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Improving Color Constancy by Photometric
Edge Weighting
Arjan Gijsenij, Member, IEEE, Theo Gevers, Member, IEEE, Joost van de Weijer, Member, IEEE

Abstract—Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different
edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a
distinctive influence on the performance of the illuminant estimation.

Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color
constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties
(e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided
using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more
valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is
proposed in which these edge types are more emphasized for the estimation of the illuminant.

Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm
based on highlights reduces the median angular error with approximately 25%. In an uncontrolled environment, improvements in

angular error up to 11% are obtained with respect to regular edge-based color constancy.

Index Terms—Color Constancy, llluminant estimation, Grey-Edge, Edge classification

1 INTRODUCTION

HANGES in illumination cause the measurements
Cof object colors to be biased towards the color
of the light source. The goal of color constancy is
to provide invariance with respect to these changes.
Color constancy facilitates many computer vision re-
lated tasks like color feature extraction [1] and color
appearance models [2].

Many computational color constancy algorithms
have been proposed, see e.g. [3, 4] for an overview.
Traditionally, computational color constancy methods
use pixel values of an image to estimate the illumi-
nant. Examples of such methods include approaches
based on low-level features, e.g. [5, 6, 7] and gamut-
based algorithms [8, 9, 10]. Recently, methods that use
derivatives (i.e. edges) and even higher-order statistics
are proposed [11, 12, 13, 14].

The underlying assumption of Grey-World and
Grey-Edge-based algorithms is that the distribution
of the colors and edges is directed towards the illumi-
nant direction. Hence, in order to accurately recover
the color of the light source, ideally, only those pixels
and edges should be used that coincide with the illu-
minant direction (highlights are one example of such
pixels, perfect reflectances are another). Under the
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assumption of neutral interface reflection, it is known
that highlights roughly correspond to the color of the
light source, making highlights particularly suited for
estimating the color of the light source [15, 16, 17].
However, detecting highlight pixels has proven to
be very challenging without prior knowledge of the
scene [15, 18, 16, 19]. Edges, on the other hand, can
automatically be classified into different types without
much prior knowledge by using physics principles
[20, 21, 22, 23]. For example, edges can be clas-
sified into material edges (e.g. edges between ob-
jects and object-background edges), shadow /shading
edges (e.g. edges caused by the shape or position of
an object with respect to the light source) and spec-
ular edges (i.e. highlights). These edges may have a
distinctive influence on the performance of illuminant
estimation.

In this paper, the use of distinct edge types is
exploited to improve the performance of edge-based
color constancy by computing a weighted average of
the edges. The weights are computed using a photo-
metric edge classification scheme. Since such methods
often assume the scene is illuminated by a white light
source, the automatic detection of such edges can
become erroneous when the color of the light source is
not white. To this end, an iterative weighting scheme
is proposed that sequentially estimates the color of the
light source and updates the computed edge weights.
The rationale behind this approach is to fully exploit
the information that is enclosed in the image, and
simultaneously increase the accuracy of the illuminant
estimation and (specular) edge detection.

This paper is organized as follows. In section 2,
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color constancy is discussed, followed by the in-
troduction of color constancy by edge weighting in
section 3. Then, in section 4, the performance of
edge-based color constancy is analyzed with respect
to different edge types. Finally, in sections 5 and 6,
the method is evaluated and the obtained results are
discussed.

2 CoOLOR CONSTANCY

The image values f = (f,, f., f;) for a Lambertian
surface depend on the color of the light source I()),
the surface reflectance S(x,\) and the camera sensi-
tivity function p(A) = (p,(N), pg(A), ps(A\)T, where
A is the wavelength of the light and x is the spatial
coordinate (e.g. [3, 10, 8]):

fix) = m(x) [ 100508 N @)
where w is the visible spectrum, m(x) is Lambertian
shading and ¢ = {R,G, B}. It is assumed that the
scene is illuminated by uniform illumination and that
the observed color of the light source e depends on
the color of the light source I(\) as well as the camera
sensitivity function p(\):

e=|e, :/I()\)p()\)d)\. 2)

Color constancy can be achieved by estimating the
color of the light source e, given the image values of
f, followed by a transformation of the original image
values using this illuminant estimate [24]:

ft = Du,tfua (3)

where £, is the image taken under an unknown light
source, f; is the same image transformed, so it appears
if it was taken under the canonical illuminant, and
D, is a diagonal matrix which maps colors that
are taken under an unknown light source v to their
corresponding colors under the canonical illuminant
c. The aim of this transformation is not to scale the
brightness level of the image, since the color con-
stancy methods proposed and compared in this paper
only correct for the chromaticity of the light source.
Since both I(\) and p(\) are, in general, unknown,
the estimation of e is an under-constrained problem
that cannot be solved without further assumptions.

2.1 Pixel-based Color Constancy

Two well-known algorithms that are often used are
based on the Retinex Theory proposed by Land [7]:
the White-Patch and the Grey-World algorithm. The
White-Patch algorithm is based on the White-Patch
assumption, ie. the assumption that the maximum
response in the RGB-channels is caused by a white patch.
In practice, this assumption is alleviated by consid-
ering the color channels separately, resulting in the

max-RGB algorithm. The Grey-World algorithm [5] is
based on the Grey-World assumption, i.e. the average
reflectance in a scene is achromatic. Another type of algo-
rithms is gamut-based methods, originally proposed
by Forsyth [10]. Gamut-based algorithms use more
advanced statistical information about the image, and
are based on the assumption, that in real-world images,
one observes, under a given illuminant, only a limited
number of different colors.

Another pixel-based algorithm, that is related to
the current paper, is proposed by Tan et al. [17].
This approach is based on the dichromatic reflection
model, and uses specularities or highlights for the
estimation of the illuminant. By transforming the
image to inverse intensity chromaticity space, pixels are
identified that have a low body reflectance factor
(effectively identifying pixels with a color that is close
or identical to the color of the light source). However,
the identification of such specular pixels remains a
problem.

