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Abstract. Linear scale space methodology uses Gaussian probes at
scale s to observe the differential structure. In observing the differential
image structure through the Gaussian derivative probes at scale s we
implicitly construct the Taylor series expansion of the smoothed image.
The Gaussian facet model, as a generalization of the classic Haralick
facet model, constructs a polynomial approximation of the unsmoothed
image. The measured differential structure therefore is closer to the ‘real’
structure than the differential structure measured using Gaussian deriva-
tives.

At the points in an image where the differential structure changes abruptly
(because of discontinuities in the imaging conditions, e.g. a material
change, or a depth discontinuity) both the Gaussian derivatives and the
Gaussian facet model diffuse the information from both sides of the dis-
continuity (smoothing across the edge).

Robust estimators that are classically meant to deal with statistical out-
liers can also be used to deal with these ‘mixed model distributions’. In
this paper we introduce the robust estimators of local image structure.
Starting with the Gaussian facet model where we replace the quadratic
error norm with a robust (Gaussian) error norm leads to a robust Gaus-
sian facet model.

We will show examples of using the robust differential structure estima-
tors for luminance and color images, for zero and higher order differential
structure. Furthermore we look at a ‘robustified’ structure tensor that
forms the basis of robust orientation estimation.

1 Introduction

Linear scale-space theory of vision not only refers to the introduction of an
explicit scale-parameter, it also refers to the use of differential operators to study
the local structure of images. The classical way to observe the local differential
image structure is to consider all Gaussian derivatives at scale s up to order N.
Basically what we do is construct the Taylor series expansion of the smoothed
image (i.e. the image observed at scale s). The Taylor polynomial thus is an
approximation of the smoothed image and not of the original image.
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Instead of constructing a polynomial local model of the smoothed image we
can equally well construct a polynomial approximation of the unsmoothed image.
Our starting point is the image facet model as introduced by Haralick et. al. [1].
His facet model takes a polynomial function and fits it to the data observed
in a small neighborhood in the image using a linear least squares estimation
procedure. The image derivatives then can be calculated as the derivatives of
the fitted analytical function.

Farnebéck [2] generalizes the Haralick facet model to incorporate spatial
weights in order to express the relative importance of the image samples in esti-
mating the parameters of the polynomial function. In the classic Haralick facet
model all points in the local neighborhood are considered equally important.

For spatial weighting the choice of the Gaussian kernel leads to a specially
efficient implementation. Due to the fact that the derivatives of the Gaussian
function are given by a polynomial (determined by the order of differentiation)
times the Gaussian function itself, the coefficients in the polynomial function
turn out to be a linear combination of the Gaussian derivatives.

The least squares estimation procedure considers all points in a local neigh-
borhood, even in the situation where the local neighborhood is on the boundary
of two regions in an image. The regions on either side of the boundary may
well be approximated with a low-order polynomial model. The regions can be
so different that their union cannot be accurately described using the same low
order polynomial model. The estimation procedure then compromises between
the two regions: the edge will be smoothed.

In Section 2 we generalize the Gaussian facet model to deal with those multi-
model situations. Instead of using a linear least squares estimation procedure we
will use a robust estimation technique. A robust estimation technique will only
consider the data points from one of the regions and will disregard the data from
the other region as being statistical outliers. Robust estimation of local image
structure is pioneered by Besl [3]. Our work (see also [4]) differs from the work
of Besl in that we consider Gaussian aperture instead of ‘crisp’ neighborhoods in
which the polynomial function is fitted. Furthermore we introduce a fixed point
iteration procedure to find the robust estimate.

In Section 3 we present a generalization of earlier work [4-6]. We derive iter-
ative robust estimators of local image structure and we will give some examples
ranging from a simple zero order Gaussian facet model to a first order facet
model for color images.

In Section 4 we describe a robust estimator for a derived image quantity: the
local orientation (see also [6]). To that end we consider the often used orientation
estimator based on a eigen analysis of the structure tensor. Robust estimation
of the orientation turns out to be quite similar, the structure tensor is replaced
with a ‘robustified’ version in which only the points are considered that closely
fit the model (i.e. the points that are not outliers).
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2 Least Squares Estimation of Local Image Structure

Locally around a point x the image function f can be approximated with a linear
combination of basis functions ¢;, i =1,..., K:

~

f=md+ - +axodk (1)

We can rewrite this as f: da where & = (¢1 o+ - dx) and a = (ag ag - - - ag)".

