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Received: ? / Accepted: ?

Abstract The Hierarchical Conditional Random Field
(HCRF) model have been successfully applied to a num-
ber of image labeling problems, including image seg-
mentation. However, existing HCRF models of image
segmentation do not allow multiple classes to be as-
signed to a single region, which limits their ability to in-
corporate contextual information across multiple scales.
At higher scales in the image, this representation yields
an oversimplified model since multiple classes can be
reasonably expected to appear within large regions. This
simplified model particularly limits the impact of infor-
mation at higher scales. Since class-label information at
these scales is usually more reliable than at lower, nois-
ier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency po-
tential for image labeling problems, which we call the
harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations
of classes. We also propose an effective sampling strat-
egy over this expanded label set that renders tractable
the underlying optimization problem. Our approach ob-
tains state-of-the-art results on two challenging, stan-
dard benchmark datasets for semantic image segmen-
tation: PASCAL VOC 2010, and MSRC-21.
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1 Introduction

Semantic image segmentation aims to assign predefined
class labels to every pixel in an image, and is a crucial
step for automatic understanding of an image. Image
segmentation belongs to the general class of labeling
problems, some of which, like image classification and
stereo vision, date back to the early days of computer
vision. Image segmentation is highly under-constrained,
and state-of-the-art approaches focus on exploiting con-
textual information available around each pixel and at
different scales of the image. One of the recent trends in
semantic image segmentation is the use of Conditional
Random Field (CRF) models with consistency poten-
tials, which are able to cast the semantic segmentation
task as an energy minimization problem over pixel or
superpixel labelings. Continuing along these lines, we
show in this article that the CRF model, when equipped
with a new consistency potential which we call the har-
mony potential, can be used to efficiently fuse contex-
tual information at the global and local context scales.

It is well known that context plays an important role
for the recognition of objects in human vision (Oliva
and Torralba, 2007). The classification of an image re-
gion ignoring its context, and focusing only on the in-
formation within the object boundaries, is often an im-
possible task. The global context provides an impor-
tant cue in the recognition of the objects, probably even
more important than the objects themselves. In a living
room one expects sofas, lamps, tables, chairs, but not
airplanes or trains.

Predicting the presence of a certain kind of objects
based on the global image scale has been intensively
studied in the field of image classification (Zhang et al,
2007; Lazebnik et al, 2006; van de Sande et al, 2010;
Csurka and Perronnin, 2010; Shahbaz Khan et al, 2009).
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Fig. 1 Overview of our method. Illustration of the HCRF applied to image segmentation. Local nodes represent the random
variables over superpixel labels, which take values from the set of class labels L. Local nodes are connected when their superpixels

share a boundary. The global node is a random variable over P(L), the power set of L, which allows it to take any possible combination

of the class labels as its label. The global node represents the classification of the whole image into semantic categories. Harmony
potentials connect the global node to all local nodes.

The image is generally represented by histograms over
visual words, which are further enriched to incorpo-
rate, for example, spatial relationships (Lazebnik et al,
2006). These works use features of both objects and
context to infer the presence of objects. Though lo-
cal regions may also be described by a bag-of-words
over local features such as color, texture or shape, the
more complex representations that have considerably
improved image classification performance cannot be
expected to improve local region classification. The rea-
son is that these regions lack of the complexity encoun-
tered at larger scales. Therefore, in contrast to existing
CRF-based methods (Plath et al, 2009; Verbeek and
Triggs, 2008), we propose to adapt the classification
method to the scale of the region. In particular, we use
methods investigated by the image classification com-
munity to improve classification at the global scale in
order to improve classification at the local scale of su-
perpixels.

CRFs are theoretically sound models for combin-
ing information at multiple scales (Shotton et al, 2009;
Kumar and Hebert, 2005). A smoothness potential be-
tween neighboring nodes models the dependencies be-
tween the class labels of regions. However, since nodes
at the lowest scale often represent small regions in the
image, labels based only on their observations can be
very noisy. Often, the final effect of such CRFs is merely
a smoothing of local predictions. To overcome this prob-
lem, hierarchical CRFs have been proposed in which

lower level nodes describe the class label configuration
of the smaller regions (Plath et al, 2009; Kohli et al,
2009b; Zhu et al, 2008). One of the main advantages of
this approach is that the higher-level context is based
on larger regions, and hence can lead to more accurate
estimations.

A drawback of existing hierarchical models is that
to make them tractable they are often oversimplified by
limiting regions to take just a single label (Plath et al,
2009), or in a more recent paper, an additional “free
label” which basically cancels the information obtained
at larger scales (Kohli et al, 2009b; Ladicky et al, 2009).
Even though these models might be valid for scales close
to the pixel level, they do not model very well the higher
scales, much less the global scale. At the highest scales,
far away from pixels, they impose a rather unrealis-
tic model since multiple classes often appear together.
The “free label” approach does not overcome this draw-
back because it does not constrain the combinations of
classes which are not likely to appear simultaneously
in one image. To summarize: the requirement to obtain
tractable CRF models has led to oversimplified mod-
els of images, models which do not properly represent
real-world images.

In this paper, we also adopt the hierarchical CRF
framework but improve it by focusing on the crucial
issue of how to efficiently represent and combine infor-
mation at various scales. Our model is a two-level CRF
that uses labels, features and classifiers appropriate to
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each scale. Figure 1 gives an overview of our approach to
semantic image segmentation. It shows how consistency
potentials can be defined to effectively relate semantic
context in an image with local observations. The lowest
level nodes represent superpixels labeled with single la-
bels, while a global node on top of them constrains pos-
sible combinations of primitive local node labels below
(Figure 2e). A new consistency potential, which we term
the harmony potential, is introduced and enforces con-
sistency of local label assignment with the label of the
global node. We propose an effective sampling strategy
for global node labels that renders tractable the under-
lying optimization problem. Experiments yield state-
of-the-art results for object class image segmentation
on two challenging datasets: PASCAL VOC 2010 and
MSRC-21.

In the next section we review the existing literature
on semantic image segmentation. Section 3 describes
the common framework for context-based probabilis-
tic labeling. Then, in Sections 4 and 5 we introduce a
new type of a consistency potential: the harmony po-
tential. Section 6 then specializes this framework for the
problem of object segmentation and image classification
by defining the concrete unary, smoothness and consis-
tency potentials we use. In Section 7 we present results,
and finally we draw some conclusions in Section 8.

2 Related Work

Image segmentation enjoys a long history as one of the
mainstream topics of research in the computer vision
community. It has long been approached as a bottom-
up process based on low-level image features such as
color, texture, and edge-detection (Marr, 1982; Tu and
Zhu, 2002; Martin et al, 2004). In evaluation against
human segmentation of images, acceptable results can
be obtained (Martin et al, 2001), but common consen-
sus is that for further improvement top-down semantic
information is needed.

Advances in object recognition (Schmid and Mohr,
1997; Lowe, 2004; Sivic and Zisserman, 2003) allowed
for the recognition of semantic classes in images to
aid image segmentation. Early works incorporating top-
down information include (Mori et al, 2004) which com-
bine segmentation and recognition, and the work on im-
age parsing pioneered by the early work of Tu and Zhu
(2002) and continuing with (Tu et al, 2005; Zhu et al,
2008). The image parsing approach, in general, uses a
generative model of image formation and segments an
image by decomposing it into its constituent patterns
represented as a hierarchical parse tree. The tree of con-
stituent patterns that maximizes a posterior is selected
as the final image segmentation. These developments

gave birth to the field of semantic segmentation where
the goal is to both segment the image and classify pixels
into a set of predefined semantic categories.

In this section, we discuss the most relevant recent
approaches and classify them according to the scale of
the context on which the segmentation is based. We dis-
tinguish three levels of scale. Firstly, the local scale is
defined by a local patch or superpixel, usually obtained
from an oversegmantation of the image. Secondly, the
mid-level scale consists of a neighborhood of patches
or superpixels. We also consider as mid-level scale the
outputs of sliding-window approaches as used in object
detection, since they typically consist of multiple su-
perpixels. Finally, the global scale is the entire image,
which enables us to incorporate more sophisticated con-
text. Approaches like our method, which are based on
graphical models that enforce global consistency, will
not be discussed here, but rather will be discussed in
relation to our work in section 3.