2.2 Edge-based Color Constancy

Extending pixel-based methods to incorporate deriva-
tive information, i.e. edges and higher-order statistics,
resulted in the Grey-Edge [14] and the derivative-
based Gamut mapping algorithms[13].

The Grey-Edge actually comprises a framework
that incorporates zeroth-order methods (e.g. the Grey-
World and the White-Patch algorithms), first-order
methods (i.e. the Grey-Edge), as well as higher-order
methods (e.g. 2"¥-order Grey-Edge). Many different
algorithms can be created by varying the three pa-
rameters in:

P — /8 fCO’
oxm

where | - | indicates the absolute value, ¢ = {R, G, B},
n is the order of the derivative, p is the Minkowski-
norm and k£ a multiplicative scalar constant chosen
such that the illuminant vector e has unit length.

Further, the derivative is defined as the convolution
of the image with the derivative of a Gaussian filter
with scale parameter o [25]:

S feo
6xsyt

>p = ke, 4)

8S+tGU
= fe* a?ayt ®)
where * denotes the convolution and s+t = n. Good
results are obtained by using instantiation e'"17, i.e. a
simple average of the edges at scale ¢ also called the
Grey-Edge method [14].

Another pixel-based method which has been ex-
tended to incorporate derivative information is the
Gamut mapping algorithm [13]. It can be proven
that linear combinations of image values also form
gamuts, thereby extending the Gamut mapping the-
ory to incorporate image derivatives. In this paper,
we assess the influence of various edge types on the
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performance of both the Grey-Edge method and the
derivative-based Gamut mapping method.

3 CoOLOR CONSTANCY BY EDGE WEIGHT-
ING

Consider the following simplified version of eq. (4):

(/ |fc,x<x>f’dx)’l’ ~ ke, ©)

where f.x(x) is the derivative of color channel ¢ €
{R,G,B} of image f at a certain scale. Then, the
weighted Grey-Edge algorithm is given by:

(/ |w<f>“fc,x<x>pdx); ~ ke, %

where w(f) is a weighting function that assigns a
weight to every value of f and x can be used to
enforce the weights (a higher value of x results in
more emphasis on higher weights).

Numerous different weighting schemes can be in-
corporated in eq. (7), but in order to accurately esti-
mate the color of the light source, a suitable weighting
scheme should enforce relevant information about
the color of the light source and disregard irrelevant
information. Since it is known that highlights are
a valuable cue for estimating the color of the light
source [15, 16, 17], an obvious choice would be to com-
pute weights using specular edge detection methods.

3.1 Edge Types and Classification

Various edge types are considered, i.e. material edges,
(colored) shadow or shading edges, specular edges
and interreflection edges. Material edges are transi-
tions between two different surfaces or objects. Shad-
ing edges are transitions that are caused by the geom-
etry of an object, for instance by a change in surface
orientation with respect to the illumination. Shadow
edges are cast shadows, caused by an object that
(partially) blocks the light source. Blocking of the light
source often results in merely an intensity gradient,
but sometimes a faint color gradient is introduced
(provided two illuminants are present in a scene).
When we refer to shadow edges in general, both in-
tensity and colored shadow edges are implied. Finally,
in real-world images, interreflection is an important
aspect. Interreflection is the effect of light reflected
from one surface onto a second surface. This effect
changes the overall illumination that is received by
the second surface, and hence the color of this surface.
Finally, note that combinations of edge types (e.g. a
shadow or shading edge that coincides with a material
edge) can also occur, but are not handled explicitly
here.

Generally, edge classification is based on photo-
metric information. For instance, Finlayson et al. [20]
propose to project a 2D log-chromaticity image onto

the direction orthogonal to the light source, resulting
in a new image that is invariant to light intensity and
color. Shadow edges are then detected by subtract-
ing the derivatives of the invariant image and the
original image. Alternatively, Geusebroek et al. [21]
propose a rule-based approach in combination with
a set of color invariants derived from the Kubelka-
Munk theory for colorant layers. A slightly different
rule-based approach is proposed by van de Weijer
et al. [23], which is based on the same photometric
invariant principles. Geometric information is mostly
ignored for general edge classification methods, al-
though some recent advancements show that shadow
edge detection can benefit from geometric features
[26, 27]. The weighted Grey-Edge method given by
eqg. (7) can incorporate classifications based on both
photometric and geometric features, but in this paper
the focus will be mainly on photometric features.
More specifically, the quasi-invariants [23] are used
to design several different soft weighting schemes,
resulting in an elegant incorporation of weighting
schemes into edge-based color constancy.

3.2 Edge Weighting Schemes

Quasi-invariants [23] are computed using the deriva-
tive of an image, £, = (fr., fG.o» [B.2)", and a set of
three photometric variants. By removing the variance
from the derivative of the image, a complementary
set of derivatives is constructed called quasi-invariants.
The edge energy contained in the three variant direc-
tions is indicative for the type of edge, e.g. if most
energy is contained in the specular direction, the edge
is most likely to be a highlight. Using the quasi-
invariants, three different weighting schemes can be
derived (including all combinations of these schemes):
the specular weighting scheme, the shadow weighting
scheme and the material weighting scheme.

Specular Edge Weighting Scheme. The quasi-
invariants decompose a derivative image into three
directions. The projection of the derivative on the
specular direction (i.e. the color of the light source)
is called the specular variant and is defined as:

where & = %(1, 1,1)7 is the color of the light source
(assumed to be white here) and the dot indicates the
vector inner product. The specular variant is that part
of the derivative which could be caused by highlights.
What remains after subtraction of the variant from the
derivative is called the specular quasi-invariant:

O, =f, — O, )

The quasi-invariant O, only contains shadow-shading
and material edges, and is insensitive to highlight
edges. Since all derivative energy of an image f is
contained in either of the three variant directions, the
ratio of the energy in the specular variant versus the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, DATE 4

total amount of derivative energy is an indication if
an edge is specular or not. This ratio translates to the
following specular weighting scheme:

0,
ws,specular(fx) = |||f1|’
X

(10)

where |Oy| is the absolute value of Ox and ||fx|| =
\/flg%,x + fgr’,x + f%,x'

