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In this paper, computational methods are proposed to compute color edge

saliency based on the information content of color edges. The computational

methods are evaluated on bottom-up saliency in a psychophysical experiment,

and on a more complex task of salient object detection in real-world images.

The psychophysical experiment demonstrates the relevance of using infor-

mation theory as a saliency processing model and that the proposed methods

are significantly better in predicting color saliency (with a human-method

correspondence up to 74.75% and an observer agreement of 86.8%) than state-

of-the-art models. Furthermore, results from salient object detection confirm

that an early fusion of color and contrast provide accurate performance to

compute visual saliency with a Hit rate up to 95.2%. c© 2009 Optical Society

of America

OCIS codes: 330.1720, 110.2960, 330.5510, 150.1135, 330.1880.

1. Introduction

Human visual attention is for an important part bottom-up driven by the saliency of image

details. An image detail appears salient when one or more of its low-level features (e.g. size,

shape, luminance, color, texture, binocular disparity, or motion) differs significantly from its

variation in the background. Saliency determines the capability of an image detail to attract
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visual attention (and thus guide eye movements) in a bottom-up way [1] [2]. Current models

of human visual search and detection suggest that this preattentive stage indicates potentially

interesting image details, whereupon the focus of attention is sequentially shifted to each of

these regions and the serial stage is deployed to analyze them in detail [3]. Computational

saliency could correspondingly assist in the efficient assessment of image content.

Computational saliency models based on information theory have been shown to success-

fully model human saliency from local image features [4] [5] [6]. This theory states that

feature saliency is inversely related to feature occurrence, i.e. rare features are more infor-

mative and therefore more salient than features that occur more frequently. It is indeed

plausible that interesting image details correspond to locations of maximal information con-

tent, a measure closely related to local feature contrast [7] [8]. Consequently, recent models

of human visual fixation behavior assume that saliency driven free viewing corresponds to

maximizing information sampling [9] [10]. These models have successfully been deployed to

model human fixation behavior, pop-out, dynamic saliency, saliency asymmetries, and to

solve classic computer vision problems like dynamic background subtraction [9] [8] [11].

Because of its importance for many practical applications, we focus on bottom-up saliency

in this paper. The parallel, preattentive, or bottom-up stage of human vision is thought to

guide a serial (computationally intensive) attentive or top-down stage. Among all features

that contribute to a detail’s saliency, orientation and color are generally considered to be the

most significant ones [12] [13] [14]. Consequently, most current saliency models are based on

local color and orientation contrast (e.g. [15] [16] [17] [18]). In general, individual saliency

maps for these features are computed. Subsequently these maps are merged in a late stage

into a single overall saliency map, also called late fusion of features [16]. However, there exist

evidence that the human visual system combines low-level features in an early stage [2] [19].

Information theoretical methodology can be used to compute the saliency of color edges by

combining chromaticity and contrast in an early stage.

Therefore, in this paper, a method is proposed which computes image saliency from the

information content (the frequency of occurrence) of chromatic derivatives. The method is

based on the observation that in natural images, color transitions of equal probability (i.e.

isosalient transitions) form ellipsoids in decorrelated color spaces [20]. The transformation

that turns these ellipsoidal isosaliency surfaces into spherical ones (called the color saliency

function), ensures that vectors of equal length have equal information content and thus equal

impact on the saliency function. In [20] the statistics of the color transitions are based on

a collection of images. In addition, we investigate transformations based on color transition

statistics of a single image.

To investigate the correspondence between our computational saliency model and human

visual perception, we perform a psychophysical experiment. The aim of experiment is to
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verify the proposed model on a purely bottom-up saliency task in a controlled environment

where possible effects of cognitive top-down mechanisms are avoided. As a second experiment

we validate our saliency model on the task of salient object detection in real-world images and

compare it with existing methods. We call this task high-level saliency, to distinguish it from

saliency detection which is purely bottom-up. In high-level saliency tasks, the bottom-up

saliency is complemented with top-down mechanisms, such as image semantics. As bottom-

up color saliency is one of the mechanisms contributing to high-level saliency, a correlation

between them is to be expected.

