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Abstract

Spatial pyramids have been successfully applied to incorporating spatial
information into bag-of-words based image representation. However, a major
drawback is that it leads to high dimensional image representations. In
this paper, we present a novel framework for obtaining compact pyramid
representation. Firstly, we investigate the usage of the divisive information
theoretic feature clustering (DITC) algorithm in creating a compact pyramid
representation. In many cases this method allows to reduce the size of a
high dimensional pyramid representation up to an order of magnitude with
little or no loss in accuracy. Furthermore, comparison to clustering based on
agglomerative information bottleneck (AIB) shows that our method obtains
superior results at significantly lower computational costs. Moreover, we
investigate the optimal combination of multiple features in the context of
our compact pyramid representation. Finally, experiments show that the
method can obtain state-of-the-art results on several challenging datasets.

Keywords: Object and Scene Recognition, Bag of Features, Pyramid
Representation, AIB, DITC

1. Introduction

Bag-of-words based image representation is one of the most successful
approaches for object and scene recognition [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The
first stage in the method involves selecting key points or regions followed by
a suitable representation of these key points using robust local descriptors,
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like SIFT [11]. The descriptors are then vector quantized into a visual vocab-
ulary, after which an image is represented as a histogram over visual words.
The final representation lacks any spatial information since the location of
the local features is ignored. This is generally considered as the foremost
shortcoming of the standard bag-of-words representation.

Including spatial information into bag-of-words has therefore received
considerable attention. The spatial pyramid scheme proposed by [12] is a
simple and computationally efficient extension of an order-less bag-of-words
image representation, as it captures the spatial information in such a way that
traditional histogram-based image representations do not. This technique
works by representing an image using multi-resolution histograms, which
are obtained by repeatedly sub-dividing an image into increasingly finer
sub-regions. The final representation is a concatenation of the histograms
of all the regions. Many applications, such as classification and detection,
[13, 14, 15, 16, 17] benefit form the spatial pyramid representation.

However, spatial pyramids have a major drawback due to the high di-
mensionality of the generated histograms while going towards the finest level
of representation. This drawback is especially apparent for challenging data
sets such as Pascal VOC where it is found that large size visual vocabularies
generally improve the overall results. The combination of large vocabular-
ies with spatial pyramids can easily lead to image representations as big as
4194K words (e.g. [18]). If these large pyramid representation could be
optimized for discrimination between different categories, a more compact
representation would be sufficient. This will lead to compact yet efficient
pyramid representations that have the advantages of the original pyramid
representation [12] while avoiding their computational burden. This is pre-
cisely what we aim at, keeping in mind the constraint of reducing the size of
the spatial pyramids while maintaining or even improving the performance.

Many recent works addressed the problem of compact vocabulary con-
struction [19, 20, 21]. One popular strategy starts with a large vocabulary
(e.g. generated by hierarchical k-means) and subsequently clusters these
words together while intending to maintain the discriminative power of the
original vocabulary [22, 23]. Slonim and Tishby [22] proposed a compres-
sion technique, denoted as Agglomerative Information Bottleneck (AIB), that
constructs small and informative dictionaries by compressing larger vocabu-
laries following the information bottleneck principle. Interestingly, authors
in [20] proposed a fast implementation of the AIB algorithm and showed
good performance for the construction of visual vocabularies. Following these
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trends, we will apply the theory and algorithms developed in these works, for
the construction of compact discriminative spatial pyramids. These meth-
ods are especially appropriate due to the high dimensionality of the pyramid
representation.

An additional advantage of compact pyramid representations is that it
allows us to combine more features at the same memory usage for image
representation. Combining multiple features especially color and shape has
recently shown to provide excellent results [3, 4, 10, 24, 25, 26] on stan-
dard image classification data sets. The two main most common approaches
to combine multiple features are early and late fusion. Early fusion based
schemes combine features before the vocabulary construction phase. In case
of late fusion separate visual vocabularies are constructed for each feature.
Subsequently, the bag-of-word representations (histograms) over the different
vocabularies are concatenated. Both fusion approaches have been investi-
gated within the context of standard bag-of-words. However, in the context
of spatial pyramids, it is still uncertain which of the two fusion approaches
is more beneficial. Therefore, in this paper we investigate which fusion ap-
proach is more appropriate within the spatial pyramids framework.

In summary, the objective of this paper is twofold. Firstly, we show
that the AIB approach used to compress the vocabulary size significantly
degrades accuracy when applied at spatial pyramids. To overcome this prob-
lem, we propose to use the Divisive Information Theoretic Clustering (DITC)
technique [23] that preserves the overall accuracy while reducing the dimen-
sionality of the pyramid histogram significantly. Our results clearly suggest
that pyramid compression based on the DITC approach provides superior
results. Furthermore, DITC is computationally superior to AIB. Secondly,
we evaluate the two existing fusion approaches for combining multiple fea-
tures at the spatial pyramids level. We conclude that late fusion significantly
outperforms early fusion based approaches in spatial pyramids. Finally, we
combine both proposed contributions and obtain promising results on chal-
lenging data sets.

