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Abstract—Computational color constancy is a fundamental
prerequisite for many computer vision applications. This paper
presents a survey of many recent developments and state-of-the-
art methods. Several criteria are proposed that are used to assess
the approaches. A taxonomy of existing algorithms is proposed
and methods are separated in three groups: static methods,
gamut-based methods and learning-based methods. Further, the
experimental setup is discussed including an overview of publicly
available data sets. Finally, various freely available methods, of
which some are considered to be state-of-the-art, are evaluated
on two data sets.

Index Terms—color constancy, illuminant estimation, survey,
performance evaluation.

I. I NTRODUCTION

COLOR can be an important cue for computer vision or
image processing related topics, like human-computer

interaction [1], color feature extraction [2] and color appear-
ance models [3]. The colors that are present in images are
determined by the intrinsic properties of objects and surfaces
as well asthe color of the light source. For a robust color-based
system, these effects of the light source should be filtered out.
This ability to account for the color of the light source is called
color constancy.

Human vision has the natural tendency to correct for the
effects of the color of the light source, e.g. [4, 5, 6, 7, 8],
but the mechanism that is involved with this ability is not yet
fully understood. Early work resulted in the Retinex theory by
Land and McCann [9, 10, 11], after which many computational
models are derived that are based on this perceptual theory
[12, 13, 14]. However, there still exists a discrepancy between
human and computational color constancy. Computational
models can not fully explain the observed color constancy of
human observers, as shown by Kraft and Brainard [15]. They
tested the ability of several computational theories to account
for human color constancy, but found that each theory leaves
considerable residual constancy. In other words, without the
specific cues corresponding to the computational models, hu-
mans are still to some extent color constant [15]. Alternatively,
observations on human color constancy cannot be readily
applied to computational models: Golz and MacLeod [16, 17]
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Fig. 1. An illustration of the influence of differently colored light sources
on the measured image values. These images are adapted from [7] and show
the same scene, rendered under four different light sources.

showed that chromatic scene statistics influence the accuracy
of human color constancy, but when mapped to computational
models, the influence was found to be very weak at best [18].
Therefore, the focus in this article is on computational color
constancy algorithms. As an example, consider the images
in figure 1. These images depict the same scene, rendered
under four different light sources. The goal of computational
color constancy algorithms is to correct the (first three) target
images (under three different colored light sources), so that
they appear identical to the (fourth) canonical image (under a
white light source).

Often, computational models for color constancy are charac-
terized by the estimation of the illuminant. The corresponding
algorithms are based on the assumption that the color of the
light source is spatially uniform across the scene. Hence,
after globally estimating the color of the light source, color
correction can be applied to the image to obtain a color
constant image. Another line of research, not pursued in this
paper, focusses on the invariance that can be obtained by
applying various photometric transformations, sometimes also
referred to as color constancy [19, 20, 21]. Such methods are
often extended to incorporate other forms of invariance, like
invariance to highlights or shadows, but do not result in output
images that have any visual similarity to the original input
image.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, MONTH 2010 2

The main focus of this article is on the estimation of the
illuminant color, more specifically the estimation of the illumi-
nant using a single image from a regular digital camera. Hence,
methods using additional images, e.g. [22, 23, 24, 25, 26, 27],
physically different devices, e.g. [28, 29], or video sequences,
e.g. [30, 31], are not included in this review. When using
a single image that is taken with a regular digital camera,
illuminant estimation is an underconstrained problem; both the
intrinsic properties of a surface and the color of the illuminant
have to be estimated, while only the product of the two (i.e.
the actual image) is known. Early solutions for estimating the
illuminant tried to bridge this gap by adopting linear models
of lights and surfaces [32, 33, 34, 35]. Unfortunately, these
approaches do not result in satisfactory results for real-world
images.

In this paper, state-of-the-art approaches are divided into
three types of algorithms:1) static methods,2) gamut-based
methods and3) learning-based methods methods1. The first
type of algorithms are methods that are applied to any image
without the need for training. In other words, for a given data
set or application, the parameter setting is kept fixed (orstatic).
For the second and third type of algorithms, a model needs to
be trained before the illuminant can be estimated. This is an
important distinction that partially determines the suitability
of an algorithm for applicability to real-world systems. The
criteria used in this article to assess the computational methods
are the following:
− the requirement of training data;
− the accuracy of the estimation;
− the computational runtime of the method;
− transparency of the approach;
− complexity of the implementation;
− number of tunable parameters.
For evaluation of computational color constancy methods,

various data sets are currently available, ranging from high-
quality hyperspectral scenes to large-scale real-worldRGB-
images. Two large data sets are selected to analyze the
performance of various publicly available methods. The re-
sults of these experiments will be made available on line at
http://www.colorconstancy.com .

This paper is organized as follows. First, in sectionII , a
formal definition of the problem is discussed, together with
the methodology explored in this paper. Then, in sections
III -V, current approaches as well as recent developments
are described. SectionVI describes the experimental setup,
including commonly used error measures and databases with
ground truth. In sectionVII , two of these data sets are selected
and extensive experiments are performed using a wide range
of methods. Finally, in sectionVIII , a discussion and future
directions are presented.

II. COLOR CONSTANCY

Color constancy can be achieved by estimating the color of
the light source, followed by a transformation of the original
image values using this illuminant estimate. The aim of this

1Note that the classification of the methods is not absolute, which means
that some methods are, for example, both gamut-based and learning-based.

transformation is not to scale the brightness level of the image,
as color constancy methods only correct for thechromaticity
of the light source. SectionII-A will discuss the formation
of an image, while more information on the transformation is
discussed in sectionII-B.

A. Image formation

The image valuesf = (f
R
, f

G
, f

B
)T depend on the color of

the light sourceI(λ), the surface reflectanceS(x, λ) and the
camera sensitivity functionρ(λ) = (ρ
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G
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(λ))T ,

where λ is the wavelength of the light andx is the spatial
coordinate [36, 37]:

fc(x) = mb(x)
∫

ω

I(λ)ρc(λ)S(x, λ)dλ+ms(x)
∫

ω

I(λ)ρc(λ)dλ,

(1)
wherec = {R,G,B}, ω is the visible spectrum, andmb and
ms are scale factors that model the relative amount of body
and specular reflectance that contribute to the overall light
reflected at locationx. Under the Lambertian assumption the
specular reflection is ignored. This results in the following
model:

fc(x) = m(x)
∫

ω

I(λ)ρc(λ)S(x, λ)dλ, (2)

where m(x) is Lambertian shading. It is assumed that the
scene is illuminated by one single light source and that the
observed color of the light sourcee depends on the color of
the light sourceI(λ) as well as the camera sensitivity function
ρ(λ):

e =

e
R

e
G

e
B

 =
∫

ω

I(λ)ρ(λ)dλ. (3)

Without prior knowledge, bothI(λ) and ρ(λ) are unknown,
and hence the estimation ofe is an under-constrained problem
that cannot be solved without further assumptions. Therefore,
in practice, color constancy algorithms are based on various
simplifying assumptions such as restricted gamuts (limited
number of image colors which can be observed under a
specific illuminant), the distribution of colors that are present
in an image (e.g. white patch, grey-world etc.) and the set of
possible light sources. This paper will give an overview on the
assumptions and methods that are used for the estimation of
the color of the light source.

