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Abstract

Color names are required in real-world applications such as image retrieval and image annotation.

Traditionally, they are learned from a collection of labelled color chips. These color chips are labelled

with color names within a well-defined experimental setup by human test subjects. However naming

colors in real-world images differs significantly from this experimental setting. In this paper, we in-

vestigate how color names learned from color chips compare to color names learned from real-world

images. To avoid hand labelling real-world images with color names we use Google Image to collect

a data set. Due to limitations of Google Image this data set contains a substantial quantity of wrongly

labelled data. We propose several variants of the PLSA model to learn color names from this noisy data.

Experimental results show that color names learned from real-world images significantly outperform

color names learned from labelled color chips for both image retrieval and image annotation.

I. INTRODUCTION

Within a computer vision context color naming is the action of assigning linguistic color labels

to image pixels. We use color names routinely and seemingly without effort to describe the world

around us. They have been primarily studied in the fields of visual psychology, anthropology and

linguistics [1]. In computer vision color names are used in the context of image retrieval. A user

might query an image search engine for ”red cars”. The system recognizes the color name ”red”,

and orders the retrieved results on ”car” based on their resemblance to the human usage of ”red’.

Furthermore, knowledge of visual attributes can be used to assist object recognition methods. For

example, for an image annotated with the text ”Orange stapler on table”, knowledge of the color

name orange would greatly simplify the task of discovering where (or what) the stapler is. Color

names are further applicable in automatic content labelling of images, colorblind assistance, and

linguistic human-computer interaction [2].
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Fig. 1. Google-retrieved examples for color names. The red bounding boxes indicate false positives. An image can be retrieved

with various color names, such as the flower image which appears in the red and the yellow set.

One of the most influential works in color naming is the linguistic study of Berlin and Kay [3]

on basic color terms. They are defined as those color names in a language which are applied to

diverse classes of objects, whose meaning is not subsumable under one of the other basic color

terms, and which are used consistently and with consensus by most speakers of the language.

Subjects of different languages where asked to identify prototypes (best examples) of the color

names on a board with 329 color chips. Basic color names were found to be shared between

languages. However the number of basic terms varies from two in some Aboriginal languages

to twelve in Russian. In this paper, we use the eleven basic color terms of the English language:

black, blue, brown, grey, green, orange, pink, purple, red, white, and yellow.

To use color naming in computer vision requires a mapping between RGB values and color

names. Generally this mapping is inferred from a labelled set [4], [5], [6], [7], [8], [9], [10].

Multiple test subjects are asked to label hundreds of color chips within a well-defined experi-

mental setup. The colors are to be chosen from a preselected set of color names (predominantly

the set of 11 basic color terms [6], [8], [9], [10] ). From this labelled set of color chips the

mapping from RGB values to color names is derived. Throughout the paper we will refer to this

methodology of color naming as chip-based color naming. Several of these papers have reported

results of applying chip-based color names on real-world images [11], [6], [7], [8], [9], [12].

Although we do not wish to cast doubt on the usefulness of chip-based color naming within the

linguistic and color science fields, we do question to what extent the labelling of isolated color
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chips resembles color naming in the real-world. Color naming chips under ideal lighting on a

color neutral background greatly differs from the challenge of color naming in images coming

from real-world applications without a neutral reference color and with physical variations such

as shading effects and different light sources. In this paper, we do not aim to improve color

naming of isolated color patches, but instead investigate the use of color names in images from

real-world applications. More precisely, with image data from real-world applications we refer

to images which can be taken under varying illuminants, with interreflections, coming from

unknown cameras, colored shadows, compression artifacts, aberrations in acquisition, unknown

camera and camera settings, etc. The majority of the image data in computer vision belongs to this

category: even in the cases that camera information is available and the images are uncompressed,

the physical setting of the acquisition are often difficult to recover, due to unknown illuminant

colors, unidentified shadows, view-point changes, and interreflections.

To obtain a large data set of real-world images with color names we propose to use Google

Image search (see Fig. 1). We retrieve 250 images for each of the 11 color names. These images

contain a large variety of appearances of the queried color name. E.g. the query ”red” will contain

images with red objects, taken under varying physical variations, such as different illuminants,

shadows, and specularities. The images are taken with different cameras and stored with various

compression methods. The large variety of this training set suits our goal of learning color names

for real-world images well, since we want to apply our color naming method on uncalibrated

images taken under varying physical settings. Furthermore, a system based on Google image

has the advantage that it is flexible with respect to variations in the color name set. Chip-based

methods are known to be inflexible with respect to the set of color names, since adding for

example new color names such as beige, violet or olive, would in principal imply to redo the

human labelling for all patches.

The use of image search engines to avoid hand labelling was pioneered by Fergus et al. [13]

within the context of object category learning. The use of internet to obtain color name labels has

been examined by Beretta and Moroney [14][15]. They ask users to label patches with the ”best

possible color name”. The collected color names are used to compile an online color thesaurus,

and they evaluate the color names on frequency of usage. The difference with the approach

applied in this paper is twofold. Firstly, we use already labelled images as found by Google

image, and therefore do not require users labelling images. Secondly, their approach aims to
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correctly label image patches with color names, whereas the goal of this paper is to label colors

in real-world images.