2.1 Local scale

Bottom-up image segmentation methods try to label
each pixel with the most likely class relying only on lo-
cal information (Shotton et al, 2009; Yang et al, 2007;
Pantofaru et al, 2008; Jiang and Tu, 2009; Fulkerson
et al, 2009). These methods tend to yield rough and
noisy object segmentations, since many ambiguities are
still present in the local observations. However, these
methods are well suited for classes for which shape
is not informative, which are better described by the
local textures. These classes are referred to as stuff
classes (Adelson, 2001).

Since pixels alone are often not informative enough,
one needs to consider a patch around them, which is de-
scribed by multiple features. Typically, shape features
such as SIFT (Lowe, 2004), color features like local color
histograms, and texture features like LBPs (Ojala et al,
2002) are used as local descriptors. Due to redundancy
at the pixel level and for computational efficiency, a
common approach is to sample randomly or in a regular
grid from all possible locations, rather than represent-
ing features at the pixel level (Nowak et al, 2006). The
main drawback of such approaches is that the image is
partitioned in a uniform way, whereas natural images
usually are not.

A solution to this problem is to use an initial un-
supervised segmentation algorithm like (Felzenszwalb
and Huttenlocher, 2004; Comaniciu and Meer, 2002;
Vedaldi and Soatto, 2008; Vazquez et al, 2011). This
enables us to construct the low-level partitions of an
image using a superpixel-based approach, which min-
imizes the risk of containing more than one object in
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a single superpixel (Fulkerson et al, 2009; Jiang and
Tu, 2009). Since unsupervised image segmentation is
known to be unstable, Pantofaru et al (2008) proposed
combining several bottom-up segmentations. Fulkerson
et al (2009) investigated the benefits of using superpix-
els and conclude that they have lower computational
requirements, provide coherent regions on which to ob-
tain feature statistics, and preserve object boundaries.

2.2 Mid-level scale

Mid-level scale is usually exploited in the form of ob-
ject detection, hierarchical segmentation and enlarged
local regions. It is usually used by top-down object seg-
mentation approaches, which use the mid-level context
scale to disambiguate local predictions and, in contrast
to bottom-up approaches, they use a priori knowledge
about the whole object such as its structure (Levin and
Weiss, 2009). They incorporate global object proper-
ties, like shape masks or histograms of oriented gra-
dients (Yang et al, 2010; Leibe et al, 2008; Winn and
Jojic, 2005; Kumar et al, 2005; Lempitsky et al, 2009;
Carreira and Sminchisescu, 2010). However, since they
rely on the global appearance of the object, occluded
and less salient objects become more difficult to seg-
ment.

Several approaches are built upon the bounding boxes
obtained from a detection method (Lempitsky et al,
2009; Gould et al, 2009; Ladicky et al, 2010b). For in-
stance, Yang et al (2010) merge several object detec-
tions by layering the scene, and infers which object is
in front of the other. Since it can be understood as a re-
finement of detection methods, its performance remains
bounded by the detection accuracy.

Other approaches incorporate the structure of ob-
ject parts. In (Leibe et al, 2008), the relative part loca-
tion is determined by using a codebook and the gener-
alized Hough transform, and Kumar et al (2005) cast
the problem as an energy minimization over a set of
predefined parts and their relative locations. In (Winn
and Jojic, 2005), an unsupervised procedure is able to
segment an object class using a learned class mask and
a deformation field. Also using an unsupervised proce-
dure, Carreira and Sminchisescu (2010) select the most
plausible figure-ground hypotheses and combine them
in a later stage (Li et al, 2010).

Other works apply a coarse-to-fine approach based
on a hierarchical representation (Zhu et al, 2008; Lim
et al, 2009; Ladicky et al, 2009). The main strength of
these methods is their ability to encode the context of
a region, but they usually fail when background classes
are not labeled in the training data since the semantic
context can not be retrieved.

In our method, we apply mid-level scale informa-
tion to improve the classification of superpixels. This is
done by enriching the superpixel description with infor-
mation about its neighbors. We use the object detection
of (Felzenszwalb et al, 2010) as an additional mid-level
cue to improve superpixel classification.

2.3 Global scale and context

Global-scale information as used in image classification
is often sufficient to determine the presence or absence
of an object in a scene. Often, these methods rely more
on contextual features rather than the object itself.
The composition of the image can reveal the plausi-
bility that an object does or does not appear in the
image. Some segmentation algorithms use this infor-
mation without taking into account its reliability, and
only consider in the image the detected objects (Csurka
and Perronnin, 2010; Plath et al, 2009), or reweight the
local predictions like in (Shotton et al, 2008).

Several authors have noted the importance of con-
text to obtain good classification (Oliva and Torralba,
2007; Galleguillos and Belongie, 2010). Context can be
any information that is not directly produced by the ap-
pearance of an object. As stated in (Oliva and Torralba,
2007), in many cases the local appearance of an image
is not enough to correctly classify the object class, and
context plays an important role in disambiguating it.
For example, the notion of semantic co-occurrence is
shown to be helpful in the CRF formulation of (Ra-
binovich et al, 2007). Closely related to our previous
approach (Gonfaus et al, 2010) is the recent work of
(Ladicky et al, 2010a), where the co-occurrence statis-
tics are incorporated directly into the graph cut infer-
ence procedure. To do so, it uses the principle of par-
simony, which for similar likely solutions chooses the
solution with fewer labels. Similarly, the model by De-
long et al (2010) penalizes over the quantity of different
labels present in the image but without taking into ac-
count any co-occurence statistics. In contrast to these
works, we adapt the representation to the context scale
and use more sophisticated global classifiers rather than
semantic co-ocurrence. We show that this greatly im-
proves the results (see Section 7).

Another way of exploiting global image information
is by inferring 3D scene geometry to discover where ob-
jects are likely to appear and how big they can be (Hoiem
et al, 2007, 2008; Munoz et al, 2009). Splitting the im-
age into regions allows the design of more sophisticated
relations within the classes in an image. For example,
based on confident familiar detections, other objects
can be discovered (Lee and Grauman, 2010), or inter-
class relations can be learned in (Jain et al, 2010), or
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hierarchical models can be aproximated by sequentially
fitting simple two-level models in a coarse-to-fine man-
ner (Munoz et al, 2010).

As discussed in the introduction, we use image clas-
sification to provide global-scale information. We also
learn the co-occurrence of classes from the training data
and incorporate all of these cues into a hierarchical CRF
model. In the next section we introduce the labeling
problem as MAP estimation in preparation for the def-
inition of the harmony potential in Section 4.

3 Labeling as MAP estimation in graphical
models

We present a model for labeling problems that jointly
uses global and local scales and introduce the existing
labeling approaches that use this same idea (Plath et al,
2009; Ladicky et al, 2009; Kumar et al, 2005). We show
the different ways they define the relationship between
the local and global context scales.

3.1 Hierarchical CRFs for labeling

Graphical models are sound representations of joint prob-
ability distributions (Lauritzen, 1996; Wainwright and
Jordan, 2008). A graphical model uses a graph G =
(V, E) to represent a probabilistic model composed of
a set X = {Xi}i∈V of random variables, each of which
corresponds to a node in the graph. Each node is in-
dexed with an element of the set V = {1, 2, . . . , N}. We
use x = {xi}i∈V to denote a possible state or instantia-
tion of X. That is, x = {xi}i∈V represents hypothetical
assignment of value xi to random variable Xi in X. In
this paper, we only consider undirected graphical mod-
els, and represent the edges of the graph with the set
E of tuples (i, j), where i, j ∈ V. The edges define a set
of conditional independence assumptions, where each
edge represents the compatibility between the nodes it
connects, and for which the Markov property holds:

P (Xi = xi|X{j 6=i}) = P (Xi = xi|X{j|(i,j)∈E}). (1)

These models are called Markov Random Fields (MRF),
or Conditional Random Fields (CRF) when compatibil-
ity between nodes is conditioned on some measurement.