B. Image correction

The focus of this paper is on estimating the color of
the light source. However, in many cases the color of the
light source is of less importance than the appearance of the
input image under a reference light (called canonical light
source). Therefore, the aim of most of the color constancy
methods is to transform all colors of the input image, taken
under an unknown light source, to colors as they appear
under this canonical light source. This transformation can
be considered to be an instantiation of chromatic adaptation,
e.g. [3]. Chromatic adaptation is often modelled using a
linear transformation, which in turn can be simplified by
a diagonal transformation when certain conditions are met
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[38, 39, 40]. Other possible chromatic adaptation methods
include linearized Bradford [41] and CIECAT02 [42].

In this paper, the diagonal transform orvon Kries Model
[43] is used, without changing the color basis [44, 45] or
applying spectral sharpening [46, 47]. These techniques have
shown their merits of improving the quality of output images,
if the illuminant under which the original image was recorded
is known. Since the discussed methods focus on estimation
of this illuminant, changing color bases and spectral sharpen-
ing techniques are omitted in this paper for simplicity. The
diagonal model that is used is given by:

ft = Du,tfu, (4)

wherefu is the image taken under an unknown light source,
ft is the same image transformed, so it appears if it was taken
under the canonical illuminant, andDu,t is a diagonal matrix
which maps colors that are taken under an unknown light
sourceu to their corresponding colors under the canonical
illuminant c: Rc

Gc

Bc

 =

d1 0 0
0 d2 0
0 0 d3

 Ru

Gu

Bu

 (5)

Although this model is merely an approximation of illu-
minant change and might not accurately be able to model
photometric changes, it is widely accepted as color correction
model [38, 48, 39, 40, 49] and it underpins many color
constancy algorithms (e.g. the gamut mapping in sectionIV)
and Grey-World based methods in sectionIII-A ). The diagonal
mapping is used throughout this paper to create output-images
after correction by a color constancy algorithm, where a
perfect white light, i.e.( 1√

3
, 1√

3
, 1√

3
)T , is used as canonical

illuminant.

III. STATIC METHODS

The first type of illuminant estimation algorithms that is
discussed in this paper are static methods, or methods that
are applied to input images with a fixed parameter setting.
Two subtypes are distinguished:1a) methods that are based
on low-level statistics and1b) methods that are based on the
physics-based dichromatic reflection model.

A. Low-level statistics-based methods

The best-known and most often used assumption of this type
is the Grey-World assumption [50]: the average reflectance
in a scene under a neutral light source is achromatic. It
directly follows from this assumption, that any deviation from
achromaticity in the average scene color is caused by the
effects of the illuminant. This implies that the color of the
light sourcee can be estimated by computing the average
color in the image: ∫

fc(x)dx = kec, (6)

wherek is a multiplicative constant chosen such that the illu-
minant color,e = (e

R
, e

G
, e

B
)T , has unit length. Alternatively,

instead of computing the average color of all pixels, it has been

shown that segmenting the image and computing the average
color of all segments may improve the performance of the
Grey-World algorithm [51, 52]. This preprocessing step can
lead to improved results because the Grey-World is sensitive
to large uniformly colored surfaces, as this often leads to
scenes where the underlying assumption fails. Segmenting the
image before computing the scene average color will reduce
the effects of these large uniformly colored patches. Related
methods attempt to identify the intrinsic grey surfaces in an
image, i.e. they attempt to find the surfaces under a colored
light source that would appear grey if rendered under a white
light source [53, 54, 55]. When accurately recovered, these
surfaces contain a strong cue for the estimation of the light
source.

Another well-known assumption is the White-Patch as-
sumption [10]: the maximum response in theRGB-channels
is caused by a perfect reflectance. A surface with perfect
reflectance properties will reflect the full range of light that it
captures. Consequently, the color of this perfect reflectance is
exactly the color of the light source. In practice, the assump-
tion of perfect reflectance is alleviated by considering the color
channels separately, resulting in themax-RGB algorithm. This
method estimates the illuminant by computing the maximum
response in the separate color channels:

max
x

fc(x) = kec. (7)

Related algorithms apply some sort of smoothing to the image,
prior to the illuminant estimation [56, 57]. This preprocessing
step has similar effects on the performance of the White-
Patch algorithm as segmentation on the Grey-World. In this
case, the effect of noisy pixels (with an accidental high
intensity) is reduced, improving the accuracy of the White-
Patch method. An additional advantage of the Local Space
Average Color method [57] (LSAC) is that it can provide
a pixel-wise illuminant estimate. Consequently, it does not
require the image to be captured under a spatially uniform light
source. An analysis of themax-RGB algorithm is presented
in [58, 59], where it is shown that the dynamic range of an
image, in addition to the preprocessing strategy, can have a
significant influence on the performance of this method.

In [60], the White-Patch and the Grey-World algorithms
are shown to be special instantiations of the more general
Minkowski-framework:

Lc(p) =
(∫

fp
c (x)dx

) 1
p

= kec, (8)

Substitutingp = 1 in equation (8) is equivalent to computing
the average off(x), i.e. L(1)= (L

R
(1), L

G
(1), L

B
(1))T

equals the Grey-World algorithm. Whenp = ∞, equation (8)
results in computing the maximum off(x), i.e. L(∞) equals
the White-Patch algorithm. In general, to arrive at a proper
value,p is tuned for the data set at hand. Hence, the optimal
value of this parameter may vary for different data sets.