Shadow Edge Weighting Scheme. Using the same
reasoning on the shadow-shading direction f (i.e.
intensity), a shadow-shading invariant and quasi-
invariant is obtained:

s, = (&-0)f, (11)
Sfc = fzfsxa (12)
where f = ﬁ(R,G,B)T. It can be derived

that the shadow-shading quasi-invariant is insensitive
to shadow edges. Translating this variant to a shadow
weighting scheme yields the following result:

[Sa|
li=3h

Material Edge Weighting Scheme. Finally, the
shadow-shading-specular variant and quasi-invariant

can be constructed by projecting the derivative on the
hue direction:

(13)

Ws, shadow (f) =

H, = (fw.B)B,
Hﬁ; = f:z:_H:rv

(14)
(15)

where b is the hue direction, which is perpendicular
to the previous two directions:

X2

o

L r ¥

b = —=

(16)

7

Lar ¥

o

X

The resulting quasi-invariant HY, does not contain
specular or shadow-shading edges, and can be used
to assign higher weights to material edges as follows:

_ ||
[Ifll”

To evaluate the influence of the edge-type classifier
on the color constancy results, one additional experi-
ment in section 5 will make use of a different specular
weighting scheme, based on geometric features simi-
lar to [26].

(17)

W material (fx)

3.3 Iterative Weighted Grey-Edge

In equations (8) and (16), it can be derived that the
specular and shadow-shading-specular variants and
quasi-invariants are dependent on the color of the
light source (the shadow-shading variant and quasi-
invariant are not). The underlying assumption that
the scene is viewed under a white (or neutral) light
source [23] is obviously not met for the images in
the used data sets prior to applying color constancy.

However, after the proposed algorithm is applied,
the illuminant should be neutral, at least in theory.
Hence, we propose to first correct the input image
A with an estimated illuminant I. Then, using this
color corrected image B, we can compute a weighting
scheme W, which in turn is used by the weighted Grey-
Edge algorithm to compute an updated estimate of
the illuminant I. After some iterations, the illuminant
estimate will approximate a white light source, at
which point the accuracy will no longer increase
and the method has converged. Consequently, we
propose to iteratively apply the weighted Grey-Edge
algorithm, where a new instantiation of the weighting
scheme is computed every iteration based on the
color corrected image at each iteration. The iterative
weighted Grey-Edge is given by the following lines
of pseudo-code:

Algorithm 1 Iterative Weighted Grey-Edge
Input:
input image: A
initial illuminant estimate: I
stopping criterion: C
Method:
while (- C) do
B = color_correct(a, I)
W = compute_weighting_scheme(B)
I’ = weighted_GreyEdge(B,W)
I=Ixx1"'
C = update_stopping_criterion()
end while

For sake of clarity, we will not change the type of
weighting scheme W (e.g. specular or shadow-based)
throughout the iterations. Further, the initial illumi-
nant estimate I can either be a white light source
((1,1,1)T) or it can be the result of any color constancy
algorithm. Finally, the stopping criterion C can be
defined as a fixed number of iterations, or as some
measure of convergence (e.g. the distance between a
white light source and the illuminant I’ at the end
of each iteration is below some threshold).

4 PERFORMANCE USING DIFFERENT EDGE
TYPES

In this section, the aim is to analyze which edge
types have the most influence on the accuracy of the
illuminant estimation. To this end, a spectral data
set is used first to generate different edges types
under controlled circumstances. On this data set, the
two different edge-based color constancy algorithms,
i.e. the Grey-Edge and the derivative-based Gamut
mapping approach, are evaluated.

To evaluate the performance of color constancy al-
gorithms, the angular error ¢ is widely used [28]. This
measure is defined as the angular distance between
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the actual color of the light source e; and the estimated
color e.:

€ =cos (& - &), (18)

where &; - &, is the dot product of the two normalized
vectors representing the true color of the light source
e; and the estimated color of the light source e.. To
measure the performance of an algorithm on a whole
data set, the median angular error is reported.

4.1 Spectral data

The first experiments are performed using the spectral
data set introduced by Barnard et al. [29]. This set
consists of 1995 surface reflectance spectra and 287
illuminant spectra, from which an extensive range of
surfaces (i.e. RGB-values) can be generated using eq.
(1). As discussed before, for these experiments, the
following types of surfaces are created:

o Material surface m;:

mi = [ LPNSIx VD (19
o Intensity shadow surface p;:
pa= [ E i @)
o Colored shadow surface q;:
Qs = P+ [ T WpOSx NN, @D
o Specular surface h;j:
ha = mi+7 [ LWL (22)
o Interreflection surface r;;:
rijp = / T p(N)Si (x5, N, (23)

where I« = I;;(A) + 01,(\)S;(x, A). Further, the sub-
scripts ¢ and j denote different surface reflectance
spectra, k and k' denote different illuminant spectra.
The random variables ¢ and ~ are uniformly dis-
tributed between 1 and 4, and 7 and 6 are random
variables uniformly distributed between 0 and 0.25.

Since the focus is on edge-based color constancy,
the following transitions (i.e. edges) between surfaces
are generated:

o Material edge: m;;, — m;.

o Intensity shadow edge: m;; — pix.

o Colored shadow edge: m;; — Q.

o Specular edge: m;;, — h;;.

o Interreflection edge: m;; — ;.
A material edge is generated by taking the difference
between two different material surfaces, m; — m,;.
The difference between a material surface m; and the
same surface under a weaker light source results in
an intensity shadow edge, m; —p;. A colored shadow
edge is defined as the difference between a material
surface m; and a colored shadow surface, m; — q;.
A specular edge is defined as the difference between

Grey-Edge
—3— Material edges
Intensity shadow edges

—©~— Specular edges
Colored shadow edges
O Interreflection edges

6 \§\— 3 &
i SR S, AR, ST

Angular error g

R R 8 8 & 8 & &

Number of surfaces

Derivative-based Gamut Mapping
—¥— Material edges
Intensity shadow edges
—©~ Specular edges
Colored shadow edges
<> Interreflection edges