A clique is a subgraph in which every node is con-
nected to all other nodes in the subgraph. Let C rep-
resent the set of cliques that are not a subset of any
other clique. These are known as maximal cliques, and
according to the Hammersley-Clifford theorem (Ham-
mersley and Clifford, 1971) the probability that X takes

value x in a CRF, conditioned on O, follows a Gibbs
distribution:

P (X = x|O) =
1
Z

∏
c∈C

e−ϕc(xc), (2)

where ϕc is the compatibility function or potential of a
clique c ∈ C, and xc = {xi}i∈c is the state x restricted
to the nodes in clique c ∈ C. For the sake of simplicity,
we do not explicitly indicate the dependence of ϕc on O.
The potential functions ϕc(xc) do not have a probabilis-
tic interpretation, but encode a priori knowledge about
random variables in a clique. Z =

∑
x

∏
c∈C e

−ϕc(xc),
called the partition function, is a normalization con-
stant whose exact computation is usually intractable.
We define the energy of state x as

E(x) = − logP (X = x|O)− logZ =
∑
c∈C

ϕc(xc). (3)

CRFs have been broadly used to model dependen-
cies in labeling problems (Shotton et al, 2009; Kumar
and Hebert, 2005). The simplest and most common only
involves the local context scale. Since nodes at the low-
est scales often represent small regions in the image, la-
bels based only on their observations can be very noisy.
To reduce such noisy labeling, a smoothness potential
between neighboring local nodes is defined to model the
dependencies between regions. However, the final effect
of such CRFs is merely a smoothing of local predic-
tions. Li and Huttenlocher (2008) attempted to over-
come this problem using a connectivity pattern with
long range dependencies. Other authors use high-order
cliques in the original connectivity pattern, and then
convert them into order two cliques by the introduc-
tion of new variables (Ramalingam et al, 2008; Rother
et al, 2009; Ishikawa, 2009; Kohli and Kumar, 2010).

In addition to local scale, Hierarchical CRFs (HCRFs)
are used for combining different scales of context (Plath
et al, 2009; Ladicky et al, 2009; Zhu et al, 2008). This
approach consists on building a hierarchy of variables
on top of the graph. Higher level nodes describe the
class-label configuration of larger image regions, while
those lower in the hierarchy still describe local scale at
the pixel or super-pixel level. One of the main advan-
tages of these approaches is that higher level context is
based on larger regions, and hence can lead to better
estimations.

Our treatment of the HCRF formulation is limited
to an instantiation of a graphical model G relating a
global context scale with the local one. We designate
a random variable as the global node and one for each
local node. Thus, V = VG ∪ VL, where VG = {g} is
the index associated with the global node, and VL =
{1, 2, . . . , N} are the indexes associated with each local
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node. All of these random variables take a discrete value
from a set of labels L = {l1, l2, . . . , lM}. Analogously,
we define two subsets of edges: E = EG ∪ EL. The set
of edges EG contains edges connecting the global node
Xg with each of the local nodes Xi, for i ∈ VL. The set
of local edges EL is the pairwise connections between
local nodes.

The energy function of the graph G can be written
as the sum of the unary, smoothness and consistency
potentials, respectively:

E(x) =∑
i∈V

φi(xi) +
∑

(i,j)∈EL

ψL
ij(xi, xj) +

∑
(i,g)∈EG

ψG
ig(xi, xg). (4)

The unary term φi depends on a single probability
P (Oi|Xi = xi), where Oi is the observation that af-
fects Xi in the model. The smoothness potential ψL

ij

determines the pairwise relationship between two local
nodes. It represents a penalization for two connected
nodes having different labels, and usually depends also
on an observation. The consistency potential ψG

ig ex-
presses the dependency relationship between the labels
of a local node and the global node.

Some authors used this graphical model G as a basic
structure that is repeated recursively to form a larger,
hierarchical graph (Plath et al, 2009; Ladicky et al,
2009). Doing so, mid-level context scale can be easily
added to the model. However, the definition of the re-
lationships between these context scales, i.e. the con-
sistency potential, is an important issue that has to be
clarified. Before introducing our framework, we first re-
view existing consistency potentials applied to image
labeling problems.

3.2 Existing consistency potentials

In the following we review the Potts and the robust PN -
based consistency potentials, which have been used in
a HCRF for labeling problems. In Section 4, we extend
these potentials to a new one that we call harmony
potential. Figure 2 briefly illustrates the characteristics
of the different models compared in this paper.

3.2.1 Potts Potential

In the basic graph used to build the tree structured
model by Plath et al (2009) the consistency potential
is defined as a Potts model:

ψG
ig(xi, xg) = γi(xi)T[xi 6= xg], (5)

where T[·] is the indicator function and γi(xi) is the
cost of labeling xi ∈ L. Since this potential encourages

assigning the same label as the global node to all the
local nodes, this potential is unable to support any kind
of heterogeneity in the region below the global node.

3.2.2 Robust PN -Based Potential.

In this case, the global node has an extended label set
LE = L∪{lF }, where lF stands for a “free label”. This
special label means that any possible label in L can
be assigned to local nodes without any cost. Thus, the
potential becomes

ψG
ig(xi, xg) =

{
0 if xg = lF or xg = xi

γi(xi) otherwise
. (6)

The model is recursively used to build up a hierarchical
graph for object segmentation (Ladicky et al, 2009),
and inference can be achieved using graph cuts (Russell
et al, 2010).

This potential enforces labeling consistency when
the vast majority of local nodes have the same label
and, unlike the Potts model, does not force a certain
labeling when the solution is heterogeneous. However,
in the heterogeneous case, not applying any penaliza-
tion is not always the best decision. When a particular
subset of labels ` ⊂ L appears in the ground-truth and
xg = lF , the robust PN -based potential will not penal-
ize any assigned label not in the subset `.

This potential is equivalent to the high-order ro-
bust PN potential previously introduced by Kohli et al
(2009b) and is an extension of the PN Potts poten-
tial (Kohli et al, 2009a). The PN Potts potential is a
high order potential that, rather than adding a penal-
ization for each mislabeling as in Eq. (6), penalizes a
constant value when all nodes do not take the same
label.

4 The harmony potential

The main drawback of existing consistency potentials
is that to make inference tractable they usually must
be oversimplified by allowing regions to have just a sin-
gle class label (Potts), or adding a “free label” which
basically cancels the information obtained at the larger
scales (Robust PN -based). At the highest scales, far
away from pixels, they impose a rather unrealistic model
since multiple classes appear together. The requirement
to obtain tractable inference has led to oversimplified
HCRF models, that do not properly represent larger
context scales.

The harmony potential generalizes the robust PN -
based potential, which is itself a generalization of the
Potts potential. As in music harmony describes pleasant
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(a) Ground truth (b) No global potential

Free

(c) Potts potential (d) Robust PN -based potential (e) Harmony potential

Fig. 2 Example of the penalization behavior of different models for a labeling problem with labels {blue, green,

orange}, where (a) is the ground-truth. (b) Without consistency potentials only the smoothness potential penalizes discontinuities

in the labeling. (c) The Potts consistency potential adds an extra penalization (indicated in red) for each label different from the global
node. (d) The Robust PN -based potential, when the global node takes the “free label”, does not penalize any combination of labels.

(e) The harmony potential, which allows combinations of labels in the global node, correctly penalizes the orange labeling if the global

node takes label {blue, green}.

combinations of tones when played simultaneously, here
we employ this term to describe likely combinations of
labels. In this section we formally define the harmony
potential, show how it is a natural generalization of
the robust PN -based potential, and its equivalence to
a high order graphical model.

4.1 Definition

Let L = {l1, l2, . . . , lM} denote the set of class labels
from which local nodes Xi take their labels. The global
node Xg, instead of taking labels from this same set,
will draw labels from P(L), the power set of L. In this
context, the power set represents all possible combina-
tions of primitive labels from L. This expanded repre-
sentation capability is what gives the harmony poten-
tial its power, although its cardinality 2|L| renders most
optimization problems over the entire label set for the
global node. In the sequel, we propose a ranked sub-
sampling strategy that effectively reduces the size of
the label set that must be considered.
P(L) is able to encode any combination of local node

labels, and the harmony potential subsequently estab-

lishes a penalty for local node labels not encoded in
the label of the global node. The harmony potential is
simply defined as:

ψG
ig(xi, xg) = γi(xi)T[xi /∈ xg]. (7)

Note that ψG
ig(xi, xg) penalizes when xi is not encoded

in xg, but not when a particular label in xg does not
appear in the xi.