The paper is organized as follows. In the next section, three computational saliency meth-

ods are proposed complemented with a multi-scale approach. In Section 3, the bottom-up

saliency is evaluated by a psychophysical experiment. In Section 4, the proposed computa-

tional methods are evaluated on a the high-level saliency task of salient object detection in

real-world images. Finally, in Section 5 conclusions are drawn.

2. Saliency of Color Edges

In this section, three different computational methods are presented to compute color edge

saliency based on the information content of color edges: (1) a local version that estimates

color edge saliency from a single image, (2) a global version that uses a collection of images to

compute color edge saliency, and (3) a version in which the eigenvectors of the transformation

matrix are restricted to the opponent color space (see equation 7). Finally, a multi-scale

approach is presented to improve saliency detection in real-world images.

2.A. Computational saliency measure based on chromatic transitions

The color saliency method by Van de Weijer et al. [20] is inspired by the notion that a feature’s

saliency reflects its information content as follows. Consider an image f = (R,G, B)t. The

information content, I, of an image derivative fx, according to information theory, is given

by the logarithm of its probability p:

I = −log(p(fx)). (1)

Hence, color image derivatives which are equally frequent, from now on named iso-salient

derivatives, have equal information content. In Fig. 1, the distribution of RGB derivatives

for the 40.000 images of the COREL dataset is given. The iso-salient derivatives form an

ellipsoid-like distribution, of which the longest axis is along the luminance direction. This

indicates that equal displacements (i.e. points with equal norm of the chromatic derivatives)

are more informative along the color directions (perpendicular to the luminance) than in the

luminance direction.

To map image derivatives to a saliency map, a function g is required which maps iso-

salient derivatives to equal saliency. We choose to map the derivatives to a new space where
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Fig. 1. Histogram of the distribution of RGB derivatives computed for the

40.000 images of the COREL image dataset. The iso-salient derivatives form

an ellipsoid-like distribution, of which the longest axis is along the luminance

direction.

iso-salient derivatives have equal norms.

p(fx) = p(f′x) ↔ |g(fx)| = |g(f′x)|
p(fx) < p(f′x) ↔ |g(fx)| > |g(f′x)|

. (2)

The function g is called the saliency transformation which norm can now be interpreted as

the saliency. Note that this only puts a weak constraint on the color saliency functions g.

It is required that derivatives with equal information content are mapped to vectors with

equal norm. A more restrictive constraint would be to require the saliency function to map

derivatives to a space in which their norm is proportional to their information content. This

further improves saliency detection. However, this is not a uniquely color phenomenon and

holds as well for luminance contrast saliency.

Here we model the surface of iso-salient derivatives with an ellipsoid. We estimate the
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parameters of the ellipsoid by the covariance matrix N:

N = fx (fx)
t =




RxRx RxGx RxBx

RxGx GxGx GxBx

RxBx GxBx BxBx


 , (3)

where the matrix elements are computed by

RxRx =
∑

i∈S

∑

x∈Xi

Rx (x) Rx (x), (4)

where S is a set of images, and X i is the set of pixel coordinates x in image i. Matrix N

describes the derivative energy in any direction v̂. This energy is computed by E(v̂) = v̂tNv̂.

Matrix N can be decomposed into eigenvector matrix U and eigenvalue matrix Λ according

to N = UΛΛUt. This provides the saliency function g:

g (fx) = Λ−1Utfx. (5)

Substitution of Eq. 5 into Eq. 3 yields

g (fx) (g (fx))
t = Λ−1UtUΛΛUtUΛ−1 = I, (6)

meaning that the covariance matrix of the transformed image is equal to the identity matrix.

This implies that the derivative energy in the transformed space is equal in all directions.