The assumptions of the above color constancy methods are
based on the distribution of colors (i.e. pixel values) that are
present in an image. The incorporation of higher-order image
statistics (in the form of image derivatives) is proposed in
[61], where a framework called Grey-Edge is presented that



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, MONTH 2010 4

incorporates the well-known methods like eq. (8), as well as
methods based on first- and second-order derivatives:(∫ ∣∣∣∣∂nfc,σ(x)

∂xn

∣∣∣∣p dx
) 1

p

= ken,p,σ
c , (9)

where | · | indicates the Frobenius norm,c = {R,G,B}, n
is the order of the derivative andp is the Minkowski-norm.
Further, derivatives are defined as convolving the images by
Gaussian derivative filters with scale parameterσ [62]:

∂s+tfc,σ

∂xsyt
= fc ∗

∂s+tGσ

∂xs∂yt
(10)

where∗ denotes the convolution ands + t = n. This method
is enhanced with an illuminant constraint by Chen et al.
[63]. Further, Chakrabarti et al. [64] explicitly model the
spatial dependencies between pixels. The advantage of this
approach compared to the Grey-Edge is that it is able to
learn the dependencies between pixels in an efficient way,
but the training phase does rely on an extensive database
of images. Finally, Gijsenij et al. [65] note that different
types of edges might contain various amounts of information.
They extend the Grey-Edge method to incorporate a general
weighting scheme (assigning higher weights to certain edges),
resulting in the weighted Grey-Edge. Physics-based weighting
schemes are proposed, concluding that specular edges are
favored for the estimation of the illuminant. The introduction
of these weighting schemes result in more accurate illuminant
estimates, but at the cost of complexity (both in computation
and implementation).

B. Physics-based methods

Most methods are based on the more simple Lambertian
model following eq. (2), but some methods adopt the dichro-
matic reflection model of image formation, following eq. (1).
These methods use information about the physical interaction
between the light source and the objects in a scene, and are
called physics-based methods. These approaches exploit the
dichromatic model to constrain the illuminants. The underlying
assumption is that all pixels of one surface fall on a plane
in RGB color space. If multiple of such planes are found,
corresponding to variousdifferent surfaces, then the color
of the light source is estimated using the intersection of
those planes. Various approaches have been proposed that
use specularities or highlights [66, 67, 68, 69]. The intuition
behind such methods is that if pixels are found where the
body reflectance factormb in eq. (1) is (close to) zero, then
the color of these pixels are similar or identical to the color of
the light source. However, all these methods suffer from some
disadvantages: retrieving the specular reflections is challenging
and color clipping can occur. The latter effectively eliminates
the usability of specular pixels (which are more likely to be
clipped than other pixels).

A different physics-based method is proposed by Finlayson
et al. [70]. This method uses the dichromatic reflection model
to project the pixels of a single surface into chromaticity space.
Then, the set of possible light sources is modelled by using
the Planckian locus of black-body radiators. This planckian

locus is intersected with the dichromatic line of the surface to
recover the color of the light source. This method, in theory,
allows for the estimation of the illuminant even when there
is only one surface present in the scene. However, it does
require all pixels in the image to be segmented, so that all
unique surfaces are identified. Alternatively, the colors in an
image can be described using a multilinear model consisting of
several planes simultaneously oriented around an axis defined
by the illuminant [71, 72]. This eliminates the problem of
pre-segmentation, but does rely on the observation that a
representative color of any given material can be identified. In
[73], these requirements are relaxed, resulting in a two Hough
transform voting procedure.

IV. GAMUT-BASED METHODS

The gamut mapping algorithm has been introduced by
Forsyth [74]. It is based on the assumption, thatin real-world
images, for a given illuminant, one observes only a limited
number of colors. Consequently, any variations in the colors
of an image (i.e. colors that are different from the colors that
can be observed under a given illuminant) are caused by a
deviation in the color of the light source. This limited set
of colors that can occur under a given illuminant is called
the canonical gamutC, and it is found in a training phase
by observing as many surfaces under one known light source
(called thecanonical illuminant) as possible.

The flow of the gamut mapping is illustrated in figure2. In
general, a gamut mapping algorithm takes as input an image
taken under an unknown light source (i.e. an image of which
the illuminant is to be estimated), along with the precomputed
canonical gamut (see blocks1 and 2 in figure 2). Next, the
algorithm consists of three important steps:

1) Estimate the gamut of the unknown light source by
assuming that the colors in the input image are rep-
resentative for the gamut of the unknown light source.
So, all colors of the input image are collected in the
input gamutI. The gamut of the input image is used as
feature in figure2.

2) Determine the set offeasible mappingsM, i.e. all
mappings that can be applied to the gamut of the input
image and that result in a gamut that lies completely
within the canonical gamut. Under the assumption of the
diagonal mapping, a unique mapping exists that converts
the gamut of the unknown light source to the canonical
gamut. However, since the gamut of the unknown light
source is simply estimated by using the gamut ofone
input image, in practice several mappings are obtained.
Every mappingi in the setM should take the input
gamut completely inside the canonical gamut:

MiI ∈ C. (11)

This corresponds to block4 in figure 2, where the
learned model (e.g. the canonical gamut) together with
the input features (e.g. the input gamut) are used to
derive an estimate of the color of the light source.

3) Apply an estimator to select one mapping from the set
of feasible mappings (block5 in figure 2). The selected
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Fig. 2. Overview of gamut-based algorithms. The training phase consists of learning a model given the features of a wide variety of input images (block1),
resulting in the canonical gamut (block2). The testing protocol consists of applying the learned model to the computed features of the input image (blocks
3 and4). Finally, one illuminant estimate is selected from the feasible set of illuminants (block5) and this estimate is used to correct the input image.

mapping can be applied to the canonical illuminant
to obtain an estimate of the unknown illuminant. The
original method [74] used the heuristic that the mapping
resulting in the most colorful scene, i.e. the diagonal ma-
trix with the largest trace, is the most suitable mapping.
Simple alternatives are the average of the feasible set or
a weighted average [75].

Several extensions have been proposed. First of all, diffi-
culties in implementation are addressed in [76, 77], where
it is shown that the gamut mapping algorithm can also be
computed in chromaticity space(R

B , G
B ). These modifications

correspond to different feature computation in blocks1 and
3 in figure 2. However, the performance of this2D approach
is slightly worse than the performance of the3D approach.
It is shown that this decrease in performance is caused by
the perspective distortion of the possible set of illuminants
(the set of feasible mappings in step2) that is caused by the
conversion of the original image to 2D-chromaticity values.
This can be solved by mapping the 2D-feasible set back
to three dimensions before selecting the most appropriate
mapping [77, 78] (i.e. a slightly modified block4 in figure2).
Alternatively, in [79] an efficient implementation is introduced
using convex programming. This implementation is shown to
result in similar performance as the original method. Finally,
in [80] a simpler version of the gamut mapping is proposed
using a simple cube rather than the convex hull of the pixel
values.

Another extension of the gamut mapping algorithm deals
with dependency on the diagonal model. One of the disadvan-
tages of the original method is that a null-solution can occur
if the diagonal model fails. In other words, if the diagonal
model does not fit the input data accurately, then it is possible
that no feasible mapping can be found that maps the input
data into the canonical gamut with one single transform. This
results in an empty solution set. One heuristic approach to
avoid such situations it to incrementally augment the input
gamut until a non-empty feasible set is found [81, 52]. Another
heuristic approach is to extend the size of the canonical gamut.