Retrieved images from Google search are known to contain many false positives. To learn

color names from such a noisy dataset, we propose to use Probabilistic Latent Semantic Analysis

(PLSA), a generative model introduced by Hofmann [16] for document analysis. One of the

earliest works that uses generative models to learn the relation between images and words is

that by Barnard et al. [17], where Latent Dirichlet Allocation (LDA) was used to learn relations

between keywords and image regions. The original work which was limited to nouns was later

extended to also include adjectives by Yanai and Barnard [18]. They compute the ”visualness”

of adjectives, based on the entropy between adjectives and image features. The work shows,

among other adjectives, results for color names: several of these are correctly found to be

visual, however the authors also report failure for others. Contrary to this work, we start from

the prior-knowledge that color names are ”visual” and that they should be learned from the color

distributions (and not for example from texture features), with the aim to improve the quality of

the learned color names. We model RGB values (words) in images (documents) with mixtures

of color names (topics), where mixing weights may differ per image, but the topics are shared

among all images. In conclusion, by learning color names from real-world images, we aim to

derive color names which are applicable on challenging real-world images typical for computer

vision applications. In addition, since its knowledge on color names is derived from an image

search engine, the method can easily vary the set of color names.

This paper is organized as follows. In Section II, the color name data sets used for training

and testing are presented. In Section III, our approach for learning color names from images is

described. In Section IV, experimental results are given, and Section V concludes the paper.

II. COLOR NAME DATA SETS

For the purpose of learning color names from real-world images, we require a set of color

name labelled real-world images. Furthermore, to evaluate the proposed method a hand-labelled

set of images is necessary. We briefly describe the data sets below together with three chip-based

color name sets.

Google color name set: Google image search uses the image filename and surrounding web

page text to retrieve the images. As color names we choose the 11 basic color names as indicated
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Fig. 2. Examples for the four classes of the Ebay data: blue cars, grey shoes, yellow dresses, and brown pottery. For all images

masks with the area corresponding to the color name are hand segmented. One example segmentation per category is given.

in the study of Berlin and Kay [3]. We used Google Image to retrieve 250 images for each of

the 11 color names. For the actual search we added the term ”color”, hence for red the query is

”red+color”. Examples for the 11 color names are given in Fig. 1. Almost 20 % of the images

are false positives, i.e., images which do not contain the color of the query. We call this data set

to be weakly labelled since the image labels are global, meaning that no information to which

particular region of the image the label refers is available. Furthermore, in many cases only a

small portion, as little as a few percent of the pixels, represents the color label. Our goal is to

learn a color naming system based on the raw results of Google image, i.e., we used both true

and false positives.

Ebay color name set: To test the color names a human-labelled set of object images is required.

We used images from the auction website Ebay. Users labelled their objects with a description

of the object in text, often including a color name. We selected four categories of objects: cars,

shoes, dresses, and pottery (see Fig. 2). For each object category 121 images where collected,

12 for each color name. The final set is split in a test set of 440 images, and a validation set of

88 images. The images contain several challenges. The reflection properties of the objects differ

from matt reflection of dresses to highly specular surfaces of cars and pottery. Furthermore,

it comprises both indoor and outdoor scenes. For all images we hand-segmented the object

areas which correspond to the color name. In the remainder of the article when referring to

Ebay images, only the hand segmented part of the images is meant, and the background is

discarded. This data set together with the hand-segmented masks are made available online at

http://lear.inrialpes.fr/data.

Chip-based color name sets: In the experimental section we compare our method to three
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chip-based approaches. The chip-based methods resemble in that the color naming is performed

in a controlled environment, where humans label individual color chips (CC) placed on a color

neutral (grey) background under a known white light source.

• CC-I: dataset with 387 color named chips of Benavente et al. [8]. The chips are classified

into the 11 basic color terms by 10 subjects. If desired the color patch could be assigned to

multiple color names. Consequently every patch is represented by its sRGB values (standard

default color space) and a probability distribution over the color names.

• CC-II: data set of 267 color named Munsell-coordinate-specified chips [19] developed by

the U.S. National Bureau of Standards (NBS). The appointed color names are taken from the

ISCC-NBS dictionary, which describes lightness, saturation and hue of the color. Examples

are very dark red and pale yellowish pink. Similarly as Griffin [5], we reduce the set of

color names to the 11 basic color terms by only taking the primary designator into account

(indicated in bold above). Eleven violets were assigned to purple and six olives to green.

Next, the munsell coordinates are converted to sRGB. In contrast to the other two sets each

color chip is assigned to a single color name.

