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Abstract—Computational color constancy is a fundamental
prerequisite for many computer vision applications. This paper
presents a survey of many recent developments and state-of-the-
art methods. Several criteria are proposed that are used to assess
the approaches. A taxonomy of existing algorithms is proposed
and methods are separated in three groups: static methods,
gamut-based methods and learning-based methods. Further, the
experimental setup is discussed including an overview of publicly
available data sets. Finally, various freely available methods, of
which some are considered to be state-of-the-art, are evaluated
on two data sets.

Index Terms—color constancy, illuminant estimation, survey,
performance evaluation.

I. INTRODUCTION

OLOR can be an important cue for computer vision or

image processing related topics, like human-computer
interaction [], color feature extractionZ] and color appear-
ance modelsd. The colors that are present in images are
determined by the intrinsic properties of objects and surfacEg. 1. An illustration of the influence of differently colored light sources
as well aghe color of the light source. For a robust color-bas(-;ﬁq1 the measured image values. These images are adaptediramdshow

. . e same scene, rendered under four different light sources.
system, these effects of the light source should be filtered out.
This ability to account for the color of the light source is called
color constancy
Human vision has the natural tendency to correct for t

effects of the color of the light source, e.g\, [5, 6, 7, 8],
but the mechanism that is involved with this ability is not y
fully understood. Early work resulted in the Retinex theory b

Land and McCannd, 10, 11], after which many computational "~ 1 Th . debict th dered
models are derived that are based on this perceptual thehy'9ure 1. 1hese images depict e same scene, rendere
der four different light sources. The goal of computational

[12, 13, 14]. However, there still exists a discrepancy betweel | ¢ lqonthms is t t the (first th ¢ t
human and computational color constancy. Computationceﬂ or constancy algorithms is to correct the (first three) targe

models can not fully explain the observed color constancyI ages (und_er th_ree different colored Iigh_t squrces), so that
human observers, as shown by Kraft and Brainard. [They { ey appear identical to the (fourth) canonical image (under a
tested the ability of several computational theories to accomm?'te light source)_.

for human color constancy, but found that each theory leave<Oten, computational models for color constancy are charac-
considerable residual constancy. In other words, without tHgfiZ€d by the estimation of the illuminant. The corresponding

specific cues corresponding to the computational models, igorithms are based on the assumption that the color of the
mans are still to some extent color constarii[ Alternatively, l9ht source is spatially uniform across the scene. Hence,
observations on human color constancy cannot be readjer globally estimating the color of the light source, color

applied to computational models: Golz and MacLeod, [17] correction can be appliec_i to the image to obtain a _colo_r
constant image. Another line of research, not pursued in this

Copyright(©2011 IEEE. Personal use of this material is permitted. Howpaper, focusses on the invariance that can be obtained by
ever, permission to use this material for any other purpose must be obtai%wying various photometric transformations. sometimes also

from the IEEE by sending a request to pubs-permissions@ieee.org.
Arjan Gijsenij and Theo Gevers are with the Intelligent Systems La'&':'ferred to as color ConStanqu: 20, 21]- Such methods are

Amsterdam (ISLA), University of Amsterdam, The Netherlands (e-maibften extended to incorporate other forms of invariance, like

a.gijsenij@uva.nl; th.gevers@uva.nl). _ __invariance to highlights or shadows, but do not result in output
Theo Gevers and Joost van de Weijer are with the Computer Vision

Center (CVC), Universitat A@noma de Barcelona, Barcelona, Spain (e-maitages that have any visual similarity to the original input
joost@cvc.uab.es). Image.