In this paper, three computational saliency methods are considered which are derived from

information theory. The first method corresponds with the one introduced in [20], and will

be evaluated in Section 3 with a psychophysical experiment. Additionally, the aim is to in-

vestigate the performance of two new methods to compute the color saliency transformation.

• Global opponent color-space saliency [20]: saliency is defined as the rarity of color

derivatives in a set of images, with the additional restriction that the eigenvectors of

the saliency matrix coincide with the vectors which span the opponent color space. In

this case,

Ut =




1√
2

−1√
2

0
1√
6

1√
6
− 2√

6
1√
3

1√
3

1√
3


 . (7)

The opponent color space decorrelates the chromatic channels from the luminance

channel. The first channel is the red-green channel, the second the blue-yellow channel,

and the third the luminance component. The color saliency transformation Mc
o =

Λ−1Ut only differs in the scaling of the axes as given by the eigenvalue matrix Λ,

whose values can be computed with diag (Λ) = diag
(
sqrt

(
Utfx(Utfx)t

))
= (α, β, γ),

computed similarly as in equations 3 and 4. The diag function reduces a matrix to its

diagonal elements. The same eigenvalue matrix is applied to all images.
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Fig. 2. a) original image, b) global color saliency, c) local color saliency d)

multi-scale local color saliency. Global saliency amplifies the red edges of the

flag. Based on the local statistics of this image, the local saliency increases the

saliency of the pie. The multi-scale approach suppresses the colorful edges of

the American flag further, therefore the pie is better detected. This corresponds

to the part of the scene selected as the most salient by humans [21].

• Global color saliency: here, saliency is defined as the rarity of the color derivatives over

a set of images. Hence, a single matrix Mc
g is computed based on the color derivatives

of all images in a data set (S contains all images). The same saliency matrix is then

applied to all images in the data set.

• Local color saliency: saliency is defined by the rarity of the color derivatives in a single

image. Thus, when applied to a set of images, each image is transformed by its own

individual saliency matrix Mc
l (where c stands for computational and l for local). For

its computation, S in Eq. 4 contains only a single image.

An example of local and global computational saliency is given in Fig. 2. Based on global

saliency, the edges of the red American flag are considered salient. However, for local saliency,

which is computed from the statistics of this image, the red edges are not considered salient.

Instead the brown edges of the pastry are considered more salient. This is in correspondence

with human assessment of this image [21].
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2.B. Multi-scale color saliency

In natural scenes, salient regions appear at multiple scales. For this reason we propose to

extend our computational saliency models with a multi-scale approach. Maps computed at

multiple scales can be combined into a single saliency map as follows:

s (x) =
∑

σ∈Σ

∑

x′∈N(x)

‖Mσ (fσ (x)− fσ (x′))‖, (8)

where fσ denotes the Gaussian smoothed color image at scale σ, and Σ =

{1, 2, 4, 6, 8, 10, 12, 14}. N (x) is a 9x9 neighborhood window. Mσ is the transformation ma-

trix computed from Gaussian derivatives of scale σ and can be any of the three methods

mentioned before: Mc
l , Mc

g or Mc
o. Note that leaving out M from Eq. 8 results in the multi-

scale contrast approach proposed by Liu et al. [21]. An example of a multi-scale color saliency

map is given in Fig. 2. The edges of the salient pastry are considered more salient by the

multi-scale color saliency map.

3. Psychophysical Evaluation of Bottom-up Saliency

In this section, a psychophysical experiment is presented that allows us to quantify the ac-

curacy with which information theory (represented by the computational saliency measures)

predicts bottom-up saliency in humans. Here we regard saliency as the degree with which

an item stands out from its surrounding.

Different psychophysical methods for measuring bottom-up saliency exist, like eye-tracking

and fixation analysis (e.g. [25]), reaction time analysis (e.g. [2]) and target location (e.g. [26]).