This paper is organized as follows: next section describes the datasets
used in the experiments. Section 3 discusses how AIB and DITC can be
used for building compact pyramids. Subsequently, section 4 proposes both
an early and a late fusion strategies for combining multiple features in the
context of spatial pyramids. Section 5 compares our results with current
state-of-the-art performance results. Finally, section 6 concludes this paper
and describes the most important lines of future research.
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2. Datasets and Implementation Details

In this section we provide details about the datasets which will be used
throughout the paper, followed by the experimental setup employed to val-
idate the two main contributions of our approach, namely the use of DITC
for vocabulary compression and the use of early and late fusion in spatial
pyramids. Fig. 1 shows some example images from the five data sets.

2.1. Data sets

For scene classification, the experiments are performed on Sports Events
data set and 15 category Scenes data set. The Sports Events data set[27]
contains 8 sports event categories collected from the Internet namely: bocce,
croquet, polo, rowing, snowboarding, badminton, sailing, and rock climbing.
The number of images in each category varies from 137 (bocce) to 250 (row-
ing). For each event class, 70 randomly selected images are used for training
and 60 are chosen for testing.

The 15 class Scenes recognition data set [12] is composed of fifteen scene
categories. Each category has 200 to 400 images. The major sources of the
pictures in the data set include the COREL collection, personal photographs,
and Google image search.

For object classification, the experiments are performed on Butterflies
[28] and Pascal VOC 2007 and 2009 data sets [15]. The Butterflies data
set consists of 619 images of seven classes of butterflies, namely: Admi-
ral,Swallowtail, Machaon, Monarch 1, Monarch 2, Peacock and Zebra. Fi-
nally, the experiments are also performed on the Pascal Visual Object Classes
Challenge (VOC) data sets: the Pascal VOC 2007 data set consists of 9963
images of 20 different classes with 5011 training images and 4952 test images,
while the Pascal VOC 2009 data set contains 13704 images of 20 different
object categories with 7054 training images and 6650 test images.

2.2. Implementation Details

We shortly discuss the implementation details we use for the bag-of-words
based image classification. We apply a standard multiple-scale grid detector
along with interest point detectors (Harris-Laplace and blob detector). In the
feature extraction step, we use SIFT descriptor [11] for shape features, Color
Names [29] descriptor for color features and the SelfSimilarity descriptor [30]
to measure similarity based on matching the internal self-similarity. We use
a standard K-means for constructing visual vocabularies. Finally we use a
non-linear SVM with intersection kernel for classification as in [31].
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Figure 1: Example images from the data sets. From top to down: Butterflies, Sports
Events, 15 class Scenes and PASCAL VOC data sets.

2.3. Image Representation using Spatial Pyramids

Spatial pyramid scheme proposed by [12] have recently proven very suc-
cessful results. These are formed by representing an image using weighted
multi-resolution histograms, which are obtained by repeatedly sub-dividing
an image into increasingly finer sub-regions by doubling the number of di-
visions in each axis direction and computing histograms of features over the
resulting sub-regions. Resemblances found at finer resolutions are closer to
each other in image space and are therefore more heavily weighted. To ac-
complish this, each level l is weighted to l/2L−l, where L is the total number
of pyramid levels considered. When histograms for all sub-regions at all lev-
els have been created, these histograms are concatenated to form the final
image representation. For example, a level 2 spatial pyramid is constructed
by concatenating a total of 1 + 4 + 16 = 21 histograms.

Although a notable performance gain is achieved by using the spatial
pyramid method, the resulting histogram is often a magnitude higher in
dimensionality over its standard bag-of-words based counterpart 1.

1The winners of Pascal VOC 2007 [32] showed that dividing an image horizontally 3×1

5



3. Compact Pyramid Representation

As discussed in the introduction, one of the main drawbacks of the spa-
tial pyramid representation is its memory usage. We will discuss two existing
approaches, namely AIB and DITC, which were shown to be successful for
compact text document representation [22, 23]. Only AIB has been applied
for compact image representation [20], and none of them has been studied
in the context of spatial pyramids. In this section we will show experimen-
tal results on the Sports Events [27] and 15 class Scenes [12] data sets to
demonstrate that our proposed compact pyramid representation maintain
the performance of their larger counterparts.

In practice the final size of the pyramid is dependent on the application,
where users have to balance compactness versus classification accuracy. De-
pending on the task a smaller representation could be preferred over larger
at the cost of performance (e.g. real-time object detection based on ESS
[13, 33], or large scale image retrieval [34]). In the case that users do not
want a drop in accuracy but do want to compress their representation, cross
validation could be used to select the optimal cluster size. Throughout this
paper we consider that the final representation size is an input parameter to
the compression algorithm.