Analyzing the definition of the robust PN -based po-
tential in Eq. (6), we see that lF is essentially a “wild-
card” label that represents any possible label from L.
Setting xg = L ∈ P(L) in the harmony potential in
Eq. (7) similarly applies no penalty to any combination
of local node labels, since l ∈ xg = L for any local
label l. In this way the harmony potential generalizes
the robust PN -based potential by admitting wildcard
labels at the global node, while also allowing concrete
and heterogeneous label combinations to be enforced
by the global node.

The incorporation of global information through the
harmony potential is novel with respect to existing tech-
niques exploiting image-level priors such as Shotton
et al (2008). While such techniques rely on global in-
formation, our probabilistic framework incorporates the
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uncertainty of Xg with the selected labels of local nodes
in a joint-probabilistic manner. The harmony potential
intrinsically handles the heterogeneity of the labeling
problem, mainly because the label set of the global node
is the power set of local node labels. We can observe in
Eq. (7) how, unlike the PN -based potential, the har-
mony potential is able to distinguish between combi-
nations of labels and to apply a different penalization
according to the compatibility of these combinations.

4.2 Equivalence to a high order model

High order graphical models are able to encode com-
plex dependencies between sets of random variables.
Models with high-order potentials have been success-
fully applied in applications ranging from image denois-
ing (Roth and Black, 2009) and stereo vision (Woodford
et al, 2009) to labeling problems (Kohli et al, 2009a).
However, it is not always possible to infer a satisfac-
tory MAP configuration because of the complexity of
the model. More expressive potentials are needed but
without sacrificing the reliability of MAP inference.

Recently, several authors pointed out that some high-
order potentials can be transformed into pairwise mod-
els by extending them with extra random variables (Ra-
malingam et al, 2008; Rother et al, 2009; Ishikawa,
2009; Kohli and Kumar, 2010). Following this idea, it
can be shown that the harmony potential is in fact
equivalent to a high-order model.

Let ψH(xL) be a high-order potential that encodes
a dependency between all local nodes and the global
scale observation Og. xL is the set of local nodes labels
{xi}i∈VL

. We define a new graphical model GH from
G, where we substitute all harmony potentials and the
global random variable Xg by the high-order potential
ψH . This gives rise to a model which has the following
energy function

EH(xL) =∑
i∈VL

φi(xi) +
∑

(i,j)∈EL

ψL
ij(xi, xj) + ψH(xL). (8)

Note that the model does not have a global random
variable Xg, but takes into account the global scale ob-
servation Og inside ψH .

According to the transformation proposed by Rother
et al (2009), the graphical models GH and G are equiv-
alent if the high-order potential ψH is defined as

ψH(xL) =

min
`∈P(L)

{
γg(`) +

∑
i∈VL

γi(xi)T[xi /∈ `]

}
, (9)

where γg(`) is a constant that depends on the global
scale observation Og. Note that what makes ψH a high-
order potential is the minimum operation: it takes into
account all random variables in order to choose which
` ∈ P(L) minimizes the summation. The main idea
behind this transformation is that the global node Xg

is now encoded in ψH through the auxiliary variable `.
A proof of this is provided in Appendix A.

In the same way the harmony potential is expressed
as a high-order clique, Ladicky et al (2009) show that
the pairwise robust PN -based potential in Eq. (6) is
equivalent to the high-order robust PN potential de-
fined by Kohli et al (2009b), which is

ψH(xL) =

min
l∈L

{
γg(lF ), γg(l) +

∑
i∈VL

γi(xi)T[xi 6= l],

}
. (10)

Here we can also observe that the high-order version of
the harmony potential is a generalization of the high-
order robust PN potential. The harmony potential, as
shown in Eq. (9), is the minimum value taken over the
power set P(L), while in the robust PN potential the
minimum is only taken over γg(lF ), that represents the
wildcard label, and the values given by L. This wildcard
label is included in P(L), and hence in the minimization
in Eq. (9) since L ∈ P(L).

We have shown that the use of the power set P(L)
as the label set for the global node is what gives more
expressive power to the harmony potential. However,
since in most interesting cases optimizing a problem
with 2|L| possible labels is intractable, the harmony po-
tential also makes inference into a challenging problem.
In the next section we describe how to select the labels
of the power set that are the most likely to appear in
the optimal configuration.

5 Ranked sampling of P(L)

In the previous section we showed that the harmony
potential can be used to specify which labels are likely
to appear in the local nodes, and it also gives rise to
a model with which we can infer the most probable
combinations of local node labels. However, because
the harmony potential is built using all combinations
of labels, the excessive cardinality 2|L| of the label set
renders exact inference infeasible. For models with vari-
ables on very large domains, inference is usually made
possible by discarding labels (Freeman et al, 2000; Cough-
lan and Ferreira, 2002) or sampling the label space (Ih-
ler and McAllester, 2009; Koller et al, 1999; Sudderth
et al, 2002). Along these lines, we establish a rank-
ing of subsets that prioritizes the optimization over the
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2|L| possible labels for the global node, and then apply
any suitable inference algorithm such as Loopy Belief
Propagation (LBP) (Frey and MacKay, 1998) or Graph
Cuts (Boykov and Kolmogorov, 2004). In this section,
we focus on the selection of labels for the global node.

Optimizing for the best assignment of global label
x∗g implies maximizing P (Xg = `|O), where ` ∈ P(L).
This is very difficult in practice due to the 2|L| pos-
sible labels and the lack of an analytic expression for
P (Xg = `|O). An approximation of this probability al-
lows us to effectively rank possible global node labels,
and thus to prioritize candidates in the search for the
optimal label x∗g. We pick the best M ′ ≤ 2|L| subsets
of L that maximize an approximation of the posterior
P (Xg = `|O). This approximation establishes an order
on subsets of the (unknown) optimal labeling of the
global node x∗g that guides the consideration of global
labels. We may not be able to consider all labels in P(L)
during inference, but at least we can consider the most
likely candidates for the global nodes.

In the following subsections, we introduce a branch-
and-bound algorithm that is used to sample P(L), and
then the approximation of the posterior P (Xg = `|O).

5.1 Branch-and-bound sampling

A branch-and-bound algorithm allows us to find an ap-
proximately optimal solution to the labeling problem
without having to exhaustively search the whole space
of image labellings. We require at this point a bound-
ing strategy that discards large sets of candidate la-
bels without pruning away any potentially optimal solu-
tions. In Algorithm 1 we summarize a recursive branch-
and-bound algorithm to do just that. It establishes a
search tree where a label is built incrementally by in-
creasing the number of considered semantic classes. At
each level of the tree, an extra class is considered and a
decision is made whether to encode it in the label or not.
For instance, let `′′ ∈ P(L′′) be a partially built label
at the k-th level of the search tree, where L′′ ⊂ L. After
a branching to the (k+ 1)-th level, we take into consid-
eration one extra class label lbranch to build `′ ∈ P(L′),
and consider the probability that this class is encoded
in `′ or not. At the leaves of the search tree we obtain
the labels in P(L) and all classes have been taken into
account.

During the exploration of the tree, the algorithm
maintains a set S of the M ′ ≤ 2|L| labels with the
highest posterior P (Xg = `|O). An upper bound γ`′ of
this posterior is evaluated for each partially built label
`′ ∈ P(L′). If the upper bound γ`′ is lower than all the
posteriors of the labels in the set S, we can discard all

function S=Branch&Bound(`′′, S, k)
for `′ = {`′′, {`′′, lbranch}} do

if ∃` ∈ S : γ`′ ≥ q(`) then
if k = |L| then

`′ � S
else

S=Branch&Bound( `′, S, k + 1);
end

end

end

end

Algorithm 1. Branch-and-bound algorithm for selecting the M ′

labels with highest posterior q(`) ∝ P (Xg = `|O). The set S stores
the best found labels.

labels below `′ in the tree. Since these pruned labels
have a posterior lower or equal to the upper bound, we
are sure that none of them has a posterior high enough
to be selected. This pruning is what maintains tractable
computational costs.

5.2 Approximating P (Xg = `|O)

We first decompose the posterior using Bayes rule,

P (Xg = `|O) ∝ P (Xg = `)P (O|Xg = `). (11)

This breaks the posterior into the prior and the likeli-
hood, each of which are approximated separately.

We can approximate the prior P (Xg = `) from the
ground-truth of the training set I: it is approximated
by a histogram of the number of models where the set
` appears encoded in the ground-truth, i.e.