• CC-III: dataset of 1014 color chips assembled by Menegaz et al. [9][10]. The sampling is

based on the OSA-UCS color space [20] which is a perceptually uniform space. In [10], it

is noted that the applicability of the original set (containing 424 samples) is limited due to

the absence of samples in saturated colors. This shortcoming was overcome by the addition

of 590 samples in the saturated color regions. Six subjects were asked to label the color

chips with a distribution over the eleven basic color terms.

Preprocessing: The Google data set contains of weakly labelled data, meaning that we only

have a image-wide label indicating that a part of the pixels in the image can be described by

the color name of the label. To remove some of the pixels which are not likely indicated by

the image label, we remove the background from Google images by iteratively removing pixels

which have the same color as the border. Furthermore, since the color label often refers to an

object in the center of the image, we crop the image to be 70% of its original width and height.

Both of these preprocessing steps were found to improve results.

The Google and Ebay images will be represented by color histograms. We consider the images

from the Google and Ebay datasets to be in sRGB format. Before computing the color histograms
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these images are gamma corrected with a correction factor of 2.4. Although images might not be

correctly white balanced, we do not applying a color constancy algorithm, since color constancy

often gives unsatisfying results [21]. Furthermore, many Google images lack color calibration

information, and regularly break assumptions on which color constancy algorithms are based.

The images are converted to the L∗a∗b∗ color space, which is a perceptually linear color space,

ensuring that similar differences between L∗a∗b∗ values are considered about equally important

color changes to humans. This is a desired property because the uniform binning we apply

for histogram construction implicitly assumes a meaningful distance measure. To compute the

L∗a∗b∗ values we assume a D65 white light source.

For the three chip-based approaches the probability over the color names of a limited set of

samples is given. We also require the assignments of colors outside and in between the color

chips samples. To compute the probability over the color names z for all L∗a∗b∗-bins (we use

the same discretization as is applied in our algorithm), we assign to each L∗a∗b∗-bin w the

probability of the neighbors according to

p (z |w ) ∝
N∑

i=1

p (z |wi ) gσ (|wi − w|) (1)

where the wi’s are the L∗a∗b∗-values for the color chips and N is total number of chips. p (z |wi )

is given for all the color chips. The distance between the color chips, wi, and w is computed in

L∗a∗b∗-space. For the weighting kernel gσ we use a Gaussian, for which the scale σ has been

optimized on the validation dataset.

III. LEARNING COLOR NAMES

Latent aspect models have received considerable interest in the text analysis community as

a tool to model documents as a mixture of several semantic –but a-priori unknown, and hence

“latent”– topics. Latent Dirichlet allocation (LDA) [22] and probabilistic latent semantic analysis

(PLSA) [16] are perhaps the most well known among such models. Recently such models have

also been applied in computer vision, where images take the role of documents and pixels or

small image patches take the role of words [17], [23], [24], [25], [26], [27].

In our work we use the topics to represent the color names of pixels. Latent aspect models

are of interest to our problem since they naturally allow for multiple topics in the same image,

as is the case in our Google data set where each image contains a number of colors. Pixels are
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Fig. 3. Overview of standard PLSA model for learning color names. See text for explanation.

represented by discretizing their L∗a∗b∗ values into a finite vocabulary by assigning each value

by cubic interpolation to a regular 10×20×20 grid in the L∗a∗b∗-space1. An image (document)

is then represented by a histogram indicating how many pixels are assigned to each bin (word).

A. Generative Models

We start by recalling the standard PLSA model, after which we propose an adapted version

better suited to our problem. We follow the terminology of the text analysis community.

1Because the L∗a∗b∗-space is perceptually uniform we discretize it into equal volume bins. Different quantization levels per

channel are chosen because of the different ranges: the intensity axis ranges from 0 to 100, and the chromatic axes range from

-100 to 100.
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Given a set of documents D = {d1, ..., dN} each described in a vocabulary W = {w1, ..., wM},

the words are taken to be generated by latent topics Z = {z1, ..., zK}. In the PLSA model the

conditional probability of a word w in a document d is given by:

p (w| d) =
∑
z∈Z

p (w| z)p (z| d) . (2)

Both distributions p(z|d) and p(w|z) are discrete multinomial distributions, and can be estimated

with an EM algorithm [16] by maximizing the log-likelihood function

L =
∑

d∈D

∑
w∈W

n (d, w) log p (d, w) (3)

where p (d, w) = p (d) p (w|d), and n (d, w) is the term frequency, containing the word occur-

rences for every document.

The method in Eq. 2 is called a generative model, since it provides a model of how the

observed data has been generated given hidden parameters (the latent topics). The aim is to

find the latent topics which best explain the observed data. In the case of learning color names,

we model the color values in an image as being generated by the color names (topics). For

example, the color name red generates L∗a∗b∗ values according to p(w|t = red). These word-

topic distributions p(w|t) are shared between all images. The amount of the various colors we

see in an image is given by the mixing coefficients p(t|d), and these are image specific. The

aim of the learning process is to find the p(w|t) and p(t|d) which best explain the observations

p(w|d). As a consequence, colors which often co-occur are more likely to be found in the same

topic. E.g., the label red will co-occur with highly saturated reds, but also with some pinkish-red

colors due to specularities on the red object, and dark reds caused by shadows or shading. All

the different appearances of the color name red are captured in p(w|t = red).