3.1. Highly Informative Compact Spatial Pyramids

Let C be a discrete random variable that takes on values from the set
of classes C={c1,. . . ,cl} and let W be the random variable that ranges over
the set of words W={w1,. . . ,wm}. It is important to note that we consider
the number of words for the spatial pyramid representation to be equal to
the number of words used for the visual vocabulary times the number of
subregions in the spatial pyramid. For a level two pyramid constructed from
a 1000 word vocabulary, this will lead to a final representation of (1 + 4 +
16)×1000 = 21000 words. We will consider clustering these 21000 words into
a smaller set where each cluster represents words with similar discriminative
power.

The joint distribution p(C,W ) is estimated from the training set by count-
ing the number of occurrences of each visual word in each category. The

yields better performance than a conventional 4× 4 structure. The resulting histogram is
therefore reduced from vocabulary size ×21 to vocabulary size ×8
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information about C captured by W can be measured by the mutual infor-
mation,

I(C,W ) =
∑
i

∑
t

p(ci, wt)log
p(ci, wt)

p(ci)p(wt)
, (1)

which measures the amount of information that one random variable contains
about the other. Ideally, in forming word clusters we aim at preserving the
mutual information; however usually clustering lowers mutual information.
Thus, we aim at finding word clusters that minimize the decrease in the
mutual information:

I(C,W )− I(C,WC). (2)

where WC are the word clusters {W1, . . . , Wk}. Note that this is equal to
maximizing the mutual information I(C,WC). Eq. (2) can be rewritten as∑

i

∑
t

πtp(ci|wt)log
p(ci|wt)

p(ci)
−
∑
i

∑
j

∑
wt∈Wj

πtp(ci|wt)log
p(ci|Wj)

p(ci)
(3)

where πt is the prior of word, and is given by πt = p(wt).
In the seminal work [23], Dhillon et al. prove that this is equal to

I(C,W )− I(C,WC) =
∑
j

∑
wt∈Wj

πtKL((p(C|wt)), (p(C|Wj))) (4)

where the Kullback-Leibler(KL) divergence is defined by

KL(p1, p2) =
∑
x∈X

p1(x)log
p1(x)

p2(x)
. (5)

Eq. (4) is a global objective function that can be applied to measure the
quality of word clustering. This object function states that we should group
words wt into clusters Wj, in such a way that the summed KL-divergence be-
tween the word distributions p(C|wt) and their cluster distributions p(C|Wj)
is as low as possible. Since the KL-divergence is a measure of similarity be-
tween distributions, we are clustering words together which contain similar
information with respect to the classes as described in p(C|wt). Next we
discuss two existing algorithms which aim to find the optimal clusters Wj as
defined by Eq. (4).

AIB Compression [22]: AIB iteratively compresses the dictionary W
by merging the visual words wi and wj that cause the smallest decrease
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in the mutual information given by Eq. (1). The decrease in the mutual
information is monotonically reduced after each merge. Merging is iterated
until one obtains the desired number of words. AIB is greedy in nature
as it optimizes the merging of just two word clusters at every step (a local
optimization) and thus the resulting algorithm does not directly optimize the
global criteria defined in Eq. (4).

DITC Compression [23]: Other than AIB which iteratively reduces
the number of words until then desired number of clusters is reached, DITC
immediately clusters the words into the desired number of clusters (during
initialization) after which it iteratively improves the quality of these clusters.
Each iteration monotonically reduces the decline in mutual information as
given by Eq. (4), therefore the algorithm is guaranteed to terminate at a
local minimum in a finite number of iterations.

To optimize the global objective function of Eq. (4), DITC iteratively
performs the following steps:

1. Compute the cluster distribution p(C|Wj) according to:

p(C|Wj) =
∑

wt∈Wj

πt

π(Wj)
p(C|wt), (6)

where, π(Wj) =
∑

wt∈Wj
πt.

2. Re-assign the words wt to the clusters Wj based on their closeness in
KL-divergence:

j∗(wt) = argminjKL(p(C|wt), p(C|Wj)) (7)

where, j∗(wt) is new cluster index of the word wt.

The initialization of the k clusters is obtained by first clustering the words
into l clusters, where l is the number of classes. Every word wt is then
assigned to cluster Wj such that p(cj|wt) = maxi p(ci|wt). This strategy
guarantees that every word wt is part of one of the clusters Wj. Subsequently
we split each cluster arbitrarily into ⌊k/l⌋ clusters. In the case that l > k we
further merge the l clusters to obtain k final clusters. The above algorithm
is only an approximation of the minimum but it was found to yield accurate
results [23].