Finlayson [76] increases the canonical gamut by5%, while
Barnard [75] systematically enlarges the canonical gamut by
learning this gamut not only with surfaces that are illumi-
nated by the canonical light source, but also with surfaces
that are captured under different light sources which are
mapped to the canonical illuminant using the diagonal model.
Hence, possible failure of the diagonal model is captured
by augmenting the canonical gamut. Another strategy is to
simulate specularities during computation of the canonical
gamut, potentially increasing the performance of the gamut
mapping method even in situations where there is no null-
solution [82, 83]. Alternatively, to avoid this null-solution, an
extension of the diagonal model called diagonal-offset model
is proposed [84]. This model allows for translation of the
input colors in addition to the regular linear transformation,
effectively introducing some slack into the model. All these
modifications are implemented in block5 of figure 2.

All these variations of the gamut mapping algorithm are
restricted to the use of pixel values to estimate the illuminant.
Gijsenij et al. [85] extended the gamut mapping to incorporate
the differential nature of images. They analytically show
that the gamut mapping framework is able to incorporate
any linear filter output, and that, if failure of the diagonal
model can be prevented by adapting the diagonal-offset model
[84], derivative-based gamut mapping will not result in null-
solutions. Further, they propose several combinations of dif-
ferent n-jet based gamut mappings, and show that the best
performance is obtained by taking the intersection of feasible
sets.

The fusion strategy proposed in [85] is based on the smaller
set of possible light sources obtained when taking the inter-
section of multiple feasible sets. Another method to constrain
the feasible set is proposed by Finlayson et al. [86] and is
called gamut-constrained illuminant estimation. This method,
effectively reduces the problem of illuminant estimation to
illuminant classification, by considering only a limited number
of possible light sources, similar to Color-by-Correlation. One
canonical gamut is learned for every possible light source.
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Then, the unknown illuminant of the input image is estimated
by matching the input gamut to each of the canonical gamuts,
selecting the best match as final estimate.

V. L EARNING-BASED METHODS

The third type of algorithms estimate the illuminant using
a model that is learned on training data. Indeed, gamut-based
methods in sectionIV can be considered learning-based too,
but since this approach has been quite influential in color
constancy research it has been discussed separately.

Initial approaches using machine learning techniques are
based on neural networks [87]. The input to the neural network
consists of a large binarized chromaticity histogram of the
input image, the output is two chromaticity-values of the
estimated illuminant. Although this approach, when trained
correctly, can deliver accurate color constancy even when only
a few distinct surfaces are present, the training phase requires
a large amount of training data. Similar approaches apply
support vector regression [88, 89, 90] or linear regression tech-
niques like ridge regression and kernel regression [91, 92, 93]
to the same type of input data. Alternatively, thin-plate spline
interpolation is proposed in [94] to interpolate the color of the
light source over a non-uniformly sampled input space (i.e.
training images).

A. Methods using low-level statistics

Color-by-correlation [95] is generally considered to be a
discrete implementation of the gamut mapping, but it is actu-
ally a more general framework which includes other low-level
statistics-based methods like Grey-World and White-Patch as
well. The canonical gamut is replaced with a correlation
matrix. The correlation matrix for a known light sourceei

is computed by first partitioning the chromaticity space into
a finite number of cells, followed by computation of the
probabilities of occurrence of the coordinates under illuminant
ei. One correlation matrix is computed for every possible
illuminant that is considered. Then, the information that is
obtained from the input image matched to the information in
the correlation matrices to obtain a probability for every con-
sidered light source. The probability of illuminantei indicates
the likelihood that the current input image was captured under
this light source. Finally, using these probabilities, one light
source is selected as scene illuminant, e.g. using maximum
likelihood [95] or Kullback-Leibler divergence [96].

Other methods using low-level statistics are based on
the Bayesian formulation. Several approaches are proposed
that model the variability of reflectance and light source
as random variables. The illuminant is then estimated from
the posterior distribution conditioned on the image intensity
data [97, 98, 99]. However, the assumptions of independent
reflectance that is Gaussian distributed, proved to be too
strong (unless learned for and applied to a specific application
like outdoor object recognition [100]). Rosenberg et al. [101]
replace these assumptions with non-parametric models, using
the assumption that nearby pixels are correlated. Further,
Gehler et al. [102] show that competitive results to state-of-
the-art can be obtained when precise priors for illumination
and reflectance are used.

B. Methods using medium- and high-level statistics

Despite the large variety of available methods, none of
the color constancy methods can be considered as univer-
sal. All algorithms are based on error-prone assumptions
or simplifications, and none of the methods can guarantee
satisfactory results for all images. To still be able to obtain
good results on a full set of images rather than on a subset
of images, multiple algorithms can be combined to estimate
the illuminant. The outline of such approaches is illustrated
using figure3. The first attempts of combining color constancy
algorithms are based on combining the output of multiple
methods [103, 104, 105]. In [103], three color constancy meth-
ods are combined using both linear (a weighted average of the
illuminant estimates) and non-linear (a neural network based
on the estimates of the considered methods) fusion-methods
are considered. It is shown that a weighted average, optimizing
the weights in a least mean square sense, results in the best
performance, outperforming the individual methods that are
considered. In [104], a statistics-based method is combined
with a physics-based method. Both methods return likelihoods
for a predefined set of light sources, and by combining these
likelihoods a posteriori, more accurate results are obtained.
Finally, in [105], several different combination strategies are
employed. These strategies include the mean value of all
estimates, the mean value of the two closest estimates, and
the mean value of all methods excluding theN most remote
estimates (i.e. excluding the estimates with the largest distance
to the other estimates). This latter strategy, excluding two out
of six estimates, resulted in the best performance. All these
approaches use fixed fusion weights in blocks3 and6 in figure
3, and the features in blocks1 and 4 can be seen as the
illuminant estimates themselves.

Instead of combining the output of multiple algorithms into
one more accurate estimate, a different strategy is proposed
by Gijsenij and Gevers [106, 107]. They use the intrinsic
properties of natural images to select the most appropriate
color constancy method for every input image. Characteristics
of natural images are captured using the Weibull parame-
terization (e.g. grain size and contrast), and they show that
the corresponding parameters (β and γ) are related to image
attributes to which color constancy methods using low-level
features (e.g. Grey-World, White-Patch and Grey-Edge) are
sensitive to. In other words, they select the most appropriate
color constancy algorithm for every image, depending on the
contents of the image. For instance, if an image contains
only a few edges (corresponding to a low signal-to-noise
ratio), then pixel-based methods like Grey-World and White-
Patch are preferred. On the other hand, edge-based methods
(e.g. 1st- and 2nd-order Grey-Edge) are preferred when the
signal-to-noise ratio is medium or high. Instead of using
Weibull-parameterization, various other features are explored
in [108, 109, 110, 111] to predict the most appropriate
algorithm for a given image. The most notable differences
between these approaches is in block1 of figure 3.
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Fig. 3. Overview of several learning-based algorithms. After the input features are compared to the training features, the optimal fusion weights are determined.
These weights can be static (fixed for all input images) or dynamic (dependent on the features of the input images). After the fusion weights for the current
input image are determined, the estimated illuminants are combined into one final estimate. This combination can either by hard (one of the illuminants is
selected as final estimate) or soft (a weighted average of estimates is computed).