We decided to measure the relative saliency of simple center-surround test patterns that we

synthesized with specified distributions of chromatic transitions (Fig. 3). These patterns

have been designed with the aim that they do not show any familiar object or shape and

thus avoid possible effects of cognitive top-down mechanisms. Two center-surround patterns,

differing only in chromatic distribution of the centers, are shown side by side to the observers.

They decide which of the two centers stands out most from the common surround, i.e. has

a higher relative saliency [27].

The color patterns are defined in the CIELAB color space [22] with the goal to specify

colors in terms of a perceptual space and enable comparison of the results with other studies

[23]. Given a certain distribution of L*a*b* values in the surround, the saliency of the center

will depend on the difference between the L*a*b* distribution of the center and that of the

surround. The more the two distributions differ, the higher the chromatic contrast, which

usually results in higher experimental measurements of saliency. The aim is to determine

how strong this saliency depends on the underlying L*a*b* distributions (and associated

edge transition distributions). We therefore transform these distributions in a systematic
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Fig. 3. Left: example of a synthetic image with specified distribution of color

transitions in CIELab color space, which forms the surround. Center: two

different transformations of the color distribution shown in the left, form two

different centers. Right: layout of the psychophysical experiment, showing two

center-surround color patterns side-by-side. The surrounds are identical, the

centers are different. Subjects indicate which of the two centers stands out

most from the surround.

manner. For example, in one condition we let the distribution of the surround correspond to

the distribution of edge transitions as determined from the COREL image dataset.

The data from our observers is compared to predictions on the basis of our models of

computational saliency. The latter are applied to the same center-surround images as pre-

sented to our observers. A prediction of the center-surround pattern with the higher relative

saliency is simply obtained by comparison of the model outputs for the two center-surround

images.

3.A. Method

3.A.1. Subjects

Five men and three women (ages ranging from 22 to 29) participated in our experiment.

They had normal or corrected-to-normal acuity and normal color vision as confirmed by

testing on the HRR pseudoisochromatic plates (4th edition). Subjects were unaware of the

purpose of the experiment.

3.A.2. Apparatus

Stimuli were presented on a calibrated LCD monitor (Eizo, ColorEdge CG211) operating at

1600x1200 pixels (0.27 mm dot pitch) and 24-bit color resolution. Using a spectrophotometer
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(GretagMacbeth, Eye-one) the monitor was calibrated to a D65 white point of 80 cd/m2,

with gamma 2.2 for each of the three color primaries. CIE 1931 x,y chromaticities coordinates

of the primaries were (x,y) = (0.638, 0.322) for red, (0.299,0.611) for green and (0.145,0.058)

for blue, respectively, closely approximating the sRGB standard monitor profile [24]. Spatial

uniformity of the display, measured relative to the center of the monitor, was ∆E∗
ab < 1.5

according to the manufacturer’s calibration certificates. This type of display was shown to

provide color reproduction errors in the order of 1 just noticeable difference [23], accurate

enough for the type of experiment described in this paper.

3.A.3. Stimuli and design

Fig. 3c shows the layout of the experiment. Two center-surround patterns, differing only in

the center, are shown side-by-side. We used four surrounds as listed in Table 1. The statistics

(color edge distribution) of the first surround, labeled SL, correspond with the statistics of

natural images contained in the COREL image dataset. From Fig. 1 it is observed that for

the COREL dataset we have 5 times more transitions (edges) in Intensity than transitions in

RG and BY. In L*a*b* space this corresponds to σLCorel
= 54, σbCorel

= 27 and σaCorel
= 16.

The second and third surround, Sa and Sb, were obtained by switching the distributions

along the L* and a* axes, and along the L* and b* axes, respectively. The last surround,

Seq, has equal distributions (i.e. amounts of information) in all three directions.