Angular error ¢
5

256 512 1024

128
Number of surfaces

Fig. 1. Median angular error of the Grey-Edge, top
figure, and the Derivative-based Gamut mapping, bot-
tom figure, including a 95% confidence interval, using
several different edge types.

a material surface m; and the bright version of the
same material, m; — h;. Finally, an interreflection edge
is defined as the difference between a material surface
m; and an interreflection surface r;; where surface m;
interreflects onto a second surface m;, hence m; —r;;.
Note that these edges can be considered to be step
edges. In real-world scenes, transitions are likely to
be more gradual. However, for the purpose of the
analysis performed in sections 4.2 and 4.3, these edges
are used to give a best-case relative assessment of
algorithm performance, comparing the different edge
types under the same conditions. Further, we would
like to note that the intrinsic properties of the used
data set (i.e. the average of all surfaces is not grey) is
a potential cause for error, but to avoid confusion we
will ignore this in the remainder of this section.

4.2 Different number of edges

In the first experiment, the performance of two edge-
based color constancy algorithms is analyzed with
respect to different edge types. Using the spectral data
set, a number of random surfaces are created, includ-
ing n material surfaces, n intensity shadow surfaces,
n colored shadow surfaces, n specular surfaces and
n interreflection surfaces, resulting in a total of 5n
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Fig. 2. Gamut in opponent color space of several edge types put under one illuminant which is specified by the
fourth axis. Shown are material edges in figure (a); intensity shadow edges in figure (b); colored shadow edges
in figure (c); specular edges in figure (d); interreflection edges in figure (e).

surfaces. Note that to create these surfaces, the same
illuminant is used. Using these surfaces, n material
edges, n intensity shadow edges, n colored shadow
edges, n specular edges and n interreflection edges
are created. Two edge-based color constancy algo-
rithms are evaluated (the Grey-Edge algorithm and
the derivative-based Gamut mapping) by gradually
increasing the number of edges. For each value of
n (n = {4,8,16,32, 64,128,256, 512,1024}), the experi-
ment is repeated 1000 times.

In figure 1 (top graph), the median angular error
for the Grey-Edge algorithm is shown differentiated
by these five edge types. The angular error when
using material edges is significantly higher than when
using intensity shadow edges. As expected, color
constancy based on specular edges results in a close to
ideal performance. Further, the performance using the
colored shadow edges and the interreflection edges
is similar to the performance when using the mate-
rial edges. The performance of the derivative-based
Gamut mapping, see figure 1 (bottom graph), shows
a similar trend. Using specular edges results in near-
perfect color constancy, and intensity shadow edges
are more favorable than the three other types of edges.

4.3 Gamuts of different edge types

To analyze the high error for the material edges and
to explain the differences in performance of the other
types of edges, we will go into detail on the under-
lying assumptions. First, consider the assumption of
material edge-based color constancy:

two material surfaces) is computed as:
i~ my = [ LOPNSO) - S0 @5)

Substituting eq. (25) into eq. (24) results in the follow-
ing underlying assumption:

N
1 B
i El Rand (|5:(A) — 5; (M) = a. (26)

Under the assumption that the surface reflectances are
normally distributed with mean p and variance o2,
then subtracting two surfaces results in a new random
variable with larger variance (207). On the other hand,
consider the assumption of (intensity) shadow edge-

based color constancy we have:

1

N
Jim, - DR (ma ) = / LN p(N)dA, 27)

where p;; is an intensity shadow surface as defined
by eq. (20). Substituting eq. (20) into eq. (27) results
in the following underlying assumption:

(28)

Under the same assumption that the surface re-
flectances are normally distributed with mean p and
variance o2, it can be observed that the variance of the
intensity shadow edges (¢c?) is lower than the variance
of the material edges (0% < 20?). This implies that a

1 * . . . .
lim N Z Rand (|Jm, — myi|) = a / LV p(V)dN, (24) larger number of (different) material edges is required
1 2y w

where m;;, is a material surface as defined by eq. (19),
N is the number of edges, Rand, ;(.) is a function that
randomly selects two surfaces ¢ and j and a is a scalar
value. Further, a material edge (the difference between

to obtain the same accuracy as shadow-edge-based
color constancy.

This analytical derivation is supported by the em-
pirical distribution of these two edge types. For the
ease of illustration of the physical properties of edge
types, the edges are converted to the opponent color
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Fig. 3. Mean angular error using material edges, shadow edges and specular edges, for different clipping values.

space:
R, — G,
o1, — ="z 29
= (29)
R, +G,—2B,
02, = ————, 30
/6 (30)
o3, = ———— 31
o (31)

where R,, G, and B, are derivatives of the R, G and
B channels, respectively.

The distribution of edge responses in the opponent
color space is shown in figure 2. From these graphs,
it can be derived that the variation in edge color is
much higher for the material edges, figure 2(a), than
for shadow edges, figures 2(b) and (c), which is also
analytically derived. Further, the intensity shadow
edges are more directed towards the color of the light
source (shown by the fourth axis) than the colored
shadow edges. The shape of the gamut of the color
shadow edges, which appears to be less directed
towards the color of the light source than other edge
types, can be explained by the influence of the second
light source. The gamut of interreflection edges, figure
2(e), is similar to the material edges. Finally, specular
edges, figure 2(d), all align perfectly with the color of
the light source (shown by the fourth axis).

These graphs show that it is beneficial to use edges
that are aligned with the color of the light source.
The specular edges are all distributed on the diagonal
representing the color of the light source, and near-
perfect color constancy can be obtained using these
edges. This observation is in accordance to pixel-based
highlight analysis, where highlights contain valuable
information about the color of the light source [15, 16].
Shadow edges are distributed denser around the color
of the light source than material edges and interreflec-
tion edges, resulting in a higher performance.

