.

Conclusions

• Overcomes limitations of the dichromatic model:

Non-linearity: solvedGaps: solved with some limitations
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Application III: Object recoloringApplication III: Object recoloring
Extensions of dichromatic reflection model:

• ambient light 
• multiple illuminants
• interreflections

Problems with Shafer’s DRM:

• The model does not include interreflections.

• It is only valid for a single illuminant

Problems with the Dichromatic Reflection Models

• It is only valid for a single illuminant

• Shafer’s original model represented ambient illumination as a 
constant (Later work dropped the ambient term because cameras 
couldn’t measure it)

b sm m  b s af c c c

ambient lighting

• Maxwell et all. [CVPR 2006] propose the BIDR: bi-illuminant 
dichromatic reflection model. 

Maxwell et all. [CVPR 2006]
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Real-world Objects exhibit body and surface reflection under both 
direct and ambient illumination.

BIDR model

Maxwell et all. [CVPR 2006]

Ambient light example:

Under the Direct lightUnder the Direct lightUnder the Direct lightUnder the Direct light Ambient & DirectAmbient & DirectAmbient & DirectAmbient & DirectUnder the Ambient lightUnder the Ambient lightUnder the Ambient lightUnder the Ambient light

Christian Riess et al. CRICV 2009
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Dominant

BIDR model

Bi-illuminant dichromatic reflection model [BIDR] model includes four terms:

Ambient

I  =image measurement
( θx ,x )=direction to the local surface normal
ld=direct illuminant color and magnitude
la=ambient illuminant color and magnitude

Υb ,Υs=percent of direct illuminant visible
F= sensor response of camera
Mab=magnitude of ambient body reflection over hemisphere
Mas=magnitude of ambient surface reflection over hemisphere

Consider body reflection components (matte surface):

BIDR model : matter reflection

• First term defines a line as the direct illuminant changes, second 
term defines an offset from the origin

• If the ambient and direct illumination are not the same

Fully lit

Fully shadowed1. Lines do not go though origin
2. Each object color has a different offset.

Maxwell et all. [CVPR 2006]



27/09/2010

51

Log chromaticity space 

  
b d b

b d

F

log log / 1

b ab

b b b





 

 

f F c l c M

f F c M l M  b dlog log / 1ab b ab f F c M l M

     blog log log log / 1ab b S   f F c M

constant for a material depends on spectral ratio and 
percent of direct illuminant

constant for an ambient illuminant

p

Histogram in log color spaceOriginal ImageHistogram in RGB space
Maxwell et all. [CVPR 2006]

• The plane perpendicular to the curves is
illumination invariant color space for
realistic illumination.

Illuminantion invariant color space:

• Log space provides real 2D chromaticity
coordinates on a plane for RGB images

• No a priori assumptions about the color of
the direct or ambient illuminants.

Histogram in log color spaceHistogram in log color space

Maxwell et all. [CVPR 2006]
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Log space chromaticityHue-SaturationOriginal Image

Results

Maxwell et all. [CVPR 2006]

Log space chromaticityHue-SaturationOriginal Image

Results

Maxwell et all. [CVPR 2006]



27/09/2010

53

• The BIDR model describes the appearance of materials
interacting with a direct and an ambient illumination via
body and surface reflection.

Conclusions

• The model is the basis for a new illumination invariant 2-
D chromaticity space for a direct and ambient illuminant
pair with differing spectra.

Maxwell et all. [CVPR 2006]

• Bruce A. Maxwell, Richard M. Friedhoff, Casey A. Smith: A bi-
illuminant dichromatic reflection model for understanding images. CVPR 
2008
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Application III: Object recoloringApplication III: Object recoloring
Extensions of dichromatic reflection model:

• multiple illuminants
• interreflections

NOTE: Slides on recoloring have been removed 
because the work has not been published yet.

108
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Open Research Topics in Color 
Research for Computer Vision

Color Feature Description

• Learning class specific color descriptors. One size fits all strategy 
might fail.

• Improved methods to combine multiple cues: color, texture, shape, 
and appearance. 

constant color
category

variable color
category
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Color Constancy

• How to apply color constancy algorithms  in images with multiple 
illuminants ? No benchmark data available.

• Perceptual Error Measures for Color Constancy.

A. Gijsenij et al. “A perceptual Analysis of Distance Measures for Color 
Constancy Algorithms”, JOSA 2009

colour Retinex
Brightness estimation

Images courtesy John McCann
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Human Color Perception

How to compute perceived colors ? 

perceived colors:

slide credit: Xavi Otazu
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Questions ?