The least squares estimator minimizes the difference € of the image f and the
approximation f:

(= [ (fox+3) - i) Weray @)

where W is the aperture function defining the locality of the model fitting. Note
that the optimal fitting function f differs from position to position in the image
plane. We thus have that f(y) = &(y)a(x), i.e. f(y) = ai(xX)1(y) + --- +
ax (X) ¢ (¥):

The optimal parameter vector a is found by projecting the function f onto
the subspace spanned by the basis functions in &. In this function space the
inner product is given by:

ngfE(f,g>wr=:j[ £(x) g(x) W (x) dx 3)
R4

The inner product of functions f and ¢ will also be denoted as f7g.

To derive the optimal parameter vector a we take the derivative of the error
€ with respect to the parameter vector a, set it equal to zero and solve for a.
Writing € in terms of the inner product results in

e(x) = (f-x — a) " (f-x — Pa) (4)

where f_(y) = f(x+y) is the translated image f_x(y) = f(x+y). The integral
is now ‘hidden’ in the inner product of two functions. This can be rewritten as:

ex)=f1 fx—2a'd f +a P Pa (5)

Taking the derivative of € with respect to a and setting this equal to 0 and
solving for a we obtain:

a=(@'®) S f  =Tf_, (6)

where & = &(®T$)~! is the dual basis. The functions in the dual basis, & =
(é1---¢x ), are the functions such that the inner product @] f_x equals the
coefficient a; in the approximation f = a1¢1 + -+ + axdx. The dual basis
functions, multiplied with the aperture function, thus are the correlation kernels
needed to calculate the coefficients in the polynomial image approximation.
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Fig. 1. The Haralick Facet Model. From left to right, top to bottom the dual basis
functions are plotted. The shaded functions are the dual basis functions within a 2nd
order facet model, the (red) stars correspond with the discrete dual functions. The
neighborhood was taken to be of size 5 x 5. The scale s for the analytical kernel was
set at s = 2.42. This value is the value to make the difference between the discrete and
analytical facet models minimal. For larger neighborhoods IV x /N the correspondence
becomes better and the analytical scale approaches N/2.

The classic Haralick facet model uses a uniform weight function W(x) =1
for ||x]|eo < s and W (x) = 0 elsewhere, i.e. a ‘crisp’ neighborhood within an axis
aligned square of size 2s x 2s.

For the second order polynomial basis:

= (1,z,v, 322, 2y, 1¢y°) (7)

the dual basis is

~ 2 2

b= (oh- o -RL f5 M R+ 45 SR 8E) O
The dual basis functions are depicted in Fig. 1. The first dual basis function
(multiplied with the aperture function) is the correlation kernel needed to cal-
culate the coefficient of the constant basis function in the approximation of the
local image patch. Observe that in the Haralick facet model, the first dual basis
function is not everywhere positive. Fig. 1 also shows the discrete dual basis
functions, these follow from a formulation of the facet model in a discrete image
space as can be found in the work of Haralick.

Within a scale-space context the most natural choice is to start with a poly-
nomial basis and a Gaussian aperture function W = G° where G* is the Gaussian
function at scale s. Again starting with the second order polynomial basis the
dual basis is a different one due to the difference in the inner product (as a
consequence of a different aperture function):

7 2 2 2 2
— T Y T Y -2 = Ty -2 ¥
QS—(Q—m—mas—zas—ga—s + 5T i, S ‘|‘S—4) 9)
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Again, a dual basis function, multiplied with the—Gaussian—aperture function
is the correlation kernel needed to calculate the corresponding coefficient in the
polynomial approximation of the local image patch. For the zero order coefficient

the correlation kernel is a Gaussian function multiplied with a parabola: (2 —
2 —?i) G*(x,y). Again we see that the zero order coefficient in the polynomial

9 g2 2
i2rrslage2§pproximation requires a kernel with negative values.