Surround σL σa σb

SL σLCorel
σaCorel

σbCorel

Sa σaCorel
σLCorel

σbCorel

Sb σbCorel
σaCorel

σLCorel

Seq σLeq σaeq σbeq

Table 1. Surrounds with systematic changes in the standard deviations (σ)

along the L*, a* and b* axes of perceptual color space. The statistics of the

first surround (SL) comply with the energy distributions of natural images

contained in the COREL image dataset. The last surround (Seq) has equal

amounts of energy in the three directions (σLeq = σaeq = σbeq).

To create the centers in the center-surround patterns, we transform the distribution of the

surround by multiplying σ for each axis by a certain value. Each surround listed in Table 1
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was combined with 13 different center distributions. These center distributions were obtained

by applying the transformation




σ
′
L

σ
′
a

σ
′
b


 =




α 0 0

0 β 0

0 0 γ







σL

σa

σb


 . (9)

The first transformation, labeled C1, had values α0 = (σaCorel
)−1, β0 = (σbCorel

)−1 and γ0 =

(σLCorel
)−1. This transformation is predicted by our computational saliency measure Mc

l

(computational local transformation, which is here fixed to L*a*b* space) as the most salient

between all possible transformations. Five more center patches (C2 - C6) are generated with

α0, β0 and γ0 interchanged. Centers CL, Ca and Cb were created by maximizing the energy

of the axis indicated by the subscript, while the energy in the remaining two axes are equal.

Centers CLa, CLb and Cab were created by maximizing the energy of two axes (indicated by

the subscripts). Finally, center Ceq was obtained by having the same amounts of energy in

all three axes.

Summarizing, for each of the four surrounds (backgrounds) we generate 13 different cen-

ters (foregrounds) by 13 transformations of the surround statistics. One of these centers

is predicted from the computational saliency measure as the most salient. The question is

whether human observers also find this center to be the most salient. If so, this means that

information theory is a valid underlying mechanism for bottom-up saliency.

3.A.4. Procedure

After passing the color vision test, the subjects were seated at 50 cm viewing distance from

the LCD monitor. In each trial, they indicated (by pressing keys on the keyboard) which of

the two centers (left or right) stood out most from the surround, i.e. had the highest salience.

They were encouraged to make a decision although they could also indicate that the two

centers were equally salient.

3.B. Experimental results

In each trial, a subject indicated which of the two centers was most salient. Each center

was in competition with the 12 others just once. From these trials we compute the relative

saliency of each center from the number of times the center was selected as the most salient.

In Figure 4, the relative saliency is shown obtained for all surrounds, in descending order of

saliency. Error bars indicate the standard error of the mean, obtained by averaging over the

8 observers. The data did not indicate one or more of the observers to be an outlier.

Regarding surround SL, Fig. 4 shows that center Cab has the highest relative saliency. This

is the expected result, because SL has the largest variance in the L* dimension and Cab has a

color edge distribution amplified along both the *a and b* dimension, at the cost of reducing
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Fig. 4. Relative saliency (in descending order) of the 13 centers for the sur-

rounds SL, Sa, Sb, Seq averaged over observers. Error bars represent the stan-

dard error of the mean. The images on the right hand side show the most

salient (top) and least salient (bottom) centers, in a small portion of the sur-

round.

energy in the intensity edge (L*) distribution. So, center Cab looks more strongly colored but

with less luminance contrast, which is highly salient in the SL surround. In contrast, the least

salient center (CL) has increased the energy in the intensity edges, at the cost of reducing

energy in the color edges. However, since the surround SL already has a distribution that

dominates in the intensity edges, the extra amplification in intensity edges does not result

in visual saliency, as predicted for our saliency measure.

Surround Sa was created by rotating the axes of edge distributions such that the largest

variance coincided with the a* axis of CIELAB space. This results in an increased edge

distribution along the red-green axis of color space, i.e., the colors along the red-green axis

become more saturated, at the cost of a decreased edge intensity. Fig. 4 shows that for this

background the most salient center is Cb and the least salient center is C6. Note that there is

no significant difference between the saliency of C4 and C6. Center Cb is most salient because

it is amplified along the b* axis (the blue-yellow axis in color space) which is orthogonal to

the amplified a* axis of the surround, at the cost of reduced energy in the b* and L* axes.