In Fig. 3 an overview of applying PLSA to the problem of color naming is provided. The

goal of the system is to find the color name distributions p (w|t). First, the weakly labelled

Google images are represented by their normalized L∗a∗b∗ histograms. These histograms form

the columns of the image specific word distribution p (w|d). Next, the PLSA algorithm aims

to find the topics (color names) which best explain the observed data. This process can be

understood as a matrix decomposition of p (w|d) into the word-topic distributions p (w|t) and

the document specific mixing proportions p (t|d). The columns of p (w|t) contain the information

we are seeking, namely, the distributions of the color names over L∗a∗b∗ values.
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In the remainder of this section we discuss two adaptations to the standard model.

Exploiting image labels: the standard PLSA model cannot exploit the labels of images. More

precisely, the labels have no influence on the maximum likelihood (Eq. 3). The topics are hoped

to converge to the state where they represent the desired color names. As is pointed out in [28]

in the context of discovering object categories using LDA, this is rarely the case. To overcome

this shortcoming we propose an adapted model that does take into account the label information.

We propose to use the image labels to define a prior distribution on the frequency of topics

(color names) in documents p(z|d). This prior will still allow each color to be used in each

image, but the topic corresponding to the label of the image—here obtained with Google—is

a-priori assumed to have a higher frequency than other colors. Below, we use the shorthands

p(w|z) = φz(w) and p(z|d) = θd(z).

The multinomial distribution p(z|d) is supposed to have been generated from a Dirichlet

distribution of parameter αld where ld is the label of the document d. The vector αld has length

K (number of topics), where αld(z) = c ≥ 1 for z = ld, and αld(z) = 1 otherwise. By varying

c we control the influence of the image labels ld on the distributions p(z|d). The exact setting

of c will be learned from the validation data.

For an image d with label ld, the generative process thus reads:

1) Sample θd (distribution over topics) from the Dirichlet prior with parameter αld .

2) For each pixel in the image

a) sample z (topic, color name) from a multinomial with parameter θd

b) sample w (word, pixel bin) from a multinomial with parameter φz

The distributions over words φz associated with the topics, together with the image specific

distributions θd, have to be estimated from the training images. This estimation is done using an

EM (Expectation-Maximisation) algorithm. In the Expectation step we evaluate for each word

(color bin) w and document (image) d

p(z|w, d) ∝ θd(z)φz(w). (4)

During the Maximisation step, we use the result of the Expectation step together with the

normalized word-document counts n(d, w) (frequency of word w in document d) to compute
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Fig. 4. Example of greyscale reconstruction. (left) Initial functions p1 = p (z1|w), p2 = p (z2|w), and markers m1 and

m2. (middle) Greyscale reconstruction ρ1 of p1 from m1. (right) Greyscale reconstruction ρ2 of p2 from m2. Since ρ1 is by

definition a unimodal function, enforcing the difference between p1 and ρ1 to be small reduces the secondary modes of p1.

the maximum likelihood estimates of φz and θd as

φz(w) ∝
∑

d

n(d, w)p(z|w, d), (5)

θd(z) ∝ (αld(z)− 1) +
∑

w

n(d, w)p(z|w, d). (6)

Note that we obtain the EM algorithm for the standard PLSA model when αld(z) = c = 1,

which corresponds to a uniform Dirichlet prior over θd (in the experimental section indicated

with PLSA-std).

Enforcing unimodality: our second adaptation of the PLSA model is based on prior knowledge

of the probabilities p(z|w). Consider the color name red: a particular region of the color space

will have a high probability of red, moving away from this region in the direction of other

color names will decrease the probability of red. Moving even further in this direction can only

further decrease the probability of red. This is caused by the unimodal nature of the p(z|w)

distributions. Next, we propose an adaptation of the PLSA model to enforce unimodality to the

estimated p(z|w) distributions.

It is possible to obtain a unimodal version of a function by means of greyscale reconstruction.

The greyscale reconstruction of function p is obtained by iterating geodesic greyscale dilations

of a marker m under p until stability is reached [29]. Consider the example given in Fig. 4. In the

example, we consider two 1D topics p1 = p (z1|w) and p2 = p (z2|w). By iteratively applying

a geodesic dilation from the marker m1 under the mask function p1 we obtain the greyscale

reconstruction ρ1. The function ρ1 is by definition unimodal, since it only has one maximum
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at the position of the marker m1. Similarly, we obtain a unimodal version of p2 by a greyscale

reconstruction of p2 from marker m2.