The basic implementation of the DITC algorithm can result in a large
number of empty clusters, especially for large vocabularies. To overcome
this problem we propose a modified version of the basic DITC algorithm. At
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each iteration our algorithm retrieves the index e of the empty word clusters
ce, where e ⊂ j. Subsequently we assign at least one word wt to each ce.
This is done using Eq. (7) by first assigning each word wt to its closest word
cluster cj. Based on this assignment, we select that wt with the maximum
KL value returned by Eq. (7), i.e. that wt found at the furthest distance
from its currently assigned word cluster cj. Then we reassign this wt to ce
and remove it from cj.

Comparing the computational cost of the two algorithms shows one of
the advantages of DITC: AIB results in high computational cost of O(m3c)
operations as it runs an agglomerative algorithm until k clusters are obtained.
Herem is the total number of words and c is the number of classes in the data
set. The fast implementation of the AIB costs O(m2c). On the other hand,
the DITC algorithm requires Eq. (7) to be computed for every pair, P (C|wt)
and p(C|Wj) at a cost of O(mkcτ), where generally k << m. The number
of required iterations τ to obtain convergence is typically around 15. We
found DITC in practice to be computationally superior to AIB, obtaining
a speedup between one or two orders of magnitude. On a typical run for
obtaining 100 clusters from 20000 words on a data set with 15 classes, AIB
(using [20]) took 14460 seconds while DITC converged in 234 seconds using
a standard PC.

3.2. Experimental Results

In this section, we compare the two algorithms discussed above on the
task of constructing compact spatial pyramids. To the best of our knowl-
edge we are the first to apply DITC to visual word vocabulary construction.
Lazebnik and Raginsky [21] propose a method for discriminative vocabu-
lary construction which uses ideas of the theory of DITC [23]. However, the
word clusters where restricted to lie in Voronoi cells, whereas in the original
algorithm words are clustered without restrictions on their location in fea-
ture space, and thus allowing for multi model distributions. We show that
the pyramid compression based on DITC has a lower loss of discriminative
power, and is computationally more efficient compared to compression based
on AIB [20].

Table 1 shows numerical results obtained by applying AIB on both the
Sports Events and 15 Scenes data sets for different sizes. We started by
using vocabulary of size 1000 for constructing a three level pyramid of 21000
dimensionality, after which we compress this vocabulary to a dimensionality
of 5000, 1000 and 500. We can notice that by applying AIB compression
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Method Level Size Sports Events 15 class Scenes

Pyramid 2 21000 83.8 84.1

PyramidAIB 2 5000 81.5 81.7

PyramidAIB 2 1000 79.8 80.4

PyramidAIB 2 500 78.8 78.3

Table 1: Classification Score (percentage) on both the Sports Events and 15 class Scenes
Data sets. The results demonstrates that by applying the AIB compression [20] a consid-
erable loss in performance occurred for compact vocabularies.

Method Level Size Sports Events 15 class Scenes

Pyramid 2 21000 83.8 84.1

PyramidDITC 2 5000 84.2 85.4

PyramidDITC 2 1000 85.6 84.4

PyramidDITC 2 500 84.6 84.2

Table 2: Classification Score (percentage) on both the Sports Events and 15 class Scenes
data sets. The results demonstrates that DITC successfully compresses the vocabularies
while preserving their discriminative power.

on the pyramids the performance drops significantly, especially when we are
going towards lower dimensionality. We attribute this to the fact that the
information bottleneck technique is agglomerative in nature and result in a
sub-optimal word clusters because it greedily merges just two word clusters
at every step and it does not directly optimize the global objective function
of Eq. (4).

Table 2 shows the results obtained using DITC. The main observation
is that the DITC approach succeeds in conserving the discriminative power
while reducing dimensionality of the image representation. Furthermore,
for both sets reducing the dimensionality leads to an improvement of the
classification score, and even at the smallest dimensionality of 500 similar
results are obtained as with the total 21000 word vocabulary.

Classification accuracies of both compression approaches are shown Fig-
ure 2 which supports the two main conclusions: first, using DITC compres-
sion mechanism leads to a compact pyramid representation that reduces the
dimensionality of the original pyramid yet preserves or even improves its per-
formance. Second, compact pyramid representation based on DITC achieve
better results than those based on AIB approaches at all the vocabulary sizes.
Moreover the performance gain is more significant for smaller vocabularies.
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Figure 2: Sports Events data set (left) and 15 class Scenes data set (right) classification
accuracy for compressing the whole pyramid representation leading to a more compact
pyramid representation using the two compression approaches considered namely: DITC
vs. AIB.
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Figure 3: Sports Events data set (left) and 15 class Scenes data set (right) classification
accuracy for compressing the whole pyramid to a compact representation using approaches
namely: DITC, PLS and PCA. Note that DITC based compression also provides superior
performance for very compact pyramid representations.