11



Blue-yellow edges with decreased intensity edges are salient in a dominant red-green edge

distribution. Center C6 and C4 are least salient in surround Sa because their γ-coefficient in

the saliency transformation equals α0, which is the largest (α0 > β0 > γ0). So, intensity edges

are amplified most but do not show up as salient in the dominating red-green surround.

The results for surround Sb are described in a similar way as for Sa, but with the role of

the red-green and yellow-blue axes interchanged. So, in short, Ca is most salient because it

has amplified red-green edges (at the cost of blue-yellow and intensity), which stands out

from the dominating blue-yellow surround.

The surround Seq is characterized by equal edge distributions along the L*, a* and b* axes

of CIELAB color space. Center Ca apparently is most salient, followed by Cab and Cb, which

are all chromatic transformations. The least salient centers are all intensity amplifications.

This is an important result: when the edge distributions in the three axes of color space are

equal, the most salient change to that distribution is a chromatic one, i.e. an increase of

edges along the a* or b* axis, or both, at the cost of a decrease of energy in intensity edges.

With respect to the natural surround SL (the surround having the statistics of the COREL

dataset) there remains one important question. Why was center C1 not the most salient

one? We recall that C1 was expected to be most salient from a computational point of view.

Figure 4 shows that C1 and C2 are not significantly different, and have a higher relative

saliency than C3 and C4, and C5 and C6. So, C1 has indeed the highest saliency with respect

to the group of centers C1 to C6, as predicted by information theory. Nevertheless, C1 is

still outperformed by the chromatic transformations Cab, Ca and Cb. The reason for this

is that the latter transformations have maximized energy in one or two axes with a total

amount of energy that exceeded the total energy of the transformation of C1. Therefore, the

chromatic transformations Cab, Ca and Cb are more salient than C1. In conclusion, for the

center distributions C1 to C6 having the same total energy (information content) in the edge

distributions, information theory correctly predicts C1 to have a high relative saliency in the

natural surround SL.

3.C. Comparison between Computational Saliency Models and Psychophysics

Here we compare the performance of the different computational saliency models detailed

in section 2, namely, Global Opponent color-space saliency (M c
o), and Local Computational

(M l
o). Additionally we compare these methods against the Itti model [16] and RGB edges on

predicting the human response (the selection of the most salient center) in our psychophysical

experiment. We apply a transformation to the matrices obtained in Section 2 to convert them

to L*a*b* space. For each subject (s = 1..8) and each computational model (m = 1..5),

we computed the overall correspondence between the subject’s selection and the model’s

selection of the most salient center. This correspondence Cor(s,m) is a value between 0 and
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Fig. 5. Correspondence as computed with eq. 10 between computational

saliency models. The different computational models are sorted on descending

correspondence. Error bars indicate standard error of the mean (8 subjects).

100 and is computed as follows:

Cor(s,m) = 100

∑468
i=1 ai

468
, (10)

where ai denotes - per trial i - the agreement (either 0 or 1) between model and subject.

Fig. 5 shows the correspondence for the 4 computational models. Trials in which subjects

could not decide on the most salient center are left out of the computation.

It is clear from Fig. 5 that global opponent-space saliency (Mc
o with 74.75% correspon-

dence) outperforms the other models (Mc
l and Itti having 62.56% and 57.70% correspondence

respectively). At the 95% confidence level significant differences exist between global (Mc
o)

and local computational saliency (Mc
l ) (p=1.1E-4), between (Mc

l ) and Itti (p=1.2E-3) and

Itti and RGB (p=1.8E-15). We also computed the inter-observer agreement using Eq. 10 but

with ai replaced by wi, where wi represents the fraction (between 0 and 1) of subjects that

gave the same response in each trial i. So, if 6 of the 8 subjects selected the same center,

wi = 6/8. This resulted in an observer agreement of 86.8%. In conclusion, our computa-

tional saliency methods (both local and global) are significantly better at predicting human

saliency than the Itti and Koch model, as shown in Fig. 5.