" Reddish light source " Neutral light source

r%mwed that chromatic scene statistics influence the accuracy
of human color constancy, but when mapped to computational
odels, the influence was found to be very weak at bigdt [
herefore, the focus in this article is on computational color
onstancy algorithms. As an example, consider the images
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The main focus of this article is on the estimation of theansformation is not to scale the brightness level of the image,
illuminant color, more specifically the estimation of the illumi-as color constancy methods only correct for theomaticity
nant using a single image from a regular digital camera. Henoé,the light source. Sectiofi-A will discuss the formation
methods using additional images, e y2,[23, 24, 25, 26, 27], of an image, while more information on the transformation is
physically different devices, e.g2§, 29, or video sequences, discussed in sectioh-B.

e.g. 30, 31], are not included in this review. When using
a single image that is taken with a regular digital camera, |mage formation
illuminant estimation is an underconstrained problem; both the.l_he image valueg = (f,, /., f,)T depend on the color of

intrinsic properties of a surface and the color of the iIIuminar%e light sourcel (\), the surface reflectancé(x, A) and the
have to be estimated, while only the product of the two (i.e, S i ’ T
the actual image) is known. Early solutions for estimating tr?,eamera sensitivity functiop() = (p,,(A), pe(A), p5 (V)" ,

illuminant tried to bridge this gap by adopting linear model\éVhere./\ 1S Phe wgvelength of the light and is the spatial

: oordinate $6, 37]:
of lights and surfaces3p, 33, 34, 35]. Unfortunately, these -
approaches do not result in satisfactory results for real-worjd x) — , (x) / T(\)pe(N)S(x, )\)d)\—i—ms(x)/ I(\)pe(N)dA,
images. w

. . . 1)

In this paper, state-of-the-art approaches are divided int . - (

three types of algorithmsl) static methods2) gamut-based W%erec = {R,G, B}, w is the visible spectrum, and;;, and

methods and) learning-based methods methodsThe first ™ are scale factors that model the relative amount of body
P d specular reflectance that contribute to the overall light

w

type of algorithms are methods that are applied to any ima g ) . :
without the need for training. In other words, for a given da fflected at '°C'°‘_“°"$- L_Jnder the Le_xmbernan gssumphon t_he
set or application, the parameter setting is kept fixecs{atic). specul.ar reflection is ignored. This results in the following
For the second and third type of algorithms, a model needsrpc?del'

be trained before the illuminant can be estimated. This is an fo(x) = m(x)/ I(A)pe(N)S(x, N)dA, )
important distinction that partially determines the suitability w

of an algorithm for applicability to real-world systems. Theyhere i (x) is Lambertian shading. It is assumed that the
criteria used in this article to assess the computational meth@dsne is illuminated by one single light source and that the

are the following: observed color of the light soureedepends on the color of
— the requirement of training data; the light source/ (\) as well as the camera sensitivity function
— the accuracy of the estimation; p(N):
— the computational runtime of the method; €r
— transparency of the approach; e=le. | = / I(A\)p(N)dA. 3
— complexity of the implementation; €p w

— number of tunable parameters. Without prior knowledge, botH(\) and p(\) are unknown,
For evaluation of computational color constancy methodgnq hence the estimation efis an under-constrained problem
various data sets are currently available, ranging from higfiat cannot be solved without further assumptions. Therefore,
quality hyperspectral scenes to large-scale real-wéddB- jn practice, color constancy algorithms are based on various
images. Two large data sets are selected to analyze j@plifying assumptions such as restricted gamuts (limited
performance of various publicly available methods. The rgymber of image colors which can be observed under a
sults of these experiments will be made available on line ghecific illuminant), the distribution of colors that are present
http://www.colorconstancy.com : in an image (e.g. white patch, grey-world etc.) and the set of
This paper is organized as follows. First, in sectiona possible light sources. This paper will give an overview on the

the methodology explored in this paper. Then, in sectioge color of the light source.

III-V, current approaches as well as recent developments
are described. Sectio¥| describes the experimental setu

including commonly used error measures and databases with ) ] o
ground truth. In sectioi Il , two of these data sets are selected 1h€ focus of this paper is on estimating the color of

and extensive experiments are performed using a wide rarigg ight source. However, in many cases the color of the
of methods. Finally, in sectioiIll, a discussion and future light source is of less importance than the appearance of the
directions are presented. input image under a reference light (called canonical light
source). Therefore, the aim of most of the color constancy