11



plane bike bird boat bottle bus car cat chair cow table

Pyramid 72.1 54.9 41.9 62.6 23.9 46.3 71.4 51.4 48.8 37.4 46.8

AIB 53.2 28.3 24.6 43.2 11.4 27.5 54.2 29.9 35.6 11.1 13.9

DITC 61.4 50.6 36.5 49.1 20.3 43.9 68.2 44.1 47.1 29.7 38.8

dog horse mbike person plant sheep sofa train tv mean

Pyramid 38.9 72.1 58.1 80.3 25.4 32.4 41 70.5 43.6 50.9

AIB 21.1 41.3 32.3 73.3 10.4 13.9 27.9 40.2 27.8 31.1

DITC 33.4 69.5 53.6 78.9 23.6 22.9 37.6 64.3 42.3 45.8

Table 3: Average-Precision Results for all classes of the PASCAL VOC 2007 database.
Comparison on the average accuracy of the original four level pyramid representation of
size 25500 compressed to size 200. The second row shows the compression results using
the AIB [20] and the third row shows the results using DITC [23].

We also perform experiments comparing the performance of DITC com-
pression with Principle Component Analysis (PCA) and Partial Least Square
(PLS) techniques. Figure 3 shows the comparison on two data sets. We only
show the performance for very compact pyramid representations, since PLS
is known to obtain better results for compact representation and quickly de-
teriorates for larger representation. Moreover, the number of dimensions of
PCA is bounded by the number of observations. DITC based pyramid com-
pression consistently outperforms the other two compression technqiues. It
is worthy to mention that DITC also provides better performance compared
to both PCA and PLS with a very small compact pyramid representations
(50 bins).

The performance difference between DITC and AIB becomes especially
apparent for high compression. An initial pyramid representation of the
PASCAL dataset of 25500 words is compressed to 200 clusters. Table 3
shows a 14% higher Mean Average-Precision for having compact pyramid
representations based on DITC compared to those obtained using AIB on
object recognition.

3.3. Compact Pyramid Designs

As demonstrated in the last section, we can significantly reduce the di-
mensionality while preserving or even improving the performance of the orig-
inal pyramid representation that we started with. We next evaluate and
compare two different design strategies for building our final compact pyra-
mid representations. The main aim is to find an optimal design for obtaining
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Method Level Size Sports Events 15 class Scenes

Pyramid 2 21000 83.8 84.1

PyramidAIB 2 1000 79.8 80.4

CompPyr 2 1000 81.9 82.1

PyrComp 2 1000 85.6 84.4

Table 4: Classification score on the Sports Events and 15 class Scenes datasets using the
DITC approach comparing the two proposed designs: CompPyr (compute a vocabulary,
compress it, and then build a compact pyramid representation using this compressed
compact vocabulary) and PyrComp (i.e. construct a pyramid representation for an image,
then compress the words of the whole pyramid afterwards).

compact yet efficient pyramids based on the DITC compression algorithm.
The two proposed designs are the following:

1. Compute a vocabulary, compress it using DITC and subsequently build
a compact pyramid representation based on the compressed compact
vocabulary (the traditionally used schema, denoted as CompPyr here-
after).

2. Construct the pyramid representation for an image and subsequently
compress the vocabulary of the whole pyramid directly using DITC
(strategy presented in Section 3.1 and denoted as PyrComp hereafter).

Table 4 shows the results obtained using both of the considered proposed
designs on 15 class Scenes and the Sports Events datasets. To compare the
classification scores obtained from the two designs, we consider the same
dimensionality of size 1000. For the 15 class Scenes data set, using CompPyr
we got a score of 82.1%, while PyrComp gives us a performance of 84.4%.
For the Sports Events data set, we observe a similar gain in the obtained
results.

These quantitative results suggest how optimal compact pyramid repre-
sentations can be built: although both designs preserve the accuracy of the
original pyramid representation, the best results are obtained following the
PyrComp strategy, since it does not only preserve the original pyramid perfor-
mance, but slightly improves performance. Additionally Figure 4 illustrates
another interesting conclusion: the gain in performance using PyrComp is
obtained throughout all sizes, and this gain is more significant at lower sizes.

The CompPyr compresses the vocabulary while ignoring the spatial pyra-
mid image representation to which it will later be applied. This strat-
egy is used by most existing methods for compact vocabulary construction
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Figure 4: Classification comparison between PyrComp and CompPyr strategies for (left)
15 class Scenes and (right) Sports Events datasets.

[21, 35, 36]. Our experiment show that compressing the vocabulary within
the spatial pyramid, significantly improves results. Compression with Pyr-
Comp has the same freedom as CompPyr to merge words within a sub-
window. Additionally, it can also merge words of different sub-windows,
something which is impossible within the CompPyr strategy.