4. Evaluation on High-Level Saliency

In this section, we validate computational saliency for the task of salient object detection in

real-world images and compare it with existing methods. We call this task high-level saliency,

to distinguish it from saliency detection which is purely bottom-up. Bottom-up saliency was

investigated in the previous section, where patterns were used that do not show any familiar
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Fig. 6. Labeled images from image set B consisting of 5000 images which were

labeled by nine users obtained from [21].

object or shape avoiding possible effects of cognitive top-down mechanisms. In high-level

saliency tasks, top-down information such as image semantics, is also considered.

4.A. High-level saliency data set

To compare our computational saliency methods with high-level saliency, we use a large-

scale image data set of human labeled salient objects [21]. Example images of this dataset

are shown in Fig. 6.

The data set contains a large number of high quality images obtained from different sources

such as image forums and image search engines. Images all contain a single salient object or

a distinctive foreground object. For each image, users drew a rectangle enclosing the most

salient object in the image. We use the set B consisting of 5000 images which were labeled by

nine users [21]. Foreground pixels are those pixels which are considered to be foreground by a

majority of the users. Then, this set is divided in 10 subsets of 500 images each (B1, ..., B10).

We use the 500 images in B1 for training and the rest of the 4500 images for testing.

4.B. Assessing computational saliency transformations

In Section 2.A, we proposed different computational saliency measures based on information

theory. Here, we want to verify to what extent the transformation given by information

theory correspond with the optimal linear transformation possible on a given data set. To

this end, we compute the optimal transformation, called Mh
o , on the labeled data set.

To determine the success of each transformation, the precision index [21] is used which

is computed as follows. An image is divided in a foreground region f i and a background bi,
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where i is the image index. Let f i
M be the summed saliency of the foreground for a certain

saliency transformation M. Let bi
M denote the same for the background. Further, let A(f i)

and A(bi) denote the area of the foreground and background respectively. The confidence

measure used is the Precision index P i
Λ:

P i
M =

A (bi) f i
M

A (f i) bi
M

. (11)

In other words, P i
M provides the likelihood to select from the image a location which is

within the salient bounding box [21]. A higher precision index therefore corresponds to a

better saliency measure.

To reduce the set of possible transformations, we restrict the transformation to the op-

ponent color space transformation. We define Mh
o , called learned saliency, as the transfor-

mation which maximizes P i
M by varying the parameters Λ = diag(α, β, γ). An exhaustive

search based on all training set images is performed. Hence, Mh
o is the transformation which

obtains the maximum correspondence (given the opponent transformation) to the human

assessments of object saliency.

A high correlation is expected between Mh
o and the global opponent color-space saliency

transformation Mc
o. Table 2 summarizes the results of the computational saliency and the

learned saliency measures in terms of the precision index.

Measure α β γ P i
M

Mh
o 0.65 0.34 0.01 0.49

Mc
o 0.53 0.43 0.04 0.45

Mc
l image dep. image dep image dep 0.51

Table 2. Results obtained for learned global saliency measure Mh
o , computa-

tional global saliency Mc
o saliency and computational local saliency Mc

l . The

fourth column shows the average precision score.

When comparing the learned saliency measure with the computational saliency measure,

it can be inferred that the results obtained by the computational approach is indeed in

agreement with the best possible transformation, that is, the learned saliency measure. In

both cases, γ is a fairly small value. This is because there is a high amount of achromatic

transitions in the images as opposed to chromatic ones. Hence, these transitions are less

informative, as predicted by the computational saliency measure. To obtain a proper saliency
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map, the weights of these transitions should be decreased. Furthermore, α and β values

are larger and close to each other in both cases. It is also interesting to note that local

saliency outperforms global saliency. This is due to the fact that local saliency can adapt its

transformation for each individual image.