P (Xg = `) ∝
∑
Ii∈I

T[` ⊆ tig], (12)

where tig is the ground-truth label of the global node for
the training image Ii ∈ I. Note that this prior has the
advantage that it incorporates semantic co-occurrence
of classes: buses do not occur with televisions, though
they do occur quite often with cars.

The high dimensionality of O makes the estima-
tion of the likelihood P (O|Xg = `) very challenging.
To overcome this problem, let Olk

g be O restricted to
only those observations that influence the global node
in the model and are specific for each encoded object
class lk ∈ L. Thus, the likelihood can be approximated
as

P (O|Xg = `) ≈ P ({Olk
g }lk∈L|Xg = `), (13)

Note that it only takes only into account the observa-
tions of the global node individually, and discards any
relationship between it and the other random variables.
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In order to facilitate the computation of this proba-
bility, we assume conditional independence among the
global observations {Olk

g }lk∈L,

P ({Olk
g }lk∈L|Xg = `) =∏

k|lk /∈`

P (Olk
g |lk /∈ Xg)

∏
k|lk∈`

P (Olk
g |lk ∈ Xg) ∝ (14)

∏
k|lk /∈`

P (lk /∈ Xg|Olk
g )

∏
k|lk∈`

P (lk ∈ Xg|Olk
g ), (15)

where P (lk /∈ Xg|Olk
g ) = 1−P (lk ∈ Xg|Olk

g ). Note that
Eq. (15) follows from the assumption that labels in L
are equiprobable.

Because we are interested in ranking the labels, we
approximate a quantity proportional to P (Xg = `|O)
rather than the probability itself. Denoting this quan-
tity as q(`) and using Eq. (12) and Eq. (15), q(`) is
defined as:∑
Ii∈I

T[` ⊆ tig]
∏

k|lk /∈`

P (lk /∈ Xg|Olk
g )

∏
k|lk∈`

P (lk ∈ Xg|Olk
g ).

(16)

For each partially built label `′ ∈ P(L′) in the branch-
and-bound search exploration, we need an upper bound
γ`′ of q(`) for all possible labels ` built by branching
from `′. As mentioned before, this serves to prune all
labels ` for which γ`′ is smaller than the worst label
in the list of solutions S. It is easy to show that the
quantity q(`′) is an upper bound of the labels build
from itself (the proof is given in Appendix B), i.e.

γ`′ = q(`′) ≥ q(`). (17)

This is because after branching from `′ and considering
wheter the label lk ∈ L is present or not, neither deci-
sion can lead to an increase of the quantity q(`′). Note
that this does not mean that the posterior P (Xg = `|O)
is necessarily lower when more single labels are present.
q(`′) is computed using a partially built label `′, and
only the subset of labels L′ ⊂ L are taken into account.

5.3 Effects of sampling P(L)

In order to validate our hypothesis about the impact of
such sampling, we performed a simple experiment (see
Section 7 for a detailed description of the datasets and
implementation details used in all our experiments).
We analyze the performance of the system for differ-
ent numbers of sampled label combinations. Results
are shown in Figure 3 for the MSRC-21 and PASCAL
datasets. The gain of adding label combinations is more
significant for MSRC-21 since it is inherently more mul-
ticlass than the PASCAL dataset. Despite the fact that
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sampling, inference is only done once, while with Gibbs sampling
inference is done at every iteration.

we cannot compare with the use of all possible combina-
tion of labels because it is computationally unfeasible,
we observe that the performance quickly stabilizes after
considering only a few combinations.

It is also important to note the poor performance
of using just the best combination of labels. The reason
for this is that a global classifier cannot always deci-
sively identify the exact combination of true labels as
the best combination over all of them. This shows that
we cannot blindly rely on the best combination accord-
ing to the global classifier, since we obtain far superior
performance by considering more. Although these com-
binations are less likely from the global classifier point
of view, they are more suitable from the point of view
of our HCRF which jointly uses the global and local
context scales.

As another experiment, Figure 4 shows a compar-
ison to the use of Gibbs sampling to select labels for
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the global node. By iteratively flipping one of the M
labels on or off in the global label, one can infer a so-
lution without the approximation used in our branch-
and-bound algorithm. The results using Gibbs sam-
pling eventually reach the performance achieved by our
branch-and-bound method, but it is important to note
that the number of Gibbs sampling iterations required
to achieve this performance is, on average, more than
50 seconds per image. Our ranked sampling approach
achieves state-of-the-art performance using only 50 la-
bels for the global node and requires less then half a
second to segment an image.

6 Fusing local and global scales

In the previous section we described the structure of
our HCRF. Now we address how to apply it to fuse in-
formation at local and global scales for semantic image
segmentation. To illustrate the choices made in this sec-
tion we will show results on the two datasets on which
we will evaluate our method in Section 7: the PASCAL
VOC 2010 Segmentation Challenge (Everingham et al,
2010) and the MSRC-21 dataset (Shotton et al, 2009).

In Figure 1 we show an overview of the HCRF for
image segmentation. The local nodes {Xi}i∈VL

repre-
sent random variables over the semantic labelings of
superpixels. We obtain the set of superpixels using an
unsupervised segmentation method. Since all pixels in-
side a superpixel can take only a unique label, an over-
segmentation of the image is required so that superpix-
els do not cross object boundaries. Regions are created
by over-segmenting the image with the quick-shift al-
gorithm (Vedaldi and Soatto, 2008) using the same pa-
rameters as Fulkerson et al (2009). By working directly
on the superpixel level instead of the pixel level, the
number of nodes in the CRF is significantly reduced,
typically with an image of 500 × 300 pixels, the re-
duction goes from 150.000 to an average of 500 nodes
per image. Therefore, the inference algorithm converges
drastically faster.

The local nodes that share a boundary are con-
nected with a smoothness potential, and the global node
Xg represents the semantic classification of the whole
image. That is, it expresses whether the image contains
or not each of the semantic categories over which the
segmentation problem is defined. It is connected by the
harmony potential to each local node.

We differentiate between the unary potentials of the
local nodes φL

i (xi), where i ∈ VL, and the unary poten-
tial of the global node φG

g (xg). This is because we adapt
each potential to its scale. The larger scale of the global
node allows us to use more sophisticated representa-
tions, such as spatial pyramids (Lazebnik et al, 2006),

which are unsuitable at smaller scales. To improve clas-
sification accuracy at the local nodes we further extend
their observations with mid-level scale information.

6.1 Local Unary Potential

The unary potential associated with local nodes is based
only on information at the superpixel scale. At this
level, the ambiguity that exists between classes leads to
unreliable classification scores. To improve superpixel
classification accuracy, we combine both local and mid-
level information in the unary potential.

The superpixel descriptors are based on a bag-of-
words over both appearance and color features. To ben-
efit from context at the mid-level scale, we extend the
representation at the local scale with mid-level context
information. Fulkerson et al (2009) showed that a com-
bination of features extracted not only inside super-
pixels, but also in the area adjacent to them, better de-
scribes superpixels. We use two different bags-of-words:
one for the superpixel and another for the regions adja-
cent to it. These are then concatenated to form the final
feature representation of the superpixel. We found that
this combination better describes and distinguishes ob-
ject boundaries.

We use a variety of cues to represent superpixels,
and we train one classifier for each of them. We denote
by si(k, xi) the classification score for class label xi ∈
L at node i ∈ VL obtained using the cue indexed by
k ∈ F , where F is the set that indexes the cues. Thus,
for each superpixel we have several classification scores,
one for each cue and semantic class.

We compute the unary potential by weighting the
classification scores {si(k, xi)}k∈F through a sigmoid
function. The unary potential becomes:

φL
i (xi) = −µLKi log

∏
k∈F

1
1 + exp(fi(k, xi))

, (18)

fi(k, xi) = a(k, xi)si(k, xi) + b(k, xi), (19)

where µL is the weighting factor of the local unary po-
tential, Ki normalizes over the number of pixels inside
the superpixel. We have two sigmoid parameters for
each class/cue pair: a(k, xi) and b(k, xi). The usage of
a sigmoid to convert classification scores into probabil-
ities is common practice (Platt, 1999). Here, we simul-
taneously learn all the sigmoids on a validation set.

We use four different cues, each describing different
aspects of mid and low-level context scale. The differ-
ent cues also exploit different training sets in order to
discriminate between certain subsets of classes. An ear-
lier version of our work (Gonfaus et al, 2010) was based
only on the first of these cues. Our four cues are:
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image. See the text for explanation.