C. Semantic information

Recently, several methods have been proposed that esti-
mate the illuminant using some sort of semantic information.
Gijsenij and Gevers [106, 107, 112] propose to dynamically
determine which color constancy algorithm should be used for
a specific image, depending on the scene category. They do
not discuss the actual classification of the images and how
to use the uncertainty in the classification results, but merely
assume that the scene category of an image is known. Bianco
et al. [113] propose an indoor-outdoor classifier and use the
uncertainty of the classifier to introduce an ”unsure”-class.
Then, they learn the appropriate color constancy algorithm for
each of these three classes. However, the distinction between
indoor and outdoor classes is rather arbitrary. Therefore,
[114, 115] propose to use a stage classifier that distinguishes
medium-level semantic classes [116]. This results in a color
constancy method that explicitly uses 3D scene information
for the estimation of the color of the light source.

A different approach uses high-level visual information.
Rather than classifying images into a specific class and ap-
plying different color constancy methods depending on the
semantic category, van de Weijer et al. [117] propose to cast
illuminant hypotheses that are generated and evaluated based
on the likelihood of semantic content. Using prior knowledge
about the world, an illuminant estimate is selected that results
in colors that are consistent with the learned model of the
world. In other words, an illuminant estimate is selected that
will generate plausible images, e.g. images with a blue rather
than purple sky and green rather than reddish grass. A similar
approach is proposed in [118], where the termmemory color
is used to refer to color that are specifically associated with
object categories. These object-specific colors are used to
refine the estimated illuminants.

VI. EXPERIMENTAL SETUP

Evaluation of illuminant estimation algorithms requires im-
ages with a scene illuminant that is known (ground truth).

The general experimental setup is as follows. First, part of the
data is used for training, if the algorithm requires this. Then,
the color of the light source is estimated for every remaining
image of the database and compared to the ground truth. The
comparison requires some similarity or distance measure; an
often used measure is the angular error:

dangle(ee, eu) = cos−1

(
ee · eu

||ee|| · ||eu||

)
, (12)

whereee ·eu is the dot product of the estimated illuminantee

and the ground trutheu and || · || is the Euclidean norm of a
vector. Alternate setups exist, depending on the application.
For instance, Funt et al. [119] describe an experiment to
evaluate the usefulness of color constancy algorithms as pre-
processing step in object recognition.

In most situations, for instance when the application is
to obtain an accurate reproduction of the image under a
white light source, the distance measure should be an accu-
rate reflection of the quality of the output image. In [120],
several distance measures are analyzed with respect to this
requirement, and it is shown that the often used angular error
correlatesreasonably wellwith the perceived quality of the
output images. However, to optimize this correlation, a data set
specific measure, called perceptual Euclidean distance, should
be adopted.

Multiple algorithms are typically compared using a large
number of images, so the performance of every algorithm
needs to be summarized over all images. An intuitive measure
would be to simply compute the average error over the full
database. However, the error measures are often not normally
distributed, but rather skewed resulting in a non-symmetric
distribution. Hence, the mean value of the errors is a poor
summary statistic [121, 120]. More appropriate measures to
summarize the distribution are the median [121] or the trimean
[120]. The median gives an indication of the performance
of the method on the majority of the images, while the
trimean also gives an indication of the extreme values of the
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distribution.
In addition to these summarizing statistics, more insight into

the performance of the algorithms can be obtained by showing
box plots or by performing significance tests [121, 120]. A box
plot is used to visualize the underlying distribution of the error
metric of one color constancy method. A significance test,
like the Wilcoxon sign test, is usually performed between two
methods to show that the difference between two algorithms
is statistically significant [121]. Further, the obtained improve-
ment can only be considered to be perceptually significant if
the relative difference between two methods is at least5−6%.
Below that, the difference is not noticeable to human observers
[120]

A. Data sets

Two types of data can be distinguished that are used to
evaluated color constancy methods: hyperspectral data and
RGB-images. Databases containing hyperspectral data sets
are often smaller (less images) and contain less variation than
data sets withRGB-images. The main advantage of hyper-
spectral data is that many different illuminants can be used to
realistically render the same scene under various light sources,
and consequently a systematic evaluation of the methods is
possible. However, the simulation of illuminants generally
does not include real-world effects like interreflections and
non-uniformity. Consequently, the evaluation onRGB-images
results in more realistic performance evaluations. Ideally, both
types of data should be used for a thorough evaluation of color
constancy methods [81, 52].

An often used hyperspectral database was composed by
Barnard et al. [122]. This set consists of1995 surface re-
flectance spectra and287 illuminant spectra. These reflectance
and illuminant spectra can be used to generate an extensive

(a) Example images of SFU data set

(b) Example images of color-checker-set

Fig. 4. Some examples of the two data sets that are used for the experiments.

range of surfaces (i.e.RGB-values), allowing for a systematic
evaluation of color constancy performance. Another database
that is specifically useful for the evaluation of color constancy
algorithm is created by Foster et al. [123, 124]. These two
sets each contain eight natural scenes, that can be converted
into an arbitrary number of images using various illuminant
spectra (not provided). Finally, a database by Parraga et al.
[125] contains29 hyperspectral images with low resolution
(256× 256 pixels).

Databases withRGB-images are more informative on the
performance of the algorithms under realistic circumstances.
The first step towards realistic evaluation of color constancy
methods involves isolated compositions of objects that are il-
luminated by11 different light sources [122]. The11 different
lights include three different fluorescent lights, four different
incandescent lights and four incandescent lights combined
with a blue filter, and are selected to span the range of natural
and man-made illuminants as best as possible. The complete
database contains22 scenes with minimal specularities,9
scenes with dielectric specularities,14 scenes with metallic
specularities and6 scenes with at least one fluorescent surface.
Often, for illuminant estimation evaluation, a subset of31
scenes is used that only consists of the scenes with minimal
and with dielectric specularities. Even though these images en-
compass several different illuminants and scenes, the variation
of the images is limited.