The derivatives of the Gaussian function are equal to a polynomial function
(a Hermite polynomial depending on the derivative taken) times the Gaussian
function, we may write the correlation kernels associated with the dual basis
functions in the Gaussian facet model as a linear combination of Gaussian deriva-
tives. It is not hard to prove that the zero order coefficient in the second order

Gaussian facet model is found by convolving the image f with the kernel:
G° - %32 (G:Scw + G?sJy) (10)

Now we easily recognize where the negative values in the kernel come from. The
term G* is the Gaussian scale-space smoothing term. The term —1s? (G2, + G;y)
is a well-known sharpening term: subtracting the Laplacian from the smoothed
image, sharpens the image. The sharpening term is due to the fact that the
Gaussian facet model approximates the original image, not the smoothed image.

F F

Fig. 2. Zero-order coefficient in the Gaussian Facet Model. On the first row,
from left to right: the original image, and the zero order coefficients in the Gaussian
facet model of order 0,2 and 6. On the second row the convolution kernel is shown that,
convoluted with the original image, results in the image above it.

It turns out that this observation is true for higher order facet models as
well. For a 4th order Gaussian facet model, the kernel to calculate the zero order
coefficient is:

G - %52 (G;z + stzy) + é34 (G;zm +2Goy, + GZyyy) (11)

In Fig. 2 the kernels to calculate the zero order coefficient in the Gaussian facet
model of orders 0, 2 and 6 are depicted together with the convoluted images.
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Apparently the N-jet of an image observed at scale s encodes details of size less
then s, i.e. from the N-jet observed at scale s a lot of detail can be reconstructed.

3 Robust Estimation of Local Image Structure

Consider again the error of the Gaussian weighted least squares approximation:
. 2
)= [ (fex+y) = 7)) Goway (12)
R

It is well known that this error definition is not well suited for those situations
were we have outliers in our measurements. In the image processing context
statistical outliers are not so frequently occurring. The effect that makes least
squares estimates questionable is that when collecting measurements from a
neighborhood in an image these are often not well modeled using a simple (facet)
model. For instance we may model local image luminance quite well with a second
order polynomial model but not near edges where we switch from one model
instantiation to another. Such multi-model situations are abundant in computer
vision applications and are most often due to the nature of the imaging process
where we see abrupt changes going from one object to another object.

Multi-modelity can be incorporated into sophisticated estimation procedures
where we not only estimate (multi-)model parameters but also the geometry that
separates the different regions (one for each model). One of the oldest examples
is perhaps Hueckels edge detector [7] in which a local image patch is described
with two regions separated by a straight boundary. The detector estimates this
boundary and the parameters of the luminance distributions on each side of the
edge.

In this paper we take a less principled approach. Instead of a multi-model
approach we stick to a simpler one-model approach where we use a statistical
robust estimator that allows us to consider part of the measurements from the
local neighborhood to belong to the model we are interested in and disregard all
other measurements as being ‘outliers’ and therefore not relevant in estimating
the model parameters.

The crux of a robust estimation procedure is to rewrite the above error
measure as:

€)= [ olficry) = F) G )y (13)

where p is the error norm. The choice p(e) = e? leads to the least squares
estimator. Evidently measurements that are outliers to the ‘true’ model are
weighted heavily in the total error measure. Reducing the influence of the large
errors leads to robust error norms.

Writing f_x(y) = f(x+y) and using the local linear model f(y) = &(y)a(x)
we obtain:

€00 = [ p(fx = Falx)) G* dy (14)



Least Squares and Robust Estimation of Local Image Structure 7

a.a

2=
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We omitted the spatial argument y for ease of notation. In this paper the ‘Gaus-
sian error norm’ is chosen:

ple) = 1-ep (5 (15)

The scale m in the error norm will be called the model scale to contrast it with
the spatial scale s that is used in the spatial aperture function G*. In Fig. 3
the error norm is sketched. Compared to the quadratic error norm this norm is
‘clamped’ at value 1. For e > m the exact value of the error is not important
any more. Gross outliers are therefore not given the weight to influence the
estimation greatly.