1. Foreground-background classifier (FG-BG): Object
classifiers are generally trained to differentiate be-
tween objects from one class and objects from any
other class. However, the harmony potential already
takes care of penalizing the coexistence of objects
from classes which are not likely to be in the image.
Hence, the superpixel classifiers need not be so gen-
eral, and can instead be specialized to discriminate
between a specific object class and only those classes
of objects which appear simultaneously in the same
image. The FG-BG classifier is designed to discrim-
inate objects from their own background, and thus,
the negative examples of the training set are those
superpixels in the same image not intersecting any
instance of the object class.

2. Object class against other objects (CLASS): When
several classes share similar backgrounds, such as
cows and horses, or cats and dogs, the FG-BG clas-
sifier might lead to high probabilities for several
foreground classes, and thus, it does not discrimi-
nate between classes. In this case, both classes are
highly probable, but usually only one of them ap-
pears in the same image. In order to disambiguate
these cases, the CLASS classifier is trained to dis-
criminate between each class and all other object
classes.

3. Location (LOC): We use the position of the super-
pixel as an additional cue. For instance, this cue
allows us to learn that many objects tend to be in
the center of the image, dining tables are often at
the bottom, or sky is most likely to be at the top.

4. Object detection (OBJ): We incorporate object de-
tection into the unary potentials to exploit another
source of mid-level information. We use the part-
based object detector of Felzenszwalb et al (2010)
to obtain a score for each bounding box in the im-
age. We convert these detection scores to superpixel
scores by selecting the highest scoring detection in-
tersecting each pixel of the superpixel. We then com-
pute the mean of pixel-level scores over the super-
pixel.

In Figure 5 we show per-cue maps of the probability of
superpixels belonging to four PASCAL classes. In this
example, the bottle class is very poorly segmented by
FG-BG, especially compared to the segmentation using
CLASS and OBJ. Note also the LOC cue reduces the
noisy segmentation of the dining table in the top-right
of the image.

In Figure 6 we show the individual performance of
the four cues described above on the PASCAL VOC
2010 validation dataset. Of the individual cues, FG-BG
is significantly better than all others. However, from
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this table we see that the CLASS cue is complemen-
tary to FG-BG since their combination increases per-
formance by more than three percent. Combining all
four cues obtains the best results.

6.2 Global Unary Potential

The global unary potential is defined as:

φG
g (xg) = −µG log(P (Xg = xg)P (Og|Xg = xg)), (20)

where µG is the weighting factor of the global unary
potential. The prior P (Xg = xg) can be approximated
by the frequency that label xg appears in the ground-
truth image of the training-set, i.e.

∑
Ii∈I T[xg ⊆ tig].

Since learning P (Og|Xg = xg) for all combinations of
labels is unfeasible, we employ the same approximation
here as in Eq. (14) and Eq. (15),

P (Og|Xg = xg) = P ({Olk
g }lk∈L|Xg = xg) ∝

(21)∏
k|lk /∈xg

P (lk /∈ Xg|Olk
g )

∏
k|lk∈xg

P (lk ∈ Xg|Olk
g ), (22)

where P (lk /∈ Xg|Olk
g ) = 1 − P (lk ∈ Xg|Olk

g ). P (lk ∈
Xg|Olk

g ) is obtained transforming through a sigmoid the
classification score given the representation Olk

g of the
whole image, which is based again on a bag-of-words.

6.3 Smoothness Potential

The smoothness term is given by

ψL
ij(xi, xj) = λLKijθ(cij)T[xi 6= xj ] (23)

where λL is the weighting factor of the smoothness
term,Kij normalizes over the length of the shared bound-
ary between superpixels, and cij = ‖ci−cj‖ is the norm

of the difference of the mean RGB colors of superpixels
i and j. In our case, instead of relying on a predefined
function to relate the smoothness cost with the color
difference between superpixels, we empirically define a
set of parameters θ as modulation costs.

6.4 Consistency Potential

In our approach we use the harmony potential as the
consistency potential. Recall from Eq. (7) that the har-
mony potential is defined as:

ψG
ig(xi, xg) = γi(xi)T[xi /∈ xg]. (24)

We define the penalization factor as γi(xi) = λGKi,
where λG is the weighting factor of the consistency
term, and Ki normalizes over the number of pixels con-
tained in the superpixel.

6.5 Learning HCRF Parameters

Learning the parameters of the CRF potentials is a key
step in attaining state-of-the-art results on the labeling
problem. In our case, we have two groups of parameters
that must be learned.

First, it is necessary to calibrate the classification
scores because the classifiers are learned independently
for each class and are trained without taking into ac-
count the others classes. In this case, the classification
scores are unbalanced, and their relative strength is un-
known. The outputs scores of individually trained clas-
sifiers are effectively incomparable. In order to over-
come this problem, the usage of the sigmoid functions
for the local and global unary potential enables us to
weight the importance of each cue for each class, and
also weight the strength of each classifier with respect
to the others. We found this to significantly improve
results.

In addition to these per-class, per-cue sigmoid pa-
rameters, we must also learn the weighting parameters
of the different potentials: λG, λL, µL and µG. We learn
both groups of parameters by iterating a two-step pro-
cedure until convergence. In the first step, we train the
weighting factors of the potentials, while in the second
step we learn the per-class, per-cue sigmoid parameters
a(k, xi) and b(k, xi) of the local unary potential and the
per-class sigmoid parameters of the global unary poten-
tial. These two sets of parameters are quite decoupled,
and this division reduces the size of the parameter space
at each step. We use π to denote the set of parameters
to be learned.

In each step we randomly generate new instances
of parameters π and select the one that maximizes
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Fig. 7 Parameter optimization. Improvement of perfor-

mance on PASCAL VOC 2010 validation set as a function of
number of iterations, showing the importance of per-class nor-

malization.

the performance of the segmentation on a validation
set. We obtain new parameter instances with a simple
Gibbs sampling-like algorithm in which each time we
vary one, randomly chosen parameter π ∈ π. Only if
the segmentation performance increases on the valida-
tion set do we keep the new parameter value. We vary
the parameter using a normal distribution with 0 mean
and deviation σ(t) which depends on the iteration num-
ber t. At each new iteration, if some improvement has
been achieved, we multiply σ(t) by a factor in order to
reduce the variability of the parameters when we are
near convergence. This factor is a compromise between
computational cost and the possibility of getting stuck
in local extrema.

In Figure 7 the improvement from learning the pa-
rameters described in this section is shown for the PAS-
CAL VOC 2010. An absolute performance gain of over
5% is obtained.

7 Experiments

We evaluate our method on two challenging datasets
for object class segmentation: the PASCAL VOC 2010
Segmentation Challenge (Everingham et al, 2010) and
the MSRC-21 dataset (Shotton et al, 2009). VOC 2010
contains 20 object classes plus the background class,
MSRC-21 contains 21 classes. The PASCAL dataset
focuses on object recognition, and normally only one
or few objects are present in the image, surrounded by
background. In contrast, the MSRC-21 contains fully
labeled images, where the background is divided in dif-
ferent regions, such as grass, sky or water. After giving
the most relevant implementation details, we discuss
the results obtained on both datasets.

7.1 Implementation Details

We extract patches over a grid with 50% overlap at
several scales (12, 24, 36 and 48 pixels of diameter).
These patches are described by shape (SIFT), color
(RGB histogram) and the SSIM self-similarity descrip-
tor (Shechtman and Irani, 2007). In order to build a
bag-of-words representation, we quantize withK-means
the shape features to 1.000 words, the color features to
400 words and the SSIM descriptor to 300 words.

We use a different SVM classifier with intersection
kernel (Maji et al, 2008) for each label to obtain clas-
sification scores. Each classifier is learned using a sim-
ilar number of positive and negative examples: around
a total of 8.000 superpixel samples for MSRC-21, and
20.000 for VOC 2010 for each class.

The feature assignment to build the bag-of-words is
done using nearest neighbor, and as mentioned we con-
catenate the bag-of-words of the inside of the superpixel
with that of region around it. Thus, the description of a
single superpixel has a dimension of 2× (1.000 + 400 +
300) bins. The contextual area of a superpixel is ex-
tended up to 4 times the size of the feature.