A more varied database is composed by Ciurea and Funt
[126]. This data set contains over11, 000 images, extracted
from 2 hours of video recorded under a large variety of imag-
ing conditions (including indoor, outdoor, desert, cityscape
and other settings). In total, the images are divided into15
different clips taken at different locations. The ground truth
is acquired by attaching a grey sphere to the camera, that is
displayed in the bottom right corner of the image. Obviously,
this grey sphere should be masked during experiments to
avoid biasing the algorithms. Some examples of images that
are in this data set are shown in figure4(a). The main
disadvantage of this set is the correlation that exists between
some of the images. Since the images are extracted from video
sequences, some images are rather similar in content. This
should especially be taken into account when dividing the
images into training and test-sets. Another issue of this data
set is that an unknown post-processing procedure is applied
to the images by the camera, including gamma-correction
and compression. A similar data set is recently proposed in
[127]. Although the number of images in this set (83 outdoor
images) is not comparable to the previous set, the images are
not correlated and are available inXY Z-format, and can be
considered to be of better quality. Further, an extension of the
data set is proposed in [128], where an additional126 images
with varying environments (e.g. forest, seaside, mountain snow
and motorways) are introduced. Gehler et al. [102] introduced
a new database, consisting of568 images, both indoor and
outdoor. The ground truth of these images is obtained using
a MacBeth Color Checker that is placed in the scene. The
main advantage of this database is the quality of the images
(which are free of correction), but the variation of the images
is not as large as the data set containing over11, 000 images.
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Some examples of images that are in this data set are shown
in figure 4(b). Finally, Shi and Funt generated a set of105
high dynamic range images [58, 59]. These images use four
color checkers to capture the ground truth and are constructed
from multiple exposures of the same scene.

A summary of available data sets is presented in table
I. Generally, a distinction can be made between real-world
RGB-images and images with controlled illumination condi-
tions. The latter type of data, including hyperspectral images,
should mainly be used to aid the development of new algo-
rithms and for the systematic analysis of methods. Conclusions
about the performance with respect to existing methods based
on such data sets should be avoided as much as possible,
since it is relatively easy to tune any algorithm to obtain a
high performance on such data sets. The real-worldRGB-
images are more suited to compare algorithms, as such data
are probably the target data of the intended application of most
color constancy algorithms.

VII. E VALUATION

This section consists of a large-scale evaluation of vari-
ous color constancy algorithms2. Most methods selected are
evaluated using publicly available source-code, ensuring the
repeatability of these results. Two different data sets are used
for evaluation: the grey-ball SFU-set and the color-checker-set
(note that the data used in this paper is obtained from [129]).
These sets are selected because of their size (they are the two
largest sets available to date), their nature (the sets consist of
real-world images in an unconstrained environment) and their
benchmark-status (the grey-ball SFU-set is widely used, the
recent color-checker-set has the potential to become widely
used).

A. Experimental details

Both data sets contain a marker used to obtain the ground
truth. This marker is masked during all experiments. Further,
all experiments are performed on linearRGB-images, as the
color formation model in sectionII-A is based on linear
images. Moreover, color constancy is generally implemented
on a digital cameraprior to the conversion of the raw data
to device-dependentRGB-images. Hence, using linearRGB-
images is basically the only logical option. The color-checker-
set is available insRGB-format, but Shi and Funt [129]
reprocessed the RAW data to obtain linear images with a
higher dynamic range (14 bits as opposed to standard8
bits). The ground truth of the grey-ball SFU-set is obtained
using the original images (color model of these images is
NTSC-RGB). Therefore, we recomputed the ground truth
by converting the images fromNTSC-RGB to linearRGB
assumingγ = 2.2. It is important to note that recomputing the
ground truth from the gamma-correction images is different
from applying gamma-correction to the originally provided
ground truth values of the illuminants. Due to the gamma-
correction, the illuminant estimation of the scenes are more

2All estimated illuminants can be downloaded fromhttp://www.
colorconstancy.com.

chromatic and consequently this leads to higher angular errors
3. This paper is the first to apply color constancy to the linear
images of the grey-ball SFU-set and the obtained results are
therefore not comparable to previously published results.

All algorithms are trained using the same setup, based
on cross-validation. Training on the grey-ball SFU-set is
performed by dividing the data into15 parts, where we ensure
that the correlated images (i.e. the images of the same scene)
are grouped in the same part. Next, the method is trained on
14 parts of the data and tested on the remaining part. This
procedure is repeated15 times, so every image is in the test set
exactly once and all images from the same scene will either be
in the training set or in the test set at the same time. The color-
checker-set adopts a simpler 3-fold cross-validation. The three
folds are provided by the authors of the data set and to ensure
repeatability of the results we did not diverge from this. This
cross-validation-based procedure is also adapted to learn the
optimal parameter setting for the static algorithms (optimizing
p andσ) and the gamut-based algorithms (optimizing the filter
sizeσ). Further, the regression-based method is implemented
using LIBSVM [130], and is optimized for number of bins of
the binary histogram and for the SVR-parameters. Finally, all
combination-based methods are applied to a select set of static
methods: using eq. (9) we systematically generated9 methods
using pixel values,8 methods using1st-order derivatives and7
methods using2nd-order derivatives. Based on the details of the
corresponding methods, the following strategies are deployed.
The No−N−Max combination method [105] is applied to a
subset of6 methods (finding the optimal combination of6
methods using the same cross-validation-based procedure), the
method using high-level visual information [117] is applied
to the full set of methods (setting the number of semantic
topics to 30) and the method using natural image statistics
[106, 107] is applied to a subset of3 methods (one pixel-
based, one edge-based and one2nd-order derivative-based
method, finding the optimal combination using the same cross-
validation procedure).

B. Grey-ball SFU-set

The results4 on the SFU-set are shown in tableII , and
statistical significance is demonstrated in tableIV(a). Some
example results are shown in figure5. Pixel-based gamut
mapping performs similar to the Grey-Edge method, but
judging from these results, simple methods like the White-
Patch and the Grey-World are not suited for this data set with
the current preprocessing strategy. As expected, combination-
based methods outperform single algorithms, where the dif-
ference between illuminant estimation using high-level visual
information and using natural image statistics is negligible (i.e.
not statistically significant).

C. Color-checker-set

The results on this data set are shown in tableIII (see
table IV(b) for statistical significance) and some example

3The new ground truth can be downloaded fromhttp://www.colorconstancy.
com.