4. Combining Multiple Features in Spatial Pyramids

In the previous section, we have provided an efficient method for the
construction of compact pyramid representations. The gained compactness
allows us to combine more features at the same memory usage of the image
representation. Here we analyze how to optimally combine multiple features
in a pyramid representation.

We will look at the particular case of combining color and shape, which
was shown to provide excellent results for object and scene recognition [14].
In particular we investigate two approaches to combine multiple features,
namely the early and late fusion schemes. In the next section we provide
results from combining visual cues other than color and shape.

4.1. Early and Late Fusion Spatial Pyramid Matching

In early fusion the local features of color and shape are concatenated into
a single feature. Subsequently, the combined color and shape features are
quantized into a joint shape-color vocabulary. In general, early fusion re-
sults in vocabularies with high discriminative power, since the visual-words
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describe both color and shape jointly, allowing for the description of blue
corners, red blobs, etc. A significant shortcoming of early fusion approach
is that it deteriorates for categories which vary significantly over one of the
visual cues. For example, man made categories such as cars and chairs which
vary considerably in color. In such cases, the visual-words will be contami-
nated by the ”irrelevant” color information. The relevant shape words will
be spread over multiple visual-words, thereby complicating the task of the
learning algorithm significantly. On the other hand, early fusion is suitable
for categories which are constant over both color and shape cues like plants,
lions, road-side signs etc.

The second approach, called late fusion, fuses the two cues, color and
shape, by processing the two features independent of each other. Separate
visual vocabularies are constructed for color and shape independently, and
the image is represented as a distribution over shape-words and color-words.
A significant drawback of late fusion is that we can no longer be certain that
both visual cues come from the same location in an image. Late fusion is
expected to provide better results over early fusion on categories where one
cue is constant and the other varies considerably. Example of such categories
are man made objects such as car, buses and chairs etc.

Typically within the bag-of-words framework a number of local features
f c
mn, m=1...Mn are extracted from training images In. Where n = 1, 2, ..., N ,
and c ∈ {1, 2} is an index indicating the different visual features. In case of
early fusion, two visual features are concatenated according to :

f 1&2
mn =

(
β f 1

mn, (1− β)f 2
mn

)
(8)

Vector quantization of f 1, f 2, f 1&2 yields the corresponding vocabularies V1,
V2, V1&2. We define hV (I) to be the histogram representation of image I in
vocabulary V . Early fusion representation of the image is given by hV1&2(I)
and the late fusion is obtained by concatenating the separate histograms:

h(V1,V2)(I) =
[
β hV1(I), (1− β) hV2(I)

]
(9)

Note that we have introduced a weight parameter β for both early and late
fusion which allows us to leverage the relative weight of the various cues. In
our setting this parameter is learned through cross-validation on the training
data. Both fusion schemes can easily be extended to accommodate several
visual cues.

Before applying the two schemes on spatial pyramids, we will shortly
discuss the relation of existing approaches for the combination of multiple
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features to early and late fusion. Bosch et al. [3] computes the SIFT de-
scriptor on the H,S,V channels and then concatenates the final descriptor
into a single representation. Van de Weijer and Schmid [26] compare pho-
tometrically invariant representations in combination with SIFT for object
recognition. Recently, Van de Sande et al. [10] performed a study on the
photometric properties of many color descriptors, and did an extensive per-
formance evaluation. In their evaluation OpponentSIFT was shown to be the
best choice to combine color and shape features. Since in all these works color
and shape are combined before vocabulary construction, they are considered
early fusion methods.

Regarding late fusion, several methods explore the combination of multi-
ple features at the classification stage. These approaches, of which multiple
kernel learning MKL is the most well-known, [37, 38, 39, 40, 41] combine
kernel combinations of different visual features. A weighted linear combi-
nation of kernels is employed, where each feature is represented by multiple
kernels. Beside the multiple kernel learning approach, the two conventional
approaches that combine different kernels at the classification stage in a
specified deterministic way are averaging and multiplying the different kernel
responses. Surprisingly, the product of different kernel responses is shown to
provide similar or even better results than MKL in a recent study performed
by Gehler and Nowozin [24]. These approaches are considered as late fusion
since they perform vocabulary construction separately for the different fea-
tures. Recently, an alternative method for combining color and shape, called
color attention, was proposed by Khan et al. [42]. However, it is unclear
how this method can be extended to incorporate spatial pyramids, since the
normalization performed in the sub-regions of the pyramid counters the color
attention weighting.