In the case of VOC 2010, the global classification
score is based on a comprehensive image classification
method. We use a bag-of-words representation (Zhang
et al, 2007), based on shape SIFT, color SIFT (van de
Sande et al, 2010), together with spatial pyramids (Lazeb-
nik et al, 2006) and color attention (Shahbaz Khan
et al, 2009) based on the Color Name feature (van de
Weijer et al, 2009). Furthermore, the training of the
global node only requires weakly labeled image data,
and can therefore be done on the larger set of 10.103
images labeled for image classification. In the case of
MSRC-21, we use a simpler bag-of-words representa-
tion based on SIFT, RGB histograms, SSIM and spatial
pyramids (Lazebnik et al, 2006) with max-pooling (Yang
et al, 2009). In both methods, we use an SVM with in-
tersection kernel as a classifier.

The global node uses the M ′ most probable labels
obtained by ranked sampling. We set M ′ to a value such
that no significant improvements are observed beyond
it, which was found to be M ′ = 50 for all experiments.
An approximate MAP configuration x∗ can be inferred
using a message passing or graph cut based algorithm.
In all the experiments we use α-expansion graph cuts1

(Boykov et al, 2001), where α can be any label present
in the CRF, which is the union between the M ′ labels
of the global node and the set L of labels of the lo-
cal nodes. The average time to segment an image in

1 Our implementation uses the min-cut/max-flow libraries pro-

vided by Boykov and Kolmogorov (2004).
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(a) (b) (c) (d) (e)

Fig. 8 Qualitative results for the MSRC-21 dataset. Comparison between (b) no consistency potentials, (c) robust PN -based

potentials, and (d) harmony potentials. (e) Ground-truth images. In the first three rows the harmony potential succesfully improves
segmentation results. The last two rows show failure cases of harmony potentials.
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(Shotton et al, 2008) 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67
(Jiang and Tu, 2009) 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13 78 68

Pixel CRF (Ladicky et al, 2009) 73 92 85 75 78 92 75 76 86 79 87 96 95 31 81 34 84 53 61 60 15 81 72
Hier. CRF (Ladicky et al, 2009) 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09 86 75

Hier. CRF with CO (Ladicky et al, 2010a) 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20 87 77

Our
method

w/o Consistency 66 93 82 59 66 95 88 77 81 83 87 77 82 42 84 33 79 65 44 57 54 79 71
Potts 63 92 90 81 71 97 81 71 72 69 94 86 83 43 82 73 84 79 64 62 52 81 76

Robust P N 60 92 85 76 75 96 76 75 72 75 94 96 86 57 82 75 84 79 60 63 59 81 77
Harmony 66 87 84 81 83 93 81 82 78 86 94 96 87 48 90 81 82 82 75 70 52 83 80

Harmony w/ Im. tags 68 93 92 86 88 97 91 85 73 86 94 100 89 77 100 96 89 95 94 60 74 89 87

Table 1 MSRC-21 segmentation results. The average score provides the average per-class recall. The global scores gives the
percentage of correctly classified pixels.

MSRC-21 is just 0.24 seconds and in VOC 2010 it is
0.32 seconds.

7.2 Results for MSRC-21

In Table 1, our results are compared with other state-of-
the-art methods. We also show the results without con-
sistency potentials and results obtained with Potts and
robust PN -based potentials. It should be noted that we
optimized our system on the average per-class recall.

The results show that without consistency poten-
tials we obtain a baseline of 71% average recall. From
this baseline, Potts potentials improve by 5%, robust
PN -based potentials by 6%, and harmony potentials

by 9%, obtaining state-of-the-art results of 80% average
recall. In Figure 8 we provide segmentation results for
different potentials. Overall, adding consistency poten-
tials smooths segmentation results and removes small
segments. In the first row the global classifier punishes
the presence of cow, allowing it to correctly label the
region as dog. The third row provides an example where
semantic co-occurrence helps to correctly label the wa-
ter region. Since in the training set the combination of
dog and human is unlikely, the results of the harmony
potential deteriorate in the fourth row. In the last row,
the incorrect recognition of the water region as road re-
sults in an incorrect classifcation of the boat as bicycle.

Looking at the global score, the best scores are ob-
tained by Ladicky et al (2010b). Their hierarchical CRF
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Fig. 9 Qualitative results for the PASCAL VOC 2010 dataset. Comparison between not using the harmony potential (middle

row) and using it with an image categorization method (bottom row). The first four columns show examples of successful segmentation
using the harmony potential. Columns five and six show results with label combinations never seen in the training images. Finally,

the last column show a failure case, caused by a higher probability of birds at the global scale.
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VALIDATION SET
no global, no CO 76.7 47.5 29.3 20.2 26.2 30.3 54.7 54.4 33.1 7.3 23.9 9.5 22.6 26.3 42.4 34.3 10.9 23.2 12.7 43.5 26.7 31.2

no global, with CO 73.0 49.4 32.3 22.0 31.7 31.8 51.7 54.8 35.5 11.7 21.8 8.3 23.9 29.5 46.8 38.4 9.9 24.6 17.7 50.0 36.1 33.4
global, no CO 80.3 53.0 31.4 21.9 27.8 33.1 57.9 54.7 33.6 13.0 29.6 18.8 20.5 27.9 50.3 38.1 11.9 30.3 18.3 47.5 42.0 35.3

All cues 82.6 61.2 26.0 32.4 41.2 38.2 60.9 57.2 38.2 13.7 45.4 27.4 31.6 26.7 48.2 41.1 20.5 39.6 23.3 54.7 38.0 40.4
Im. tags 85.0 71.3 38.1 46.2 59.2 50.5 70.3 65.2 65.4 20.7 72.0 51.3 63.8 57.6 65.9 50.0 42.3 69.7 39.4 67.9 50.6 57.2

TEST SET
BONN SVR 84.2 52.5 27.4 32.3 34.5 47.4 60.6 54.8 42.6 9.0 32.9 25.2 27.1 32.4 47.1 38.3 36.8 50.3 21.9 35.2 40.9 39.7
BERKELEY 82.0 49.7 23.3 20.6 19.0 47.1 58.1 53.6 32.5 0.0 31.1 0.0 29.5 42.9 41.9 43.8 16.6 39.0 18.4 38.0 41.5 34.7

BROOKES 70.1 31.0 18.8 19.5 23.9 31.3 53.5 45.3 24.4 8.2 31.0 16.4 15.8 27.3 48.1 31.1 31.0 27.5 19.8 34.8 26.4 30.3
STANFORD 80.0 38.8 21.5 13.6 9.2 31.1 51.8 44.4 25.7 6.7 26.0 12.5 12.8 31.0 41.9 44.4 5.7 37.5 10.0 33.2 32.3 29.1

UC3M 73.4 45.9 12.3 14.5 22.3 9.3 46.8 38.3 41.7 0.0 35.9 20.7 34.1 34.8 33.5 24.6 4.7 25.6 13.0 26.8 26.1 27.8
UOCTTI 80.0 36.7 23.9 20.9 18.8 41.0 62.7 49.0 21.5 8.3 21.1 7.0 16.4 28.2 42.5 40.5 19.6 33.6 13.3 34.1 48.5 31.8

Our
method

FG-BG 80.2 57.0 28.7 29.3 31.7 27.0 57.6 48.5 35.2 8.3 29.9 22.6 25.2 33.0 52.6 35.9 25.2 39.7 16.9 43.4 24.7 35.8
All cues 82.2 52.6 26.8 37.7 35.4 34.4 63.3 61.0 32.1 11.9 36.6 23.9 33.7 36.8 61.6 45.0 26.6 40.5 20.4 43.8 36.4 40.1

Table 2 PASCAL VOC 2010 segmentation results. Comparison of the harmony potential with state-of-the-art methods.

model achieves excellent performance on the stuff classes
such as building, grass, sky, water. On the other hand,
on some of the difficult and less frequent object classes
we obtain significantly better results: on boat, bird,
chair and boat we more than double the performance
of Ladicky et al (2010b).

7.3 Results for PASCAL VOC 2010

In Table 2 the results on the PASCAL VOC 2010 dataset
for both the validation and the test sets are summa-
rized. Performance is evaluated for each class using av-
erage precision (see the PASCAL VOC evaluation cri-
teria defined in (Everingham et al, 2010)).