4Bayesian color constancy is omitted from this table because we did not
obtain satisfactory results on this data set.

http://www.colorconstancy.com
http://www.colorconstancy.com
http://www.colorconstancy.com
http://www.colorconstancy.com
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Data set Pros Cons
SFU hyperspectral set [122] + Large variety − Best-case assessment of performance

(1, 995 surface spectra) + Allows for systematic evaluation
Foster et al. [123, 124] + High quality hyperspectral images − Limited amount of data

(8 + 8 images) + Real-world natural scenes
Bristol set [125] + Hyperspectral images − Low quality images

(28 images) + Real-world natural scenes
SFU set [122] + Scenes with varying characteristics − Laboratory setting

(223 + 98 + 149 + 59 images) + Captured with calibrated camera
Grey-ball SFU-set [126] + Largest set available − Correlation exists between images

(11, 346 images) + Large variety of images − Images are post-processed
Barcelona set [127] + Uncorrelated images − Few images

(83 + 126 images) + High-quality XY Z-data available − Short time-frame
Color-checker-set [102] + High quality images − Medium variety

(568 images) + Uncorrected data
HDR images [58, 59] + High Dynamic Range images − Few images

(105 images) + Uncorrected data

TABLE I
SUMMARY OF DATA SETS WITH ADVANTAGES AND DISADVANTAGES.

Fig. 5. Some example results of various methods applied to several test images. The angular error is shown in the bottom right corner of the images. The
methods used are, from left to right, perfect color constancy using ground truth, Grey-World,2nd-order Grey-Edge, Inverse Intensity Chromaticity Space and
using High-level Visual Information.

Method Mean µ Median Trimean Best-25% (µ) Worst-25% (µ)
Do Nothing 15.6◦ 14.0◦ 14.6◦ 2.1◦ 33.0◦

White-Patch (e0,∞,0) 12.7◦ 10.5◦ 11.3◦ 2.5◦ 26.2◦

Grey-World (e0,1,0) 13.0◦ 11.0◦ 11.5◦ 3.1◦ 26.0◦

general Grey-World (e0,p,σ) 12.6◦ 11.1◦ 11.6◦ 3.8◦ 23.9◦

1st−order Grey-Edge (e1,p,σ) 11.1◦ 9.5◦ 9.8◦ 3.2◦ 21.7◦

2nd−order Grey-Edge (e2,p,σ) 11.2◦ 9.6◦ 10.0◦ 3.4◦ 21.7◦

Spatial Correlations (without reg.) 12.7◦ 10.8◦ 11.5◦ 2.4◦ 26.0◦

Spatial Correlations (with reg.) 12.7◦ 5.3◦ 5.7◦ 1.2◦ 16.1◦

Using Inverse Intensity Chromaticity Space 14.7◦ 11.0◦ 11.6◦ 3.2◦ 32.7◦

Pixel-based Gamut Mapping 11.8◦ 8.9◦ 10.0◦ 2.8◦ 24.9◦

Edge-based Gamut Mapping 13.7◦ 11.9◦ 12.3◦ 3.7◦ 26.9◦

Intersection: Complete 1-jet 11.8◦ 8.9◦ 10.0◦ 2.8◦ 24.9◦

Regression (SVR) 13.1◦ 11.2◦ 11.8◦ 4.4◦ 25.0◦

Statistical Combination (No−N−Max) 10.3◦ 8.2◦ 8.8◦ 2.7◦ 21.2◦

Using High-level Visual Information 9.7◦ 7.7◦ 8.2◦ 2.3◦ 20.6◦

Using Natural Image Statistics 9.9◦ 7.7◦ 8.3◦ 2.4◦ 20.8◦

TABLE II
PERFORMANCE OF SEVERAL METHODS ON THElinear GREY-BALL SFU-SET (11, 346 IMAGES).

results are shown in figure6. On this data set, the edge-
based methods, i.e. Grey-Edge, Spatial Correlations and edge-
based Gamut Mapping, perform significantly worse than pixel-
based methods like Gamut Mapping and general Grey-World.
However, it can be observed that the error on ”difficult” images
(i.e. images on which the method estimates an inaccurate illu-
minant, theWorst-25% column) for both types of algorithms is

similar. This indicates that the performance of methods using
low-level information (either static algorithms or learning-
based methods) is bounded by the information that is present.
Using multiple algorithms is required to decrease the error of
these ”difficult” images, as can be seen by the performance
of combination-based methods. Even though the increase in
overall performance is not very high, methods using High-
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Fig. 6. Some example results of various methods applied to several test images. The angular error is shown in the bottom right corner of the images. The
methods used are, from left to right, perfect color constancy using ground truth, White-Patch,1st-order Grey-Edge, pixel-based Gamut Mapping and using
Natural Image Statistics.

Method Mean µ Median Trimean Best-25% (µ) Worst-25% (µ)
Do Nothing 13.7◦ 13.6◦ 13.5◦ 10.4◦ 17.2◦

White-Patch (e0,∞,0) 7.5◦ 5.7◦ 6.4◦ 1.5◦ 16.2◦

Grey-World (e0,1,0) 6.4◦ 6.3◦ 6.3◦ 2.3◦ 10.6◦

general Grey-World (e0,p,σ) 4.7◦ 3.5◦ 3.8◦ 1.0◦ 10.1◦

1st−order Grey-Edge (e1,p,σ) 5.4◦ 4.5◦ 4.8◦ 1.9◦ 10.0◦

2nd−order Grey-Edge (e2,p,σ) 5.1◦ 4.4◦ 4.6◦ 1.9◦ 10.0◦

Spatial Correlations (without reg.) 5.9◦ 5.1◦ 5.4◦ 2.4◦ 10.8◦

Spatial Correlations (with reg.) 4.0◦ 3.1◦ 3.3◦ 1.1◦ 8.5◦

Using Inverse Intensity Chromaticity Space 13.6◦ 13.6◦ 13.5◦ 9.5◦ 18.0◦

Pixel-based Gamut Mapping 4.1◦ 2.5◦ 3.0◦ 0.6◦ 10.3◦

Edge-based Gamut Mapping 6.7◦ 5.5◦ 5.8◦ 2.1◦ 13.7◦

Intersection: Complete 1-jet 4.1◦ 2.5◦ 3.0◦ 0.6◦ 10.3◦

Bayesian 4.8◦ 3.5◦ 3.9◦ 1.3◦ 10.5◦

Regression (SVR) 8.1◦ 6.7◦ 7.2◦ 3.3◦ 14.9◦

Statistical Combination (No−N−Max) 4.3◦ 3.4◦ 3.7◦ 1.4◦ 8.5◦

Using High-level Visual Information 3.5◦ 2.5◦ 2.6◦ 0.8◦ 8.0◦

Using Natural Image Statistics 4.2◦ 3.1◦ 3.5◦ 1.0◦ 9.2◦

TABLE III
PERFORMANCE OF SEVERAL METHODS ONlinear COLOR-CHECKER-SET (568 IMAGES).

level Visual Information and Natural Image Statistics are
statistically similar to the pixel-based Gamut Mapping, the
largest improvement in accuracy is obtained on these difficult
images (the mean angular error on the worst25% of the images
drops from10.3◦ to 8.0◦ and 9.2◦, respectively). Hence, to
arrive at a robust color constancy algorithm that is able to
accurately estimate the illuminant on any type of image, it is
necessary to combine several approaches.