Something similar can be done for the color name distributions p(z|w). We can compute a

unimodal version ρmz
z (w) by performing a greyscale reconstruction of p (z|w) from markers mz

(finding a suitable position for the markers will be explained below). To enforce unimodality,

without assuming anything about the shape of the distribution, we add the difference between

the distributions p(z|w) and their unimodal counterparts ρmz
z (z) as a regularization factor to the

log-likelihood function:

L =
∑

d∈D

∑
w∈W

n (d, w) log p (d, w)− γ
∑
z∈Z

∑
w∈W

(p (z|w)− ρmz
z (w))2 , (7)

Adding the regularization factor in Eq. 3 forces the functions p(z|w) to be closer to ρmz
z (z).

Since ρmz
z (z) is unimodal this will suppress the secondary modes in p(z|w), i.e. the modes

which it does not have in common with ρmz
z (z).

In the case of the color name distributions p (z|w) the grey reconstruction is performed on the

3D spatial grid in L∗a∗b∗ space with a 26-connected structuring element. The markers mz for each

topic are computed by finding the local mode starting from the center of mass of the distribution

p (z|w). This was found to be more reliable than using the global mode of the distribution. The

regularization functions ρmz
z , which depend upon p (z|w), are updated at every iteration step of

the conjugate gradient based maximization procedure which is used to compute the maximum

likelihood estimates of φz(w). The computation of the maximum likelihood estimate for θd(z)

is not directly influenced by the regularization factor and is still computed with Eq. 6.

In conclusion, we introduce two improvements of the standard PLSA model. Firstly, we use

the image labels to define a prior distribution on the frequency of topics. Secondly, we add a

regularization factor to the log likelihood function which suppresses the secondary modes in

the p (z|w) distributions. The two parameters, c and γ, which regularize the strength of the two

adaptations will be learned from validation data.

B. Assigning Color Names in Test Images

Once we have estimated the distributions over words p(w|z) representing the topics, we can

use them to compute the probability of color names corresponding to image pixels in test images.
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As the test images are not expected to have a single dominant color, we do not use the label-

based Dirichlet priors that are used when estimating the topics. Instead we consider two ways

to assign color names to pixels.

The first method, PLSA-ind, is based on the individual pixel values and does not use regional

information. The probability of a color name given a pixel is given by

PLSA− ind : p(z|w) ∝ p(z)p(w|z), (8)

where the prior over the color names p(z) is taken to be uniform.

The second method, PLSA-reg, takes into account a region around the pixel. As we expect a

relatively small number of color names within a region, we estimate a region-specific distribution

over the color names. The probability of a color name given the region is calculated as

PLSA− reg : p(z|w, d) ∝ p(w|z)p(z|d), (9)

where the region-based p(z|d) is estimated using the EM algorithm with the word topic distri-

bution p(w|z) fixed. The difference between the two methods is that PLSA-reg estimates the

distribution p(z|d) over the color names in the region to bias the assignments of pixels to color

names. In practice this has the effect that less color names are found in an image, because the

prior p(z|d) will suppress the less occurring color names, and favor the more occurring color

names.

To obtain a probability distribution over the color names for an image region (e.g., the

segmentation masks in the Ebay image set) we use the topic distribution over the region p (z |d)

described above for PLSA-reg. For PLSA-ind the probability over the color names for a region

is computed by a simple summation over all pixels in the region of the probabilities p (z|w),

computed with Eq. 8 using a uniform prior. In the following section, we will compare PLSA-ind

and PLSA-reg for retrieving colored objects and assigning color names to pixels.

IV. EXPERIMENTAL RESULTS

In the first experiment, we analyze to what extent it is possible to learn color names from

weakly labelled data, and we compare the proposed learning approach with alternative learning

approaches. In the second experiment, we compare color names learned from Google Images

with the traditional approach of learning color names from color chip. Finally, we illustrate the

flexibility of our approach with respect to changes in the set of color names.
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Settings: for both tasks, pixel annotation and image retrieval, we use the Ebay data set presented

in Section II. The parameter c which determines the αld vectors, and the regularization factor γ are

chosen as to optimize the pixel annotation results on the validation set of the Ebay dataset. In case

the color names are learned from 200 Google images per color name, we found (c, γ) = (5, 200)

to be optimal. We report result for five learning methods. For PLSA-std color names are learned

with the standard PLSA (corresponding to (c, γ) = (1, 0)), and assignment of color names in new

images without using the region. PLSA-bg refers to the method proposed in [30]. For PLSA-

ind and PLSA-reg color names are learned with our modified PLSA, and pixel assignment is

respectively based on individual pixels and regions.

For all PLSA methods the word-topic distributions p (w|z) are initialized by taking for each

topic the average of the empirical distribution over words of all documents labelled with the

class associated with that topic. Furthermore, we report pixel annotation results obtained with a

linear support vector machine (SVM). The SVM classifier is trained on the L∗a∗b∗-histograms

of the preprocessed Google images after which we apply it to classify individual pixels.

All the quantitative results are the average results obtained over 10 runs of the algorithm. For

each run the set of training data is randomly selected from the total set of 250 Google images

per color name. The maximum training data set we used is 200 images, since performance gain

as a function of number of training examples was not found to further increase by adding more

training examples.