Color clipping. In practice, pixel values are often
bound to a certain maximum value. This effect is
called color clipping. Since the specular surfaces have
the highest RG B-values, these surfaces (and conse-
quently the specular edges) risk to be affected by color
clipping. To analyze this effect, a second experiment
is performed where the generated RGDB-values are

color clipped at a gradually decreasing value. The
results of this experiment for the Grey-Edge algorithm
are shown in figure 3. The derivative-based Gamut
mapping reveals a similar trend (not shown here). The
performance using the specular edges immediately
starts to decrease significantly. The performance using
the material and the shadow edges is less affected; the
angular error does not significantly increase until 40%
of the total number of surfaces are clipped. The effects
of color clipping cause the gamuts of the specular
edges to shift towards the intensity axis (O3;), hence
the estimate of the illuminant will be biased towards
white. Color clipping is an often occurring phenom-
ena and cannot be prevented in practice. To alleviate
the effects of color clipping on the performance of any
color constancy algorithm, pixels that are potentially
color clipped are often discarded. Practically, this
means that pixels with a maximum response in either
of the three color channels are not considered while
estimating the illuminant.

To conclude, from an analytical approach, it can
be derived that using specular edges for edge-based
color constancy results in a close to ideal perfor-
mance, because the specular edges align with the
color of the light source. However, in practice, color
clipping may eliminate the advantages of specular
edges and cause a decrease in performance. Shadow
edges contain more variation than specular edges but
are still aligned with the color of the light source.
Consequently, the performance of edge-based color
constancy using shadow edges degrades only slightly
with respect to using highlights. However, as material
edges vary even more, their performance degrades
even more. Although interreflection edges vary less
than material edges, they are not aligned with the
color of the light and hence their performance is the
worst.

5 EXPERIMENTS

Experiments using the (iterative) weighted Grey-Edge
method are performed on several data sets. First,
experiments are performed on a data set containing
indoor images that are recorded under controlled
settings, see section 5.1. Then, in section 5.2, results are
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All 321 images | Mean ¢ | Median € | Max € Mean ¢ | Median € | Max e Mean ¢ | Median € | Max e | All 321 images
Ws specular 9.0° 5.6° 43.3° 5.6° 2.4° 43.8° 3.4° 2.1° 25.0° W specular
W shadow 5.5° 3.1° 33.3° 5.5° 3.3° 33.1° 5.6° 3.3° 37.6° W, shadow
W material 19.3° 17.1° 56.0° 28.5° 26.4° 78.3° 13.2° 12.3° 37.6° W material
Subset A Mean ¢ | Median € | Max ¢ Mean ¢ | Median € | Max € Mean € | Median € | Max € Subset A
Ws specular 8.9° 5.9° 43.3° 5.1° 2.0° 43.8° 3.4° 1.8° 25.0° W specular
W shadow 4.8° 3.0° 24.5° 4.7° 3.0° 23.6° 4.9° 3.1° 24.5° W shadow
W material 19.2° 16.4° 56.0° 30.5° 28.3° 78.3° 12.8° 11.3° 37.6° W material
Subset B Mean ¢ | Median € | Max ¢ Mean ¢ | Median € | Max € Mean € | Median € | Max € Subset B
Ws specular 9.2° 5.6° 31.2° 6.8° 3.3° 35.1° 5.3° 3.2° 23.4° Ws specular
Wy shadow 7.0° 3.6° 33.3° 7.1° 3.6° 33.1° 7.2° 3.7° 33.3° W shadow
ws;material 19.5° 18.1° 50.2° 24.0° 20.6° 70.4° 14.2° 14.8° 32.6° W material

(a) Performance after one iteration

(b) Performance after 10 iterations

(c) Performance of theoretical scenario

TABLE 1
Mean, median and maximum angular errors on the SFU Controlled Indoor set. All results in this table are
obtained using the optimal parameter settings for the proposed iterative weighted Grey-Edge (i.e.
Minkowski-norm = 7, o = 5 and x = 8). Table (a) shows the results of the weighted Grey-Edge for three
different weighting schemes, table (b) shows the results of applying the iterative weighted Grey-Edge for the
same three weighting schemes, and table (c) shows the results of the theoretical scenario, where we compute
the weighting schemes from the color corrected images.

reported on two unconstrained data sets with natural
images.

5.1 SFU Controlled Indoor

The first data set, denoted by SFU Controlled Indoor
[29] consists of 31 different scenes, recorded under
11 different light sources, resulting in a total of 321
images. Two relevant subsets are distinguished to
demonstrate the robustness of the proposed algo-
rithm; one subset contains 223 images with mini-
mal specularities (denoted subset A), another sub-
set contains 98 images with non-negligible di-electric
specularities (denoted subset B). The main difference
between these two subsets is the fact that the images
in subset A (some of which are flat mondrian-like
compositions of colored paper) contain few or no
specularities, while all images in subset B contain at
least some highlights. Some examples are shown in
figure 6 (top row).

Weighting Schemes. Results of applying the three
weighting schemes, emphasizing specular, shadow or
material edges, are shown in table 1. Interestingly,
results of assigning higher weights to specular edges
initially, i.e. after one iteration, is worse than assigning
higher weights to shadow edges. The reason for this is
explained in section 3, i.e. the specular quasi-invariant
assumes a neutral illumination while the shadow-
shading quasi-invariant does not. Hence, the detection
of highlights suffers from the colored light sources.

Running multiple iterations increases the accuracy
of the specular edge detection, and hence the accu-
racy of the weighted Grey-Edge using the specular
weighting scheme, see table 1(b). The effects of the
running multiple iterations has only minor effects on
the shadow weighting scheme, while the performance
of the material weighting scheme considerably deteri-
orates, see also figure 4(a). The latter can be explained

by the misclassification rate of the specular edges:
when running multiple iterations, less specular edges
are misclassified as material edges. The fact that the
performance of the shadow weighting scheme is not
affected by running multiple iterations is expected
because the shadow-shading quasi-invariant is robust
to illumination changes (see section 3.2).

Results shown in table 1 are obtained using a
relatively high value for x (v = 8). The effect of
using lower values for  is shown in figure 4(b). It
can be observed that especially the specular weighting
scheme benefits from an increased value for x, while
the shadow weighting scheme is not affected at all.