The optimal model parameters are found by calculating the derivative of the
error measure and setting this equal to zero:

5o = gu | U7 = Ba0) G dy (16)
- _% (f—x = Pa(x)) Dexp (—W) G'dy  (18)

Setting this derivative equal to zero and rewriting terms we obtain:

[ ey (-5 2200 gy
/Rd Pa(x) P exp (—%) G®dy (19)
This can be rewritten as:
/ f-x PG™ (f—x — Pa(x)) G°dy = / Pa(x) PG™ (f—x — Pa(x)) G° dy
. - (20)

where G™ is the Gaussian function at scale m. This Gaussian function weighs the
model distance, whereas the Gaussian function G° weighs the spatial distance.
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We define the operator I

(I™g)(y) = G™(fx(y) — ®(y)a(x))) g(y) (21)

i.e. the point wise multiplication of the function g with the model weight func-
tion. Now I'™ acts as a diagonal (matrix) operator in the function space. Using
the vectorial notation of the inner product we can write:

S'Irf  =¢"I'Pa (22)

This looks like a familiar weighted linear least squares equation that can be
solved for the value of a. It is not, because I'™ is dependent on a. Solving for a
can be done using an iterated weighted least squares procedure:

ait! = (8" (a)d) " &' I'(a')f « (23)

Some examples of these robust estimators may clarify matters. In the next sub-
section we consider the most simple of all local structure models: a locally con-
stant model. The resulting image operator turns out to be an iterated version of
the bilateral filter introduced by Tomasi and Manduchi [8].

3.1 Zero-order Image Structure

Consider a locally constant image model with only one basis function:
¢ =(1) (24)
i.e. the constant function. Eq.(23) then reduces to:

_ e fx+Y) G (x+Y) — a5(x)) G*(y) dy
Jea G™(f(x +¥) — a5(x)) G* (y) dy

This is an iterated version of the bilateral filter as introduced by Tomasi and
Manduchi [8]. It is also related to the filters introduced by Smith et. al. [9]. The
bilateral filter thus implements one iteration of a robust estimator with initial
value ad = f.

In previous papers [4, 5] we have analyzed robust estimation of the zero order
local image structure. Some observations made are:

a5t (%) (25)

— The robust estimator finds the local mode in the local luminance histogram
which is smoothed with a Gaussian kernel of scale m. The local mode that
is found is the local maximum in the smoothed histogram that is closest to
the initial value.

— Bilateral filtering implements one iteration of the robust estimator. From
mean shift analysis we know that the first step in a mean shift algorithm is
a large one in the direction of the optimal value. This explains the impres-
sive results on the bilateral filter in reducing the noise while preserving the
structure of images.
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Fig. 4. Robust Estimation of Local Image Structure. On the first row a test
image with noise added on the left and the result of the robust estimator based on
a zero-order facet model. On the second row the histograms of the images above are
depicted. Observe that the robust estimator is capable of finding the modes of both
the distributions.

— The choice of an initial estimate is very important. We have found good re-
sults using the result of a linear least squares estimate as the initial estimate.
In certain situations however the amount of smoothing induced by the least
squares estimator sets the robust estimator at a wrong starting point lead-
ing to a local maximum in the histogram that does not correspond with the
structure that we are interested in. This situation is often occurring in case
the area of the structure of interest is less then the area of the ‘background’
(e.g. document images where there is more paper then ink visible). In such
cases the image itself can be used as an initial estimate of the zero order
local structure.

— The results of robust estimation of local image structure bear great resem-
blance to the results of non-linear diffusion. The theoretical link between
robust estimation and non-linear diffusion techniques has been reported be-
fore (see [10]). The main difference with the robust estimator technique de-
scribed here is that in each iteration of a non-linear diffusion algorithm the
image data resulting from the previous iteration is used. In the robust esti-
mator described here we stick to the original image data and only update
the parameter to be estimated. Fig. 5 shows the differences between these
two procedures.
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Fig. 5. Robust Estimation and Non-linear diffusion. On the left the original
image of a flower. In the middle the robust estimation of the zero order local structure
and on the right the result of iteratively applying one iteration of the robust estimator,
each time using the image data from the previous iteration (this procedure is very
much like a non-linear diffusion process).