For the standard bag-of-features image representation there is no con-
sensus whether early or late fusion is better. Here we investigate the two
approaches in the context of spatial pyramids. The common methodology
employed in current object recognition frameworks is to build spatial pyra-
mids of early fusion based schemes (such as Opp-SIFT, C-SIFT, HSV-SIFT
etc.) [3, 10, 26]. We refer to these spatial pyramids that are based on early
fusion scheme as early fusion spatial pyramids and the spatial pyramids that
are based on late fusion as a late fusion spatial pyramids. Figure 5 highlights
the two spatial pyramid matching approaches.
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Figure 5: Early and Late fusion pyramid schemes. In the early fusion pyramid scheme
a combined color-shape vocabulary is constructed as a result of which a single pyramid
representation is obtained. To construct a late fusion pyramid, a separate vocabulary is
constructed for color and shape and spatial pyramids are obtained for each cue. We show
that late fusion is the recommended approach for combining multiple features.

4.2. Experimental Results of Early and Late Fusion based Spatial Pyramids

To evaluate both early and late fusion spatial pyramids, we perform an
experiment for both object and scene recognition. For scene classification, the
experiments are performed on Sports Events data set. We use the Butterflies
data set for the object recognition task. To construct a shape vocabulary we
use the SIFT descriptor and the Color Names descriptor [29] for creating a
color vocabulary. We combine the two cues based on early fusion and late
fusion schemes, both at the standard bag-of-words level and at the spatial
pyramids level. To obtain a fair comparison between early and late fusion
we use the two standard implementations as given by Eqs. (8) and (9). The
parameter β in both equations is learned by cross-validation.

We also compare with OpponentSIFT which was shown to be the best
color-shape descriptor in a recent evaluation [10]. Table 5 shows the results
obtained on Sports Events data set. For this data set, shape is an important
cue and color plays a subordinate role. At the standard bag-of-words level,
OpponentSIFT provides the best results but as we move into higher levels
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Method Level Size Score

Shape 0 800 80.6

Color 0 300 53.9

Opp− SIFT 0 1100 82.9

EarlyFusion 0 1100 80.6

LateFusion 0 1100 81.8

Opp− SIFT 1 5500 82.3

EarlyFusion 1 5500 80.8

LateFusion 1 5500 82.7

Opp− SIFT 2 23100 80.8

Earlyfusion 2 23100 82.7

Latefusion 2 23100 84.4

Table 5: Classification Score (percentage) on Sports Events Data set.

of spatial pyramids the performance of both early fusion and OpponentSIFT
starts to degrade (the performance of OpponentSIFT at finest pyramid level
is below its performance at the standard bag-of-words level). We also com-
bined color and shape at the kernel level with the product rule as advocated
by Gehler [24]. However, results were found to be inferior compared to the
late fusion spatial pyramid scheme.

Table 6 shows the results obtained on Butterflies data set. Shape plays
an important role as depicted from the results of individual visual cues.
Late fusion provides better results at the standard bag-of-words level than
both early fusion and OpponentSIFT. The performance gain of late fusion is
further increasing when more pyramid levels are considered.

In conclusion, in a standard bag-of-words representation both early and
late fusion obtain comparative results. However, our experiments show that
within a spatial pyramid representation late fusion significantly outperforms
early fusion. These results of late fusion could further be improved by ap-
plying multi-kernel learning.

5. Comparison to State-of-the-Art

In the previous section we have investigated how to optimally compute
compact and multi-feature spatial pyramids. We have shown that optimal
results are obtained by using DITC algorithm for compression, and using the
PyrComp strategy for the computation of compact pyramids. Furthermore,

18



Method Level Size Score

Shape 0 1000 79.4

Color 0 300 53.3

Opp− SIFT 0 1500 78.7

EarlyFusion 0 1500 79.6

LateFusion 0 1300 81.9

Opp− SIFT 1 7500 79.6

EarlyFusion 1 7500 81.7

LateFusion 1 6500 84.4

Opp− SIFT 2 31500 81.0

Earlyfusion 2 31500 83.3

Latefusion 2 27300 87.9

Table 6: Classification Score (percentage) on Butterflies Data set.

as demonstrated in the previous section, late fusion pyramids is shown to
be more efficient than early fusion pyramids. In this section, we combine
these conclusions to construct compact multi-feature spatial pyramids. First
we compute compact spatial pyramids for each feature separately and then
combine them in a late fusion manner.

We denote our pyramid representation for SIFT with PS, and the com-
pact pyramids of SIFT, SelfSimilarity and Color with PSC ,PSSC and PCC

respectively. We report the final results on all the four challenging data sets
obtaining very good classification scores even when reducing the pyramid
histograms significantly. In addition, we compare our results with several
recent results reported on these data sets in literature. Table 7 shows our
final results and a comparison with the best results reported on the four data
sets.