Influence of Edge Classification Accuracy. The
results of the iterative weighted Grey-Edge show that
the proposed method benefits from accurate specular
edge detection. An illustration is presented in figure 5,
showing the results and corresponding weight maps
for two individual images of the first, second and
final iteration. It can be seen that the accuracy of
the edge classification and the illuminant estimates
increase simultaneously. These examples imply that
the proposed method can benefit from accurate spec-
ular edge detection, while specular edges can be de-

Classifier AUC | Mean ¢ | Median € | Max €

SIFT + Q.I 0.83 5.2° 2.6° 28.5°

Quasi-Invariants | 0.78 5.6° 2.9° 32.6°

Sub-optimal Q.I. | 0.68 5.6° 3.2° 32.5°
TABLE 2

Results of using weighting schemes computed by
applying different specular edge detection classifiers
on the SFU Controlled Indoor set. The area under the
ROC-curve (AUC) values are determined using
cross-validation on the training set.
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(a) (b)

Fig. 4. The effects of applying several iterations to
the different weighting schemes in figure (a). Figure
(b) shows the effects of increasing the value of « for
different weighting schemes. Results are obtained on
the SFU Controlled Indoor set.

tected more accurately on images with more accurate
color constancy. To further confirm that the improved
performance of the iterative weighted Grey-Edge is
directly related to the accuracy of the specular edge
detection, two additional experiments are performed.

As the quasi-invariants are based on neutral illu-
mination, computing the specular weight map on the
images color corrected with the ground truth would
result in the highest edge detection accuracy. Using
this weight map together with the original uncorrected
images to estimate the color of the light source will
give an indication of the potential of the proposed
method. The results of this (theoretical) experiment
are shown in table 1(c), where it can be observed that
especially the performance of the specular weighting
scheme can benefit from even more accurate specular
edge detection.

Influence of Different Edge Classifiers. For the
next experiment, the system proposed in [26] is
adapted to specular edge detection. Patches from
the same data set as used in [26] are manually se-
lected and annotated. Note that these patches have
no overlap with the color constancy data set. Using
features derived from these patches, a classifier (SVM)
is learned that is able to distinguish patches con-
taining specular edges from patches without specular
edges. By applying this classifier to a full image using
a sliding window approach, a posterior probability
is obtained for every block of pixels in the image.
Finally, a smoothing filter is applied to reduce the in-
herent uncertainty of the block-based detection result.
These smoothed posterior probabilities are directly
used as weights in eq. (7).

Three different classifiers are learned, each with a
different accuracy. The accuracy is measured as the

area under the ROC-curve (AUC), and is determined
using cross-validation on the training patches. The
first classifier uses the SIFT-feature in combination
with the quasi-invariants (AUC = 0.83), the second
classifier uses merely the quasi-invariants (AUC =
0.78) and the third classifier uses the quasi-invariants
with sub-optimal SVM-parameters (AUC = 0.68). Re-
sults of the weight maps computed using these three
classifiers are summarized in table 2. It can be seen
that the classifier with the highest accuracy, i.e. the
combination of SIFT and the quasi-invariants, results
in the best color constancy performance. Moreover,
the median angular errors of the sub-optimal classifier
using the quasi-invariant features is outperformed by
the optimal classifier using the same features.
Finally, to verify whether the edge detection accu-
racy of the training set corresponds to the accuracy on
the test images, we manually annotated highlights in
the SFU Controlled Indoor set. Using these manually
labelled highlights and the output of the three classi-
fiers, we are able to relate the classifier performance
to the color constancy output. The accuracy of the
classifier is dependent on the threshold on the clas-
sifier posterior probability, e.g. a low threshold will
classify many edges as highlight and consequently
result in a high recall but low precision, while a high

Fig. 5. Two results of running multiple iterations of the
specular-weighted Grey-Edge. The first and second
images show the result after the first and second
iteration, the third image shows the result after the
algorithm converged. The weight maps used in the cor-
responding iterations are color coded, such that dark
red indicates a high weight and dark blue indicates a
low weight.
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Method Mean ¢ | Median ¢ | Max e
Grey-World (e%1:9) 9.8° 7.0° 37.3°
White-Patch (e%°°:0) 9.1° 6.5° 36.2°
Using I.I.C. Space 15.5° 8.2° 80.9°
Gamut mapping (o = 4) 4.6° 3.3° 27.1°
general Grey-World (cross-val.) 5.4° 3.5° 28.8°
1%t-order Grey-Edge (cross-val.) 5.7° 3.4° 31.8°
2"d_order Grey-Edge (cross-val.) 5.3° 2.9° 27.6°
Proposed: Iterative (cross-val.) 5.6° 2.9° 46.7°
TABLE 3

Comparison to other algorithms on the SFU
Controlled Indoor. Note that cross-validation results
are obtained using three-fold cross-validation (the
reported results are averaged over 100 repetitions).

threshold will classify few edges as highlight resulting
in a low recall but high precision. The F-measure
is often used to summarize the trade-off between
precision and recall, so we use this measure here. For
each method we select the threshold which yields the
highest F-measure. The results of the three classifiers
are 0.960 (SIFT-feature in combination with the quasi-
invariants), 0.729 (quasi-invariants) and 0.513 (quasi-
invariants with sub-optimal SVM-parameters). These
results are in accordance with the color constancy
performance in table 2 and confirm that the proposed
method benefits from more accurate specular edge
detection.

Comparison to State-of-the-Art. Results of state-
of-the-art methods are shown in table 3. It should
be noted that the proposed method using specular
weights, as well as several other state-of-the-art meth-
ods contain parameters that considerably influence
the results. Therefore, we report the performance of
applying cross-validation to determine the parameter
settings automatically (denoted cross-val. in table 3).
The automatic selection of parameters is performed by
three-fold cross-validation, where the reported results
are the average of 100 runs.