3.2 Higher-order Image Structure

For the image in Fig. 4 the assumption of local constant image model is a cor-
rect assumption, for most natural images such a model is an oversimplification
though. Then it is better to use a higher order model for the local image struc-
ture. We start with a simple first order model for 1D functions. The local basis
is:

$=(1lz) (26)
This leads to the matrix &1 '™ ®:

( Jo G (f(@+y) — a5 — afy)G*(y)dy [y G™(f(z +y) — af — ajy) G°(y) dy )
JrvG™(f(x +y) = a§ — afy) G*(y) dy [pv* G™(f(x +y) — af — afy) Gs(zé);i)y

2
and vector @™ f_,:

( Jo Fle+9) G™(f(x+y) — af — aly) G*(y) dy > (28)
Ly f@+y)G™(f(z+y) — af — ajy) G°(y) dy

The robust estimator of the local linear model is given by Eq.(23). Fig. 6 shows
a univariate ‘saw-tooth’ signal corrupted with additive noise. Also shown are
the robust estimates based on a zero order facet model and the robust estimate
based on a first order facet model. It is obvious that a robust estimator based
on a local constant model is not capable of reconstructing the saw tooth signal
from the noisy observations. Using a local first order model leads to a far better
reconstruction.
The first order robust facet model is easily generalized to 2D functions:

® = (¢(00) b(10) P(o1)) (29)
=(1z a) (30)
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100

Fig. 6. Robust Estimation of Local Structure in 1D functions. A ‘sawtooth’
function with added noise is shown together with the Gaussian linear least squares
estimate, i.e. the Gaussian smoothing (the thin ‘sinusoidal’ line), the robust estimate
based on a zero order facet model (the dashed-dotted line) and the robust estimate
based on a first order model (the thick dashed line). The spatial scale is 9 and the tonal
(model) scale is 0.1. The number of iterations used is 10.

This leads to the matrix &' I'™®:

Jo2 GGy [ 1 GGy [o. 12G™GEdy
fRz ynGmGdy fRz yrG™ G dy fRz Y yG"Gdy (31)
Jo2 12G™G3dy [oo 112G Gy [0 y3 G GEdy

to simplify the notation we have omitted the arguments of the functions in the
integrand. For the G™-function the argument is the model error f(x+y)— ago —
a10y1 — ap1y2. The vector #TI'™ f_, equals

Jpo fx+Y)G™(f(x +y) — a0 — a10%1 — a01%2)G* (y)dy
Jpen f(x+¥)G™(f(x+y) = ao0 — ar0y1 — a01%2)G*(y)dy
Jpe 92 f(x+¥)G™(f(x +y) = ao0 — ar091 — a01%2)G*(y)dy

(32)

Eq.(23) then can be used to calculate the new estimate of the optimal parameter
vector a*t!,

In Fig. 7 the robust estimation of the zero order coefficient based on a first
order facet model is shown. For this image the difference with a zero order facet
model estimation can only be observed in regions of slowly varying luminance
(like in the background).
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Fig. 7. Robust Estimation of Local Image Structure. On the left the camera-
man image with noise added and on the right the robust estimation of the zero order
coefficient in a first order facet model.

3.3 Color Image Structure

In this section we generalize the robust facet models for scalar images to models
for vectorial images. The analysis is done for color images but is valid for all
vectorial images.

A color image f = (f! f? f3) at any position x has three color components
f1(x), f3(x) and f3(x). The local model for a color image using a basis

S = (¢1 P2 - ¢K) (33)

is chosen as: .
f(x+y)=PA =0 (a; ar a3) (34)

where A = (a; ap ag) is the K x 3 parameter matrix. The column a; represents

the parameter vector in the approximation ﬁ = Pa; of the i-th color component.
Each of the color components is thus approximated as a linear combination of
K basis functions. The model error is now written as:

) = [ o (V=m0 + (72— #00) + (P = 900)?) G* iy (39

It is not hard to prove that in this case

9 e T = STIMGA (36)
0A
where I'™ is the ‘diagonal’ operator that multiplies a function point wise with
the function: G™ ((f1, — ®a1)? + (f2, — Paz)? + (f3, — Paz)?). As I'™ is de-
pendent on the parameter matrix A we arrive at a iterated weighted least squares
estimator:
AT = (@TT™(AYG) IS I™(AY (37)
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Fig. 8. Robust Estimation of Local Structure in Color Images. On the first
row from left to right: the ‘Lena’ image with some noise added to it, the zero-order
facet model based robust estimator of the color values and the robust estimator based
on a first order based facet model. On the second row we show a detail from the image
above.