Il. COLOR CONSTANCY methods is to transform all colors of the input image, taken

. N under an unknown light source, to colors as they appear

quor constancy can be achieved by estl_matlng the Cplprﬁi’ﬁder this canonical light source. This transformation can
the light source, followed by a transformation of the origingle ,hgjgered to be an instantiation of chromatic adaptation,

image values using this illuminant estimate. The aim of thbsg []. Chromatic adaptation is often modelled using a

INote that the classification of the methods is not absolute, which meenge‘jir transformation, Wh'Ch In- turn C_an be _S!mp“f'ed by
that some methods are, for example, both gamut-based and learning-baséd.diagonal transformation when certain conditions are met

Image correction
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[38, 39, 40]. Other possible chromatic adaptation methodshown that segmenting the image and computing the average
include linearized Bradford/[l] and CIECAT02 [.7]. color of all segments may improve the performance of the
In this paper, the diagonal transform won Kries Model Grey-World algorithm $1, 52]. This preprocessing step can

[43] is used, without changing the color basié4] 45] or lead to improved results because the Grey-World is sensitive
applying spectral sharpeningf, 47]. These techniques haveto large uniformly colored surfaces, as this often leads to
shown their merits of improving the quality of output imagesscenes where the underlying assumption fails. Segmenting the
if the illuminant under which the original image was recordeiinage before computing the scene average color will reduce
is known. Since the discussed methods focus on estimatibie effects of these large uniformly colored patches. Related
of this illuminant, changing color bases and spectral sharpanethods attempt to identify the intrinsic grey surfaces in an
ing techniques are omitted in this paper for simplicity. Thanage, i.e. they attempt to find the surfaces under a colored
diagonal model that is used is given by: light source that would appear grey if rendered under a white
light source 3, 54, 55. When accuratelyrecovered, these
surfaces contain a strong cue for the estimation of the light

wheref,, is the image taken under an unknown light sourc€0Urce.

f, is the same image transformed, so it appears if it was takerf\nother well-known assumption is the White-Patch as-
under the canonical illuminant, arfd, , is a diagonal matrix Sumption [.(]: the maximum response in the( B-channels
which maps colors that are taken under an unknown ligigt caused by a perfect reflectanca surface with perfect

sourceu to their corresponding colors under the canonic&fflectance properties will reflect the full range of light that it
illuminant ¢: captures. Consequently, the color of this perfect reflectance is

exactly the color of the light source. In practice, the assump-

ft = Du,tfu7 (4)

gc _ (f)l dO 8 g“ ) tion of perfect reflectance is alleviated by considering the color
BC - 0 02 d B’“ channels separately, resulting in thex-RG B algorithm. This
c 3 u

method estimates the illuminant by computing the maximum
Although this model is merely an approximation of illuresponse in the separate color channels:

minant change and might not accurately be able to model
photometric changes, it is widely accepted as color correction e Je(x) = kee. (7)
model [38, 48, 39, 40, 49 and it underpins many color Related algorithms apply some sort of smoothing to the image,
constancy algorithms (e.g. the gamut mapping in sedtion prior to the illuminant estimationsp, 57]. This preprocessing
and Grey-World based methods in sectibm ). The diagonal step has similar effects on the performance of the White-
mapping is used throughout this paper to create output-imagegch algorithm as segmentation on the Grey-World. In this
after correction by a color constancy algorithm, where @ase, the effect of noisy pixels (with an accidental high

perfect white light, i.e(, 7=, )", is used as canonicalintensity) is reduced, improving the accuracy of the White-

illuminant. Patch method. An additional advantage of the Local Space
Average Color method[/] (LSAC) is that it can provide

[1l. STATIC METHODS a pixel-wise illuminant estimate. Consequently, it does not

dequire the image to be captured under a spatially uniform light

discussed in this paper are static methods, or methods tfiarce. An analysis of thmax-!G:B algorithm is presented
are applied to input images with a fixed parameter settin!&.[ v 1, Whgre it is shown that th? dynamic range of an
Two subtypes are distinguishetla) methods that are based'age, In addition to the preprocessing strategy, can have a

on low-level statistics andb) methods that are based on th&'dnificant iﬂfluenﬁe on th‘; per;orrr?ance of thisldmelthoq.h
physics-based dichromatic reflection model. In [60], the White-Patch and the Grey-World algorithms
are shown to be special instantiations of the more general