It can be derived that the proposed method is com-
parable to state-of-the-art. For the gamut mapping, the
implementation of [13] is used. All images recorded
under one light source (syl-50MR16Q) are used to
construct the canonical gamut, where we make sure
that when testing images from a particular scene (e.g.
ball), the corresponding training image of that scene
(e.g. ball under syl-50MR16Q) is not used for com-
putation of the canonical gamut. The mean angular
error of the proposed method is slightly higher than
the gamut mapping and the general Grey-World, but
the median is considerably lower. Further, using the
Wilcoxon sign test at 95% confidence level[28] (results
are not visualized here), it is found that the proposed
method is significantly better than all methods ex-
cept the the general Grey-World. Finally, we would
like to note that the proposed method outperforms
the unweighted Grey-Edge for all choices for ¢ and

Minkowski-norm, provided the appropriate value for
k is selected.

5.2 Uncontrolled data sets

The next experiments are performed on two uncon-
trolled data sets containing a variety of scenes. The
first data set, denoted SFU grey-ball, consists of 15 clips
with a total of 11,346 images [30]. These images are
stored in a non-linear device-RGB color space (NTSC-
RGB), so to create linear images we applied gamma-
correction with v = 2.2 and recomputed the ground
truth using these linear images. Further, since the
correlation among the images is rather high, video-
based analysis was applied to decorrelate the visual
content of the data set [31], resulting in a smaller
but uncorrelated data set containing 1135 images (the
reported results are obtained on the test set, consisting
of 70% of the uncorrelated data, as indicated by [31]).
The second data set, denoted Color-checker, contains
568 images [32]. This data set uses a Macbeth Color
Checker that is carefully placed within the scene to
capture the ground truth. Note that the latter of the
two data sets does not need additional processing to
acquire linear images. Examples of these data sets are
shown in figure 6 (middle and bottom rows).

The results on these two data sets mostly agree
with the previous experiments (see table 4). The er-
ror when using specular-based weights decreases as
the algorithm is applied multiple iterations, while
the error when using shadow-based weights roughly
remains stable. Although the increase in performance
on the SFU grey-ball set is only marginal with respect
to the unweighted Grey-Edge (a decrease in mean
angular error of approximately 2% is not perceptually
significant [33]), the proposed method still performs
significantly better than all other methods according
to the Wilcoxon sign test (at the 95% confidence level).
An overview of all results is shown in table 5. A possi-

Fig. 6. Some example images of the used data sets.
The top row shows some examples of the SFU Con-
trolled Indoor set, the middle row shows examples of
the color checker set and the bottom row shows some
examples of the SFU grey-ball set.
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SFU grey-ball | Mean € | Median € | Max € Mean € | Median ¢ | Max e Mean ¢ | Median € | Max ¢ | SFU grey-ball
Ws specular 10.8° 9.4° 36.1° 10.4° 8.9° 50.4° 7.7° 6.2° 30.0° Ws specular
W, shadow 10.6° 8.6° 52.3° 10.5° 8.6° 50.1° 11.1° 9.3° 30.0° W shadow
Wy material 19.5° 18.0° 64.5° 29.5° 29.9° 74.1° 13.7° 12.2° 43.2° W material
Color-checker | Mean € | Median ¢ | Max € Mean ¢ | Median € | Max ¢ Mean € | Median € | Max ¢ | Color-checker
Ws specular 7.6° 5.5° 36.8° 6.5° 4.7° 44.° 3.9° 3.2° 19.0° Ws specular
W shadow 7.0° 5.2° 35.1° 7.0° 5.2° 35.1° 7.3° 5.6° 36.0° W shadow
Wy material 19.6° 19.1° 49.4° 37.7° 37.5° 67.8° 16.5° 15.9° 38.9° W material

(a) Performance after one iteration

(b) Performance after 10 iterations

(c) Performance of theoretical scenario

TABLE 4
Mean, median and maximum angular errors on the two Uncontrolled data sets. The results on the SFU
grey-ball set are obtained with x = 10, the results on the color-checker set with x = 50 (both sets are processed
with o = 1).

ble reason for the apparent lack of improvement with
respect to the unweighted Grey-Edge on this data set
is the number of color clipped pixels: on average, 5%
of the pixels in this data set are possibly clipped (a
pixel is possibly clipped if it has a maximum response
in either of the three channels). The color-checker set,
for instance, only consists of 0.5% color clipped pixels.
Since these pixels are ignored during the estimation
of the light source, they can not contribute to more
accurate estimations. In fact, as was shown in section
4, the accuracy will rapidly degrade if a significant
percentage of the pixels with high intensity (likely
specular pixels) is ignored.

Applying the proposed method to the color checker
set results in state-of-the-art performance, see table 6.
The proposed method significantly outperforms the
other methods according to the Wilcoxon sign test,
including the gamut mapping. It should be noted that
the Wilcoxon sign test is based on the number of
images on which one method performs better than
another. In the comparison between the proposed
method and the gamut mapping, it was found that
the proposed method performs better than the gamut
mapping on the majority of the images, resulting
in a statistical significant difference in favor of the
proposed method. Running multiple iterations using
the specular weighting scheme improves the per-
formance considerably: compared to the unweighted
Grey-Edge, a decrease in angular error of more than

11% can be obtained. This difference is perceptually
and statistically significant.

Some example results of both the SFU grey-ball and
the color-checker set are shown in figure 7. Overall,
it can be concluded that the proposed method using
specular edges improves upon the traditional Grey-
Edge method. Assigning higher weights to specular
edges can lead to an improvement of up to 11% (on
the color-checker set). However, from the experiments
in this section, it becomes clear that the proposed
method introduces stronger (but not more) outliers:
the maximum angular error increases on all data sets,
but the median angular error decreases.