For the Sports Events data set experiments are repeated five times by
splitting the data set into train and test set and the mean average accuracy
is reported. As depicted from the results, each feature’s compact represen-
tation preserves or even improves the performance over its original pyramid
histogram. The original three level pyramid representation of SIFT (PSIFT)
with dimensionality 21000 gives accuracy of 83.8 while, compressing it to
1000 we improve the score to 85.6. By combining the three compact pyra-
mid representations we obtained a classification score of 87.1 which exceeds
the state-of-the-art results obtained on this data set [17, 16, 43, 44, 45]. The
final accuracy is obtained with our compact histogram of dimensionality 2000
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Data Sets Best Score PS PSC PSC + PCC + PSSC

Size Score Size Score Size Score Size Score

Sports 6K 84.2 [17] 21K 83.8 1K 85.6 2K 87.1

15 Scenes 21K 84.3 [43] 21K 84.1 1K 84.4 2K 86.7

Butterflies 2K 90.6 [28] 21K 89.5 1K 89.0 2K 91.4

Pascal 2007 160K 60.5 [10] 84K 57.4 15K 57.2 25K 59.5

Pascal 2009 4194K 64.6 [18] 84K 55.7 15K 55.2 25K 57.6

Table 7: Classification Score (percentage) on Sports Events, 15 class Scenes, Butterflies,
Pascal VOC 2007 and 2009 Data sets.

reduced from the original pyramid histograms of dimensionality 42000.
For the 15 category Scenes data set, we followed the standard proto-

col of splitting the data set in to training and testing 5 times and reported the
mean classification score. The results of each feature compact pyramid repre-
sentation preserves or even improves the performance of its original pyramid
representation. The original three level pyramid structure of SIFT (PS) with
dimensionality 21000 gives accuracy of 84.1 while, compressing it to 1000 we
improve the score further to 84.4. Since there is no color in this data set, we
only combine the compact pyramids obtained from SIFT and SelfSimilarity.
Our final compact representation has a histogram of size 2000 reduced from
original pyramid histograms having dimensionality of 42000. We obtained a
classification accuracy of 86.7 which is to the best of our knowledge the best
performance on this data set [17, 16, 43, 44, 45].

The Butterflies data set shows our approach on a object recognition
data set. Our compact pyramid representation of SIFT provides comparable
results w.r.t. the original pyramids of SIFT. Our final combination yields a
score of 91.4 which outperforms the best reported result in [28].

The results on the Pascal VOC 2007 show we reduce the pyramid his-
togram of SIFT to one third with a small loss. The final mean average
precision of 59.5 is obtained with a histogram size of 25K. Our final results
are close to state-of-the-art, but we have significantly reduced the histogram
dimension (25K) compared to the approach of Van de Sande [10], where
SIFT pyramids are combined with 4 ColorSIFT pyramids, leading to higher
histogram dimensions of 160K. Lastly, it should be noted that better results
(63.5) were reported in [46], where authors include additional information of
object bounding boxes from object detection to improve image classification.

For the Pascal VOC 2009, similar behavior is noticed. Hence, with an
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original SIFT pyramid of size 84K a mean average score of 55.7 is obtained.
However, we maintained a score of 55.2 using our 15K compact SIFT repre-
sentation. Finally, the results for multiple features fusion improve the overall
mean average score up to 57.6 over the compact SIFT features.

6. Conclusions

A major drawback of spatial pyramids is the high dimensionality of their
image representation. In this paper we have proposed a method for the
computation of compact discriminative pyramids. The method is based on
the divisive information theoretic feature clustering algorithm, which clusters
words based on their discriminative power. We show that this method out-
performs clustering based on the agglomerative information bottleneck both
in accuracy and in computational complexity. Results show that depending
on the data set dimensionality reductions up to an order of magnitude are
feasible without a drop in performance. The gained compactness leaves more
room for the combination of features. We investigate the optimal strategy to
combine multiple features in a spatial pyramid setting. Especially for higher
level pyramids late fusion was found to significantly outperform early fusion
pyramids. We evaluated the proposed framework on both scene and object
recognition, and obtained state-of-the-art results on several benchmark data
sets.

For future work we are particularly interested in applying the compact
pyramids to the task of bag-of-words based object detection [13, 46]. The
application of bag-of-words based detection has been particularly advanced
due to the efficient sub-window search (ESS) algorithm proposed by Lampert
et al. [13]. The usage of compact discriminative pyramids to this application
could help obtain faster detection methods without loss in accuracy.

Another line of future research includes investigating the application of
DITC to sparse image representation [35, 36], which has been shown excellent
results in recent works in image restoration and face recognition [47, 48]. Al-
though discriminative vocabularies within the context of sparse image repre-
sentation have been investigated, these methods still ignore the spatial pyra-
mid for the construction of discriminative vocabularies, whereas our work
shows that compressing the vocabulary within the spatial pyramid signifi-
cantly improves results. Therefore, we expect that combining the strengths
of both methods will lead to further improvements.
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