A. Automatic Learning of Color Names from Weakly Labelled Data

In this experiment, we analyze to what extent the proposed approach is capable of learning

color names from weakly labelled data. We test our method on three points. Firstly, do the

proposed adaptation to the PLSA-model improve results. Secondly, what is the performance

behavior as a function of the number of training samples. Thirdly, does the proposed method

outperform other learning approaches.

The color naming methods are compared on the task of pixelwise color name annotation of

the Ebay images. All pixels within the segmentation masks are assigned to their most likely

color name. We report the pixel annotation score, which is the percentage of correctly annotated

pixels.

In a first experiment, we investigate if the proposed modifications of the PLSA model do
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PLSA-bg - - 57.3
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Fig. 5. (a) Pixel annotation score (in percentage) of PLSA-ind for different settings of c and γ learned on a training set of 25

images per color name. The overall column contains the results averaged over the four classes in the Ebay set. Both adaptations

of the PLSA model (i.e. exploiting the image labels by using a label-based prior and using the regularization term) are shown

to improve results significantly. PLSA-bg indicates the method proposed in [30]. (b) Pixel annotation score of PLSA-ind with

optimal c-γ settings (blue line) compared to (c, γ) = (∞, 0) setting (green dashed line) as a function of the number of images

in the training set. The black straight line indicates the theoretical maximum of pixel based color naming on this data set.

actually improve results. In Section III-A we proposed two adaptations to the standard PLSA

model. Firstly, the labels were exploited by setting a prior on the frequency of the topics in

the documents. Secondly, we added a regularization term to the log likelihood function (see

Eq. 7) to enforce unimodality on the p(z|w) distributions. We learned the color names based

on a subset of 25 training images of the Google set per color name. Results are summarized

in Fig 5a. The results obtained by (c, γ) = (∞, 0) are equal to the empirical distribution of the

color names, which means that p(w|z) is obtained by a simple averaging of the histograms of

all the images with the label z. Both adaptations are shown to improve the annotation results,

and the combined use of the adaptations further improves results. The method is also shown to

improve significantly upon the method proposed in [30].

A qualitative comparison of two of the settings is shown in Fig. 6. The image shows pixels of

constant intensity, with varying hue in the angular direction, and varying saturation in the radial

direction. On the right side of the image a bar with varying intensity is included. Color names

are expected to be relatively stable for constant hue, only for low saturation they change to an

achromatic color (i.e. in the center of the image). The only exception to this rule is brown which
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oon=25,c= oon=200,c= n=200,c=2,        γ=200

(a) (b) (c) (d) (e)

n=25,c=5, γ=200,γ=0 ,γ=0

Fig. 6. (a) A challenging synthetic image: the highly saturated RGB values at the border rarely occur in natural images. (b-e)

results obtains with different settings for c, γ and n the number of train images per color name. The figure demonstrates that

our method, images (c) and (e), improves results.

method cars shoes dresses pottery overall

SVM 53 72 74 65 66.2

PLSA-std 54 74 75 66 67.3

PLSA-bg 56 76 79 68 70.0

PLSA-ind 56 77 80 70 70.6

PLSA-reg 74 94 85 82 83.4

CC-I 39 58 62 48 51.8

CC-II 51 66 69 61 61.8

CC-III 53 71 78 65 66.6

TABLE I

PIXEL ANNOTATION SCORE FOR THE FOUR CLASSES IN THE EBAY DATA SET. THE FIFTH COLUMN PROVIDES AVERAGE

RESULTS OVER THE FOUR CLASSES. THE TOP FIVE ROWS GIVE THE RESULTS FOR THE VARIOUS LEARNING APPROACHES

FROM THE GOOGLE DATA. THE BOTTOM THREE ROWS GIVE THE RESULTS FOR CHIP-BASED COLOR NAMING.

is low saturated orange. Hence, we expect the color names to form a pie-like partitioning with

an achromatic color in the center, and the color name brown for low saturated orange. Assigning

color names based on the empirical distribution (Fig. 6(b)) leads to many errors, especially in the

saturated regions. Our method trained from only 25 images per color name (Fig. 6(c)) obtains

results much closer to what is expected.

Next, we look at the performance as a function of the number of training images, see Fig. 5(b).

The difference between the PLSA-ind method with optimal c-γ settings and the empirical

distributions becomes smaller by increasing the number of training images. However, although the

quantitative difference for the maximum of 200 training images is small, a qualitative comparison
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shows that our method obtains significantly better results, see Fig. 6(d) and (e). The reason for

the small quantitative difference is that the vast majority of pixels in real-world images are low

saturated. For these pixels both methods obtain good results. For the more saturated pixels the

empirical distribution fails often, as can be seen in the saturated green region which is named

either red or blue. Such errors will be considered as very disturbing by users. We have further

plotted a line in Fig. 5(b) indicating the theoretical maximum for pixel annotation on this data

set. Purely pixel-based annotation is limited by the fact that the color name distributions have

an overlap, i.e. some pixels can be assigned to multiple color names. The position of the line is

computed by assigning every RGB value of the labelled Ebay test set images to the color name

with which it was most often labelled. The line provides an upper bound for the results which

can be obtained for pixel classification without taking any context into consideration.