The estimation of the robust facet model for color images is thus almost the same
as for scalar images. The three color components are dealt with independently,
only the error weights operator I'™ is dependent on all three color components.

In Fig. 8 the robust estimators are shown that are based on a zero order facet
model and on a first order facet model. Especially in the nose-region the first
order model based robust estimator performs better then the zero order model
based robust estimator.

4 Robust Estimation of Orientation

In the previous sections we have considered local image models for the image
values (grey value and color). In this section we look at robust estimation of the
orientation of image structures.

Oriented patterns are found in many imaging applications, e.g. in fingerprint
analysis, and in geo-physical analysis of soil layers. The classical technique to
estimate the orientation of the texture is to look at the set of luminance gradient
vectors in a local neighborhood. In an image patch showing a stripe pattern in
only one orientation we can clearly distinguish the orientation as the line cluster
in gradient space perpendicular to the stripes (see Fig. 9(a-b)). A straightforward
eigenvector analysis of the covariance matrix will reveal the orientation of the
texture. The covariance matrix of the gradient vectors in an image neighborhood
is often used to estimate the local orientation [11-14]
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In case the local neighborhood is taken from the border of two differently
oriented patterns (see Fig. 9) an eigenvector analysis of the covariance matrix will
mix both orientations resulting in a ‘smoothing’ of the orientation estimation.

In case the regions showing different textures are of sufficient size it is possible
to use a post-processing step to sharpen the smoothed orientation measurements.
A classical way of doing so is the Kuwahara-Nagao operator [15-17]. At a certain
position in an image this operator searches for a nearby neighborhood where
the (orientation) response is more homogeneous then it is at the border. That
response is then used at the point of interest. In this way the neighborhoods are
not allowed to cross the borders of the textured regions. In [18] we have shown
that the classic Kuwahara-Nagao operator can be interpreted as a ‘macroscopic’
version of a PDE image evolution that combines linear diffusion (smoothing)
with morphological sharpening.

Again consider the texture in Fig. 9(a). The histogram of the gradient vectors
in this texture patch is shown in Fig. 9(b). Let v be the true orientation vector
of the patch, i.e. the unit vector perpendicular to the stripes. In an ideal image
patch every gradient vector should be parallel to the orientation v. In practice
they will not be parallel. The error of a gradient vector g(y) observed in a point
y with respect to the orientation v(x) of an image patch centered at location x

is defined as:
e(x,y) = [lg(y) — (&) v(x)v(x)|l (38)

The difference g(y) — (g(y)"v(x))v(x) is the projection of g on the normal to
v. The error e(x,y) thus measures the perpendicular distance from the gradient
vector g(y) to the orientation vector v(x). Integrating the squared error over all
positions y using a soft Gaussian aperture for the neighborhood definition we
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define the total error:
) = [ )G (x—y)iy (39)
The error measure can be rewritten as:
€= /Q g'gGsdy — /Q vi(gg")vGidy. (40)

where we have omitted the arguments of the functions. Minimizing the error
thus is equivalent with maximizing:

/ v (gg")vGidy, (41)
o)

subject to the constraint that v'v = 1. Note that v is not dependent on y so
that we have to maximize:

vl ( /Q (ggT)Gde) v=vpu'v (42)

where p° is the structure tensor.
Using the method of Lagrange multipliers to maximize v' 1®v subject to the
constraint that vIv = 1, we need to find an extremum of

ML=vTv) +vTpsv. (43)

Differentiating with respect to v (remember that dv'Av/dv = 2Av in case
A = AT) and setting the derivative equal to zero results in:

uev = Av. (44)

The ‘best’ orientation thus is an eigenvector of the structure tensor. Substitution
in the quadratic form then shows that we need the eigenvector corresponding to
the largest eigenvalue.