To analyze the influence of both the co-occurrence
(CO) used to compute the prior and the introduction of

image classification results at the global node, we per-
formed several experiments on the validation set. Not
using either of them, hence without global consistency
(see Fig. 2b), gives an overall score of 31.2%. Intro-
ducing consistency in the form of CO without global
observation improves results to 33.4%, which is consis-
tent with the gain reported in (Ladicky et al, 2010a).
Only using the information from image classifcation at
the global node (without CO) yields a performance in-
crease to 35.3%. Including both CO and global obser-
vation leads to an overall average precision of 40.4%
(referenced as All cues in Table 2).

Figure 9 shows the results of our method compared
to the method without consistency potentials (obtain-
ing a mAP of 31.2% on the validation set). This al-
lows us to illustrate the influence of the global node
and the global classifier on the segmentation results.
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Fig. 10 Qualitative results of PASCAL VOC 2010. The original image (top) and our successful segmentation result (bottom).

In most cases the harmony potential removes unlikely
classes and significantly improved results are obtained.
It is worth noting that labels in the local nodes that
are not encoded in the global node label combination
are penalized by the harmony potential, but may still
appear in the final segmentation (always at a cost). We
have found that about 15% of the image segmentations
contain labels that are not encoded in the global label.
This happens mainly for two reasons: a failure in the
global image classifier, or due to a combination of la-
bels that has never been seen during training. As an
example, columns five and six in Fig. 9 show two ex-
amples of the latter case. The last column shows an
error caused by the global classifier, which converts the
aeroplane into a bird. It should also be noted that there
are weights balancing the importance of global evidence
versus local evidence (see µL and µG in Eqs. (18) and
(20), respectively).

Compared to our early work (Gonfaus et al, 2010)
which was only based on the FG-BG cue instead of
the four cues we use now, we obtain an absolute per-
formance gain of almost 5% in average precision. We
also compare our results to the best submission to the
PASCAL VOC 2010 challenge.

Most related to our work is the submission of BRO-
OKES (Ladicky et al, 2010a) which is also a hierarchical
CRF method. Because of the lack of stuff classes in the
PASCAL dataset, the performance gain of the harmony
potentials is especially pronounced. Overall we obtain
the best results on eleven out of the twenty classes, and

obtain slightly better mean average precision than the
BONN SVR (Li et al, 2010) submission. For several
classes the results of our method and those of BONN
diverge significantly, which indicates that both method-
ologies could be combined to obtain better results.

A variety of segmentation results are shown in Fig-
ure 10. The results show that harmony potential is able
to deal with multiclass images, partial occlusion, and
to correctly classify the background. Notice the diffi-
culties on the chair class in the second column, which
are also reflected in an average precision of only 11.9%
on chairs.

7.4 Influence of Image Classification

The success of our image segmentation algorithm is par-
tially dependent on the quality of image classification.
To have a better understanding of how improved im-
age classification can influence results we performed an
additional experiment using perfect image classification
information, meaning that P (Xg = xg|Og) = 1 for the
actual label combination and zero for the other label
combinations. This situation could arise, for example,
when image tags are available2. Results are given for
MSRC-21 in Table 1, and for the PASCAL VOC 2010
validation set in Table 2. Results on PASCAL are shown

2 It should be noted that in case of perfect classifier the global
node is not necessary and simply restricting the label set of the

local nodes would obtain similar scores.
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only for the validation set because this experiment re-
quires groundtruth labels which are not available for
the test set.

The results show that for both datasets a significant
gain can be obtained by improving global classification
scores. The MSRC-21 dataset mean average precision
goes up by 7% to 87%, and for PASCAL by 17% to
57%. For PASCAL the performance gain is especially
significant for the easily confusable animal classes such
as cat, dog, horse, cow and sheep. For these classes per-
fect classification scores help to choose the correct class
and relative performance gains are around 100%. Other
classes such as chair, bicycle, and sofa even with image
tags remain very difficult to localize and mean average
precision remains below 50%.

8 Conclusions

We presented a new CRF model for object class image
segmentation. Existing CRF models only allow a single
label to be assigned to the nodes representing the image
at different scales. In contrast, we allow the global node,
which represents the whole image, to take any combi-
nation of class labels. This allows us to better exploit
class-label estimates based on observations at the global
scale. This is especially important because for inference
of the global node label we can use the full power of
state-of-the-art image classification techniques. Exper-
iments show that our new CRF model obtains state-of-
the-art results on two challenging datasets.

For future work, we are especially interested in com-
bining the various potentials into hierarchical CRFs.
The Potts potential is appropriate as a smoothness po-
tential at the lowest scales, for mid-level scales the ro-
bust PN -based potential is more appropriate, whereas
at the highest scales harmony potentials better model
the heterogeneity of real-world images. Given the fact
that for our model inference for a single image takes
less than one second, it seems feasible to investigate hi-
erarchical CRF models with heterogeneous potentials.

Appendix A

Let E(x) and E(xL) be the energies of the models G
and GH , which are:

E(x) = K(xL) + φG
g (xg) +

∑
(i,g)∈EG

ψG
ig(xi, xg), (25)

where φG
g (xg) is the global unary potential, and

EH(xL) = K(xL) + ψH(xL). (26)

For the sake of simplicity we have abbreviated the smooth-
ness and local potentials with the term K(xL). Recall
that x = {xL, xg}.

Let the consistency potential ψG
ig of E(x) be the

harmony potential in Eq. (7). We want to prove that
if the high-order potential ψH of E(xL) is defined as
in Eq. (9), both models give the same configuration x?

when doing inference, in other words: are equivalent.
Rewriting the high-order energy of x?

L it becomes

EH(x?
L) = min

xL

EH(xL) = (27)

min
xL

{
K(xL) +

min
`∈P(L)

{
γg(`) +

∑
i∈VL

γi(xi)T[xi /∈ `]

}}
= (28)

min
xL,`∈P(L)

{
K(xL) +

γg(`) +
∑
i∈VL

γi(xi)T[xi /∈ `]

}
. (29)

Then, substituting the auxiliary variable ` by the ran-
dom variable Xg (Rother et al, 2009):

EH(x?
L, x

?
g) = min

xL,xg∈P(L)
EH(xL, xg) = (30)

min
xL,xg∈P(L)

{
K(xL) +

γg(xg) +
∑

(i,g)∈EG

γi(xi)T[xi /∈ xg]

 , (31)

which it turns to be E(x?) if we set γg(xg) = φG
g (xg),

because the summation term is by definition the har-
mony potential, i.e. ψG

ig(xi, xg) = γi(xi)T[xi /∈ xg].

Appendix B

Let `1 ∈ P(L′′) and `2 ∈ P(L′) be two partially built la-
bels in the branch-and-bound procedure. `2 is obtained
after branching, considering one extra label in `1: i.e.
either `2 = {`1, lbranch} (adding `branch) or `2 = `1
(adding nothing). We must prove that in both cases
q(`1) ≥ q(`2). Assuming Eq. (12) and Eq. (15), we can
decompose the q(`1) into its constituent factors: the
likelihood qlhood(`1) and the prior qprior(`1). It is then
sufficient to show that these constituent components
bound qlhood(`2) and qprior(`2), respectively.
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When lbranch is added, for the likelihood we have

qlhood(`2) =∏
k|lk /∈`2

P (lk /∈ Xg|Olk
g )

∏
k|lk∈`2

P (lk ∈ Xg|Olk
g ) = (32)

P (lbranch ∈ Xg|Olbranch
g ) · qlhood(`1) (33)

≤ qlhood(`1), (34)

Equality (32) is obtained from Eq. (15), and (33) is due
to the fact that `2 = {`1, lbranch}. The final inequality
follows from the fact that P (lbranch ∈ Xg|Olbranch

g ) ≤
1. When lbranch is not added, in Eq. (33) instead of
P (lbranch ∈ Xg|Olbranch

g ) we have P (lbranch /∈ Xg|Olbranch
g )

and it follows in the same way.
For the prior we have

qprior(`2) =
∑
Ii∈I

T[`2 ⊆ tig] (35)

≤
∑
Ii∈I

T[`1 ⊆ tig] (36)

= qprior(`1).

Equality (35) comes from Eq. (12), and the inequal-
ity (36) since `1 ⊆ `2 and hence `1 ⊆ tig =⇒ `2 ⊆ tig.
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