Finally, we compare the results of our method, learned from 200 Google images per color

name, to several other learning approaches (top five rows of Table IV-A). As can be seen PLSA-

std obtains unsatisfying results, and our improved version PLSA-ind outperforms SVM and

PLSA-bg. Also results for PLSA-reg are included, where we take the surrounding of the pixel

into account, and use arg maxz p (z |w, d) to classify the pixel, where the region (document) is

the set of all pixels in the segmentation mask. Taking the context into account does result in a

further large improvement to 83.4%.

The PLSA-ind model learned on the Google images is available online at

http://lear.inrialpes.fr/people/vandeweijer/color names.html, in the form

of a 32× 32× 32 lookup table which maps sRGB values to probabilities over color names.

B. Comparison to Chip-Based Color Naming

In this experiment we compare color naming based on real-world images, as done in our

method, to chip-based color naming. The comparison is performed on two tasks: pixel annotation

and image retrieval. The color names are learned from a training set of 200 Google images per

color name. It should be noted that chip-based methods are not explicitly designed to perform

color naming on real-world images.

Pixelwise Color Name Annotation: First we compare the results on the experiment discussed

in Section IV-A. The bottom three rows of Table IV-A show the results obtained by the three

chip-based approaches. The gain obtained by learning color names from real-world images is
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Fig. 7. Three examples of pixelwise color name annotation. The color names are represented by their corresponding color. For

each example the results of the chip-based methods CC-I, CC-III, and the real-world color names learned with PLSA-ind are

given from left to right. Note that the color names learned from Google Image search, PLSA-ind, obtain also satisfying results

for the achromatic regions, where the chip-based methods often fail.

significant: where the best chip-based method classifies only 66.6% of the pixels correctly, our

method obtains a score of 70.6%. Examples of color name annotations based on PLSA-ind and

two of chip-based methods are given in Fig. 7.

Color Object Retrieval: Another application of color names is retrieval of colored objects. We

query the four categories of the Ebay set (see Section 2) for the 11 color names. For example, the

car category is queried for ”red cars”. The images are retrieved based on the probability of the

query color given an images, where only pixels within the segmentation masks are considered.

To assess the performance we compute the equal error rate (EER) for each query. The average

EER’s over the eleven color names for the various color naming methods are reported in Table

IV-B. Again we find that learning of color names from real-world images outperforms the chip-

based methods consistently for all classes.

When comparing PLSA-reg and PLSA-ind in the pixel annotation and retrieval experiments

we see a different picture (consistently over all four categories): for pixel annotation we observe
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method cars shoes dresses pottery overall

PLSA-ind 92 98 98 94 95.4

PLSA-reg 93 99 99 94 96.4

CC-I 86 92 93 91 90.4

CC-II 91 93 95 93 93.0

CC-III 91 97 97 92 94.0

TABLE II

AVERAGE EQUAL ERROR RATES FOR RETRIEVAL ON THE FOUR CLASSES IN THE EBAY DATA SET. THE FIFTH COLUMN

PROVIDES AVERAGE RESULTS OVER THE FOUR CLASSES.

a significant improvement with PLSA-reg, while for retrieval for performance of PLSA-reg is

only slightly better. The difference between PLSA-reg and PLSA-ind is that the former couples

the topic assignment of pixels within an image. This is important for pixel annotation. However,

in the retrieval experiment the difference between the methods is much smaller. This is due to the

fact that the retrieval score for PLSA-ind also accumulates the color name probabilities over the

region, it is actually equal to PLSA-reg stopped after one iteration. When using PLSA-reg, the

accumulation of color name probabilities is repeated to iteratively estimate the region-specific

prior p(z|d), which is then used as the score. Our results correspond to the results reported by

Quelhas et al. [25]. In the context of scene classification they also observed modest improvements

in retrieval results when taking the region-context into account with p(z|d).

Discussion on Limitations of Chip-Based Color Naming: Our experimental results show that

color names learned from real-world images outperform color names based on color chips. There

are two main reasons for real-world color names to outperform chip-based methods.

Firstly, for both the CC-I and CC-II data set the color space is insufficiently sampled. This

is the case for saturated colors, but also other regions of the color space are sparsely sampled,

e.g., the assignment of some of the darker yellows on the sport car in Fig. 7 (second column)

to orange is due to this fact. The CC-III set has overcome this problem by realizing a much

denser and completer sampling of the sRGB space. From the results in Table IV-A and IV-B

it can be seen that CC-III does significantly improve over both CC-I and CC-II. An alternative

approach to counter the lack of samples is by using prior knowledge on the shape of the color

name distributions in the sRGB space, as is done in the work of Benavente[8].
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1 10 20 30 40

Fig. 8. top: color name categories on the Munsell color array obtained by Benavente [31]. The colored lines indicate the

boundaries of the eleven color categories. below: color names obtained with PLSA-ind learned on the Google data set. Note the

differences in chromatic and achromatic assignments.