6 DiIsSCUSSION

In this paper, it is shown that weighted edge-based
color constancy based on specular edges can sig-
nificantly improve unweighed edge-based color con-
stancy. Further, it is shown that shadow edges con-
tain valuable information. The reason for these con-
clusions can be derived as follows. Edges that are
achromatic when viewed under a white light source,
will accumulate in a tight gamut and assume the
color of the light source when observed under colored
illumination. This will increase the saturation from 0
to the saturation of the light source. Consequently,
these edges are well suited for estimating the color of
the light source, as all properties of the light source

Method Mean ¢ | Median ¢ | Max ¢ Method Mean € | Median ¢ | Max e
Grey-World (e%-1:0) 13.0° 10.6° 55.2° Grey-World (e%-1:0) 9.8° 7.4° 46.0°
White-Patch (e9-°°:0) 12.3° 10.0° 38.7° White-Patch (e?-°°:0) 8.2° 6.1° 36.3°
Using I.1.C. Space 14.0° 10.6° 72.0° Using I.1.C. Space 9.7° 6.0° 61.3°
Gamut mapping (o = 7) 11.9° 9.0° 39.1° Gamut mapping (o = 3) 7.1° 4.9° 37.0°
general Grey-World (cross-val.) 11.3° 9.8° 42.3° general Grey-World (cross-val.) 7.1° 5.4° 36.7°
1%t-order Grey-Edge (cross-val.) 10.7° 9.1° 48.5° 1%t-order Grey-Edge (cross-val.) 7.1° 5.6° 36.3°
27d_order Grey-Edge (cross-val.) | 10.8° 9.2° 46.5° 27d_order Grey-Edge (cross-val.) 7.3° 5.5° 37.3°
Proposed: Iterative (cross-val.) 10.4° 9.0° 50.1° Proposed: Iterative (cross-val.) 6.7° 5.0° 42.1°
TABLE 5 TABLE 6
Comparison to other algorithms on the SFU grey-ball ~ Comparison to other algorithms on the Color Checker

set.

set.
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Fig. 7. Some example results of several methods, applied to the uncontrolled data sets. Note that these images
are gamma-corrected for better visualization, but the estimation and correction are performed on the linear
images. The value reported in the bottom right corner indicates the angular error. The top two rows show
examples of the SFU grey-ball set, with from left to right, the original image, the result of correction with the
ground truth, the proposed method, the 15!-order Grey-Edge, the Grey-World and using I.1.C. Space. The bottom
two rows show examples of these algorithms applied to the color-checker set.

are contained in this edge. This was shown in section
4.

Colored edges, on the other hand, are edges that
correspond to the transition from one surface (e.g. a
red surface when viewed under a white light source)
to another surface (e.g. a blue surface when viewed
under a white light source). The saturation of this red-
to-blue edge when viewed under a white light source
can be an arbitrary value. Moreover, when this edge is
observed under a colored light source, the saturation
and color will result in gamuts with large variation
that can take on unpredictable values, from which it
is extremely hard (if not impossible) to estimate the
color of the light source. In general, the hue of an edge
is more altered by the illuminant when the saturation
of that edge under a white light source is lower. More
formally, a negative correlation exists between S,, and
dwu, Where S, is the saturation of an edge under a
white light source and d,,,, is the distance of that edge
under a white light source w to that same edge viewed
under an unknown light source u.

From this, it can be concluded that edges that
are unsaturated under a white light source are good
candidates for estimating the color of the light source.
Specular and shadow edges are examples of such
edges. However, specular edges are difficult to detect
because of disturbances like a colored illumination.
Using a specular edge detector that is dependent
on the color of the illumination will introduce the
necessity of running multiple iterations. The shadow

edges can be detected regardless of the color of the
light source, but are of less value than the specular
edges.

If we assume highlights are the most important cue
for the estimation of the color of the light source, it
becomes obvious that Grey-Edge-based methods gain
more from this knowledge than pixel-based methods.
In a typical scene, the number of pixels that coincide
with the illuminant direction is vastly outnumbered
by the number of pixels that do not coincide with
this direction: most pixels are not highlights or perfect
reflectances. For edges, a similar conclusion holds,
although the ratio of edges that coincide with the
illuminant direction versus edges that do not is likely
to be larger. Indeed, uniformly colored patches will
only have non-zero edge energy near the boundary
of the patch, so small patches will generate rela-
tively more edges with non-zero energy than large
patches. Consequently, as highlights (or other pixels
that coincide with the color of the light source) are
often small regions in an image, the edges that are
caused by these regions are likely to stand out among
the other edges more than highlight pixels among
other pixels. Note, however, even though edges are
more likely to coincide with the illuminant direction
than pixels, this does not mean pixels are inferior to
edges at all times. Moreover, even scenes with few or
no edges or pixels that coincide with the illuminant
direction could result in accurate illuminant estimates:
the average of a scene can still be an accurate cue
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for the color of the light source if there is enough
variation among the pixels or edges.

The main advantage of the proposed (iterative)
weighted Grey-Edge over existing methods is that
additional information, which is provided by the dif-
ferent edge types, is used. This information, when
available, results in more accurate illuminant esti-
mates. Moreover, the proposed method connects two
theories involving color image analysis, i.e. the Grey-
Edge for color constancy and the Quasi-Invariants for
edge classification. The disadvantage of the proposed
method is that in case of misclassification of the edge
types the method may result in lesser performance.
The weighted Grey-Edge inherits the weakness of the
regular Grey-Edge: opaque parameter selection, i.e.
the optimal parameters are difficult to select without
prior knowledge of the input images.

7 CONCLUSION

In this paper, the influence of different edge types
on the performance of edge-based color constancy is
analyzed.

It is shown that weighted edge-based color con-
stancy based on specular edges can result in accurate
illuminant estimates. Using a weight map that is
based on shadow edges performs slightly worse than
specular edges, but considerably better than using
material edges. However, the accuracy of the detec-
tion of specular edges is degraded by failing assump-
tions of the quasi-invariants (like the assumption of
a white light source). Iteratively classifying specular
edges and estimating the illuminant can considerably
reduce the dependency of specular weights on the
intrinsic assumption of a white light source, and hence
result in a better performance. Weight maps that put
more emphasis on shadow edges are not dependent
on the color of the light source, and result in stable
illuminant estimates.

Experiments on images that are recorded under
controlled circumstances demonstrate that the pro-
posed iterative weighted Grey-Edge algorithm based
on highlights reduces the median angular error with
approximately 25%. Further, in experiments on im-
ages that are recorded in an uncontrolled environ-
ment, improvements in angular error up to 25% with
respect to unweighted edge-based color constancy are
obtained.
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