VIII. D ISCUSSION ANDFUTURE DIRECTIONS

In this article, an overview of often used approaches to
illuminant estimation is presented, together with recent devel-
opments. Criteria that are important for computational color
constancy algorithms are the requirement of training data, the
accuracy of the estimation, the computational runtime of the
method, the transparency of the approach, the complexity of
the implementation and the number of tunable parameters. A
summary of the discussed methods is presented in tableV. In
sectionIII-A , methods that are based on low-level information
are presented. These methods are not dependent on training
data and the parameters are not dependent on the input data,
and are therefore calledstatic. Existing methods include the
Grey-World and the White-Patch, and recent developments
extended these methods to incorporate higher-order statistics.

Advantages of such methods are a simple implementation
(often, merely a few lines of code are required) and fast
execution. Further, the accuracy of the estimations can be quite
high, provided the parameters are selected appropriately. On
the other hand, inaccurate parameter selection can severely
reduce the performance. Moreover, the selection of the optimal
parameters is quite opaque, especially without prior knowledge
on the input data. Physics-based methods discussed in section
III-B suffer less from the parameter selection, but are also less
accurate (even for properly selected parameters).

In sectionIV the gamut-based methods and an extension
to incorporate the differential nature of images are described.
The main advantages of gamut-based methods are the elegant
underlying theory and the potential high accuracy. However,
proper implementation requires some effort and appropriate
preprocessing can severely influence the accuracy.

Finally, in sectionV, methods that can not operate without
training phase are discussed. SectionV-A discusses methods
that learn low-level statistics, like regression techniques and
Bayesian approaches. Advantages of such methods are that
they are (relatively) simple to implement and that they can be
tuned towards specific data (like indoor or outdoor images).
Disadvantages are that the output is often rather non-intuitive
since the model that is learned is quite opaque. On the
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15. 1 1 1 0 1 1 1 -1 1 -1 1 -1 0 1 0 -1 0
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(a) linear grey-ball SFU-set (b) linear color-checker-set

TABLE IV
WILCOXON SIGN TEST ON THE TWO DATA SETS. A POSITIVE VALUE (1) AT LOCATION (i, j) INDICATES THE MEDIAN OF METHOD i IS SIGNIFICANTLY

LOWER THAN THE MEDIAN OF METHOD j AT THE 95% CONFIDENCE LEVEL. A NEGATIVE VALUE (-1) INDICATE THE OPPOSITE, AND A ZERO (0)
INDICATES THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN THE TWO METHODS.

other hand, methods using higher-level statistics and semantics
discussed in sectionsV-B andV-C, like the selection algorithm
using natural image statistics, are often quite intuitive since it
can be predicted beforehand which method will be selected
for a specific input image. Moreover, the accuracy of such
approaches has been proven to be state-of-the-art. However,
the use of multiple single algorithms means it is inherently
slower than the single algorithms themselves.

A. Future directions

As explained in sectionI, explanations for human color
constancy and computational approaches are diverging. It
would be interesting to bring the recent advances in human
color constancy closer to the computational level, to map
the computational advancements to human explanations. For
instance, [106, 107] suggest that the optimal computational
approach that is taken for a specific image is based on the
statistics of the scene. It is unknown to what extent human
observers use a similar approach; if multiple cues are available
then in what order are they processed and what weight is
given to each cue? On the other hand, recent developments in
human color constancy suggest that color memory, possibly
in addition to contextual clues, could play an important role.
[131, 132, 133, 134]. It is worth exploring the corresponding
computational approaches, if they exist.

A first step towards convergence of human and compu-
tational color constancy might be to adapt a new image
correction model. It is suggested that human color constancy
is relational rather than absolute and recently experiments
are performed that indicate that human observers do not
explicitly judge the color of the illuminant [135]. Mapping
this to computational methods would imply that the two-stage
setup (illuminant estimation followed by image correction) is

not appropriate. According to this theory, methods closer to
human color constancy are methods that learn correspondences
between images and possible illuminants [136]. This implies
that the experimental setup be changed, as the illuminant is
not explicitly estimated.

Finally, all methods discussed so far are based on the
assumption that the illuminant in the image is spatially uni-
form. However, in real-life scenarios, this assumption is easily
violated: indoor images can depict multiple rooms in the
same image, while all rooms can have spectrally different
light sources. Furthermore, outdoor images can show parts
of the scene in shadow and other parts in bright sunlight.
For simplification, such examples are ignored by most current
approaches. Only a few methods have been proposed that
consider the presence of multiple light sources. For instance,
Finlayson et al. [137] and Barnard et al. [138] propose a
Retinex-based approach that explicitly assumes that surfaces
exist in the scene that are illuminated by multiple light sources.
Another Retinex-based approach [25] uses stereo images to
derive 3D information on the surfaces that are present in the
images, to be able to distinguish material transitions from local
light color changes. In [139], human interaction is employed
to specify locations in images that are illuminated by different
light sources. Finally, [57] proposes a Grey-World-like method
that is based on the assumption that the light source smoothly
varies across the scene. An additional difficulty of this line of
research is the lack of ground truth. In sectionVI , several
databases are described, all based on the assumption that
there is only one light source in the scene. Consequently,
before proposing new methods that depart from the uniform
assumption, new proper databases for evaluation have to be
designed.

To conclude, interesting future research directions include
investigation of the relation between human and computational
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Method Ex. Pros Cons
Static [49]− [62] + Simple to implement − Opaque parameter selection

(using low-level + Accurate for adequate parameters − Inaccurate for inferior parameters
statistics) + Fast execution

Static [63]− [69] + No training phase − Difficult to implement
(physics-based) + Fast execution − Mediocre performance

+ Few parameters

Gamut-based [70]− [81] + Elegant underlying theory − Requires training data
+ Potentially high accuracy − Difficult to implement

− Requires proper preprocessing

Learning-based [82]− [96] + Tunable for specific data set − Requires training data
(using low-level + Simple to implement − Non-intuitive

statistics) − Slow execution
Learning-based [97]− [104] + Potentially high accuracy − Requires training data

(using higher- + Intuitive − Inherently slower than single methods
level statistics) − Difficult to implement

Learning-based [105]− [111] + Potentially high accuracy − Requires training data
(using + Incorporates semantics − Difficult to implement

semantics) − Slow execution

TABLE V
SUMMARY OF METHODS WITH ADVANTAGES AND DISADVANTAGES.

color constancy theories, adopting alternate image correction
models besides the two-stage approach used in this paper, and
departure of the uniform light source assumption.
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