To quantitatively show the resemblance of the saliency maps computed by the computa-

tional and learned saliency, we have calculated the intersection of the normalized saliency

maps. The intersection is computed by taking the innerproduct between two saliency maps

(the saliency maps are first transformed to vectors). The averaged score over all images

reaches 97.43%. For comparison, the overlapping between learned saliency and saliency based

on RGB edges (without additional transformation) is only 83.11%. A qualitative comparison

between computational and learned saliency is depicted in Fig.7.

In conclusion, the relevance has been demonstrated of using information theory as a

saliency processing model from a computational point of view.

4.C. Evaluation of computational saliency methods on high-level saliency

Here, we evaluate the different computational saliency models proposed in this paper and

compare them with the Itti and Koch saliency method [16]. The evaluation is performed on

the real-world image data set [21]. To evaluate saliency methods, we use the Hit and Miss

index (a comparison measure commonly used in literature): if the maximum of the saliency

map falls inside the original rectangle, we have a hit, otherwise, a miss is registered. Note

that for each image the size of the foreground (rectangle) is given.

We evaluate the learned saliency (Mh
o), computational global saliency (Mc

o) and computa-

tional local saliency (Mc
l ). In addition to these transformations, we also show results obtained

with the multi-scale computational local transformation (Mσc
l ), the RGB edges without any

transformation (RGBe), the Itti saliency method (Itti) and a random selection of the most

salient location (Random). Table 3 summarizes the results obtained.

From this table, it can be concluded that the results obtained with multi-scale contrast are

better than others. Compared to the local saliency model the hit index increases from 89.6

to 95.2. Further, using locally induced saliency provides better performance than computing

the color transformation based on color edges extracted from the whole image dataset. As

expected, locally computing the transformation adapts better to the edge distribution for

each image. Furthermore, the results show that locally induced saliency with multi-scale

contrast provide the best performance.
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Fig. 7. Color saliency example. First row: original image. Second row: RGB

edges. Third row: computational global saliency Mc
o (see table 2). Fourth row:

Mh
o (see table 2). The overlap between learned and computational maps over

all images reaches 97.43% whereas the overlapping with the RGB edges is

83.11%.
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Transformation Hit Miss

Global learned (Mh
o ) 87.1 12.9

Global Computational (Mc
o) 87.9 12.1

Local Computational (Mc
l ) 89.6 10.4

Local multi-scale computational (Mσc
l ) 95.2 4.8

RGB edges 81.4 18.6
Itti 88.2 11.8

Random 72.8 27.2

Table 3. Hit and Miss values obtained in the test set for all proposed saliency

transformations as well as for RGB edges, Itti saliency measure [16] and a

Random selection of the most salient location.

5. Conclusions

In this paper, different computational methods are proposed to compute color edge saliency

based on the information content of color edges. A comparison has been done between these

computational models and human perception. First, a psychophysical experiment has been

conducted using patterns without semantic image cues (bottom-up saliency task). Second,

a computational experiment has been done focusing on the task of salient object detection

including object and scene semantics (high-level saliency).

From the psychophysical experiment, the relevance of using information theory as a

saliency processing model from a human-perception point of view, has been demonstrated.

It can be derived that for a uniformly distributed background, humans are more sensitive to

chromatic changes than luminance variations. Further, it is shown that the proposed method

performs significantly better at predicting saliency (with a human-method correspondence

of 74.75% and an observer agreement of 86.8%) than state-of-the-art models.

From the computational experiment, it has been shown that the use of information theory

as a saliency processing model is also valid from a computational point of view. The results

obtained from a large-scale dataset confirm that an early fusion of these features yields an

improvement on the prediction of saliency. Further, it is shown that the proposed computa-

tional methods provide accurate performance to compute visual saliency with a Hit rate up

to 95.2%.
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