The least squares orientation estimation works well in case all gradients in
the ensemble of vectors in an image neighborhood all belong to the same oriented
pattern. In case the image patch shows two oriented patterns the least squares
estimate will mix the two orientations and give a wrong result.

A robust estimator is constructed by introducing the Gaussian error norm
once again:

€(x) = /Q ple(x,¥))G* (x — y)dy (45)

In a robust estimator large deviations from the model are not taken into account
very heavily. In our application large deviations from the model are probably
due to the mixing of two different linear textures (see Fig. 9(c-d)).

The error, Eq.(45), can now be rewritten as (we will omit the spatial argu-
ments):

€= /Q P <\/ng - vT(ggT)V) G*dy. (46)
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Again we use a Lagrange multiplier to minimize subject to the constraint that

viv=1:

% (A(l —vTv) + /Q P (\/ng - vT(ggT)V) Gsdy) =0. (47)
Using Eq.(15) as the error function leads to
n(v)v =\v (48)

where

n(v) = /Q gg"G™(\/gTg — VT (gg" V)G dy. (49)

The big difference with the least squares estimator is that now the matrix 7
is dependent on v (and on x as well). Note that 1 can be called a ‘robustified’
structure tensor in which the contribution of each gradient vector is weighted not
only by its distance to the center point of the neighborhood, but also weighted
according to its ‘distance’ to the orientation model. Weickert et. al. [19] also
introduce a non linear version of the structure tensor that is close in spirit to
the robust structure tensor 7.

We propose the following fized point iteration scheme to find a solution. Let
v® be the orientation vector estimate after i iterations. The estimate is then
updated as the eigenvector vit! of the matrix n(v?) corresponding to the largest
eigenvalue, i.e. we solve:

(v vt = avitt (50)
The proposed scheme is a generalization of the well-known fixed point scheme
(also called functional iteration) to find a solution of the equation v = F(v).

Note that the iterative scheme does not necessarily lead to the global mini-
mum of the error. In fact often we are not even interested in that global minimum.
Consider for instance the situation of a point in region A (with orientation a;)
that is surrounded by many points in region B (with orientation ). It is not to
difficult to imagine a situation where the points of region B outnumber those
in region A. Nevertheless we would like our algorithm to find the orientation
a whereas the global minimum would correspond with orientation 3. Because
our algorithm starts in the initial orientation estimate and then finds the local
minimum nearest to the starting point we hopefully end up in the desired local
minimum: orientation a.

The choice for an initial estimate of the orientation vector is thus crucial in a
robust estimator in case we have an image patch showing two (or more) striped
patterns.

In Fig. 10 and Fig. 11 the robust estimation of orientation for a simple test
image (without noise and with noise). For the robust estimation in both cases
we have used the orientation in location x that resulted from the least squares
estimator as the initial orientation vector in that point. In both cases only 5
iterations are used.

From both the noise free and the noise corrupted texture images it is evident
that the robust estimation performs much better at the border of the textured
regions.
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5 Conclusions

Fig. 10. Least Squares versus Ro-
bust Orientation Estimation. In
(a) a generated noise free image is
shown. The texture is made out of
two regions each differently oriented.
In (b) the orientation field a =
arctan(vz/v1) is shown that results
from the least squares estimate. In (d)
the orientation field is shown result-
ing from the robust estimation. In (c)
a detail of the orientation vector fields
for both the least squares estimation
(dotted lines) and the robust estima-
tion (solid lines) are shown.

Fig.11. Least Squares versus
Robust Orientation Estimation.
Same experiment as figure 10 but with
noise added.

In this paper we have described robust estimators of local image structure. Our
starting point was the Gaussian facet model, using a Gaussian soft aperture

function to define the local neighborhood.

Using the Gaussian error norm resulted in an iterative procedure for the
robust estimator that is essentially a fixed point iteration. The advantage is that
very few iterations are needed in most cases (the maximum number of iterations
used in the examples in this paper ranges from 5 to 10).

Through the Gaussian facet model we are able to link the robust estimation
of local image structure with classical linear scale-space techniques.
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