Minkowski-framework:

The first type of illuminant estimation algorithms that i

A. Low-level statistics-based methods

The best-known and most often used assumption of this type L.(p) = (/ ff(x)dx) = ke, (8)
is the Grey-World assumptiorb()]: the average reflectance
in a scene under a neutral light source is achromatic Substitutingp = 1 in equation §) is equivalent to computing
directly follows from this assumption, that any deviation fronthe average off(x), i.e. L(1)= (£,(1), L£,(1), £,(1))"
achromaticity in the average scene color is caused by t@uals the Grey-World algorithm. When= oo, equation §)
effects of the illuminant. This implies that the color of théesults in computing the maximum 6fx), i.e. £(oc) equals

light sourcee can be estimated by computing the averagfe White-Patch algorithm. In general, to arrive at a proper
color in the image: value, p is tuned for the data set at hand. Hence, the optimal
value of this parameter may vary for different data sets.
/ fo(x)dx = ke, (6) The assumptions of the above color constancy methods are
based on the distribution of colors (i.e. pixel values) that are
wherek is a multiplicative constant chosen such that the illygresent in an image. The incorporation of higher-order image
minant colore = (e, e, e, )T, has unit length. Alternatively, statistics (in the form of image derivatives) is proposed in

RY“G’"B

instead of computing the average color of all pixels, it has begil], where a framework called Grey-Edge is presented that
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incorporates the well-known methods like ef),(as well as locus is intersected with the dichromatic line of the surface to

methods based on first- and second-order derivatives: recover the color of the light source. This method, in theory,
. » 1 allows for the estimation of the illuminant even when there
(/ ‘afw(x) dx> " ke (9) is only one surface present in the scene. However, it does
oxr 7 require all pixels in the image to be segmented, so that all
where| - | indicates the Frobenius norm,= {R,G, B}, n unique surfaces are identified. Alternatively, the colors in an

Further, derivatives are defined as convolving the images B§veral planes simultaneously oriented around an axis defined

Gaussian derivative filters with scale parametdi57]: by the illuminant ['1, 77). This eliminates the problem of
pre-segmentation, but does rely on the observation that a
as+tf 8S+tG . . . . .
LA o (10) representative color of any given material can be identified. In
Oxsyt Ox* Oy [79), these requirements are relaxed, resulting in a two Hough

wherex denotes the convolution and+ ¢ = n. This method transform voting procedure.

is enhanced with an illuminant constraint by Chen et al.

[63]. Further, Chakrabarti et al.6{] explicity model the IV. GAMUT-BASED METHODS

spatial dependencies between pixels. The adva_nt_age of thigpe gamut mapping algorithm has been introduced by
approach compared to the Grey-Edge is that it is able gyt 7). It is based on the assumption, thatreal-world
learn the dependencies between pixels in an efficient Wayages for a given illuminant, one observes only a limited
but the training phase does rely on an extensive databagher of colors Consequently, any variations in the colors
of images. Finally, Gijsenij et al.6f] note that different ¢ o image (i.e. colors that are different from the colors that
types of edges might contain various am_ounts of informatiof,, he observed under a given illuminant) are caused by a
They extend the Grey-Edge method to incorporate a gen€f@iation in the color of the light source. This limited set
weighting scheme (assigning higher weights to certain €dgesy.cqjors that can occur under a given illuminant is called
resulting in the weighted Grey-Edge. Physics-based weightigg, .anonical gamutC, and it is found in a training phase

schemes are proposed, concluding that specular edges 3@ hserving as many surfaces under one known light source
favored for the estimation of the illuminant. The 'ntrOdUCt'OQcalled thecanonical illuminan} as possible.

of these weighting schemes result in more accurate illuminantr,q fiow of the gamut mapping is illustrated in figuteln

estimates, but at the cost of complexity (both in CompUtaﬂ(ﬂbneral, a gamut mapping algorithm takes as input an image

and implementation). taken under an unknown light source (i.e. an image of which
the illuminant is to be estimated), along with the precomputed
B. Physics-based methods canonical gamut (see