The second reason for failure of chip-based methods is more fundamental to chip-based

approaches. By analyzing in more detail the errors made by the best chip based method CC-III,

and comparing them to our approach PLSA-ind, we found that the largest part (almost 70 %) of

the error increase is caused by achromatic colors which are named with chromatic color names.

This can be explained by the difference in training data between the two methods. Learning color

names from data obtained in a controlled laboratory setting, does not resemble color naming

in the real-world. In the real-world colors are not presented on a color neutral background

under a known white light source. Instead they appear in a world with interreflections, varying

illuminants, colored shadows, compression artifacts, aberrations in acquisition, etc. This causes

the vast majority of the errors to be made on the achromatic colors since after a small variations

these colors would be considered chromatic in a laboratory setting. The black region under the

vase is considered partially green by CC-III, as is the road next to the car. By learning the

color names from real-world images a robustness to deviations which occur from the real object
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color to the final sRGB value is automatically achieved. The learned color names show good

robustness to physical variations, due to shadow and shading, as can be seen from the uniform

color name assignment on both the vase and the car.

To further illustrate this, we have applied our color naming algorithm to the Munsell color

array used in the World Color Survey by Berlin and Kay [3]. The results are shown in Fig. 8.

In the top the results of the chip-based method of Benavente [31], and in the bottom the results

obtained by our approach PLSA-ind. The color names are similarly centered, and only on the

borders there are some disagreements. The main difference which we want to point out is that all

chromatic patches are named by chromatic color names in the Benavente experiment, whereas

in our case multiple patches are named by the achromatic color names, black and white. In the

case of naming individual patches in a controlled environment, the Benavente set is expected

to obtain superior results, whereas for applications on real-world images, color names derived

from real-word images are expected to obtain better results.

C. Flexibility Color Name Data Set

A further drawback of chip-based color naming is its inflexibility with respect to changes of

the color name set. For example, Mojsilovic, in her study on color naming [7], asks a number

of human test subjects to name the colors in a set of images. In addition to the eleven basic

color terms beige, violet and olive were also mentioned. For a method based on an image search

engine changing the set of color names is an undemanding task, since the collection of data is

only several minutes of work.

Next, we give two examples of varied color name sets. In Fig. 9 we show prototypes of the

eleven basic color terms learned from the Google images. The prototype wz of a color name is that

color which has the highest probability of occurring given the color name wz = argmaxw p (w|z).

Next, we add a set of eleven extra color names, for which we retrieve 100 images from Google

image each. Again the images contain many false positives. Then a single extra color name is

added to the set of eleven basic color terms, and the color distributions p (w|z) are re-computed,

after which the prototype of the newly added color name is derived. This process is repeated for

the eleven new color names. The results are depicted in the second row of Fig.9 and correspond

to the colors we expect to find.

As a second example of flexibility we look into inter-linguistic differences in color naming.
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beige gold olive crimson indigo violet cyan azure

goluboi siniy

white yellowredpurplepinkorangegreengreybrownblueblack

lavender magenta turquoise

Fig. 9. First row: prototypes of the 11 basic color terms learned from Google images based on PLSA-ind. Second row:

prototypes of a varied set of color names learned from Google images. Third row: prototypes of the two Russian blues learned

from Google images.

The Russian language is one of the languages which has 12 basic color terms. The color term

blue is split up into two color terms: goluboi (goluboĭ), and siniy (siniĭ). We ran the system on

30 images for both blues, returned by Google image. Results are given in Fig.9, and correspond

with the fact that goluboi is a light blue and siniy a dark blue. This example shows internet as

a potential source of data for the examination of linguistic differences in color naming.

V. CONCLUSIONS

In this paper, we have shown that color names learned from real-world images outperform

chip-based color names on real-world applications. Furthermore, we have shown that real-world

color names can be learned from weakly labelled images returned by Google Image search, even

though the retrieved images contain many false positives. Learning color names from image

search engines has the additional advantage that the method can easily vary the set of desired

color names, something which is very costly in a chip-based setting. Finally, we show that our

adapted version of the PLSA model outperforms the standard PLSA model significantly, and

that the use of regional information is beneficial for color name annotation.

In a wider context this article can be seen as a case study for the automatic learning of visual

attributes [18][32]. In recent years the computer vision community has achieved significant

progress in the field of object recognition. Now that it is possible to detect objects such as

people, cars, and vases in images, the question arises if we are able to retrieve small people,

striped vases, and red cars. The scope of these so called visual attributes is vast: they range from

size descriptions, such as large, elongated, and contorted, to texture descriptions such as striped,
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regular, and smooth, to color descriptions, such as red, cyan and pastel. The challenges which

arose in the development of our automatic color naming system can be seen as exemplary for

the problems which arise for visual attribute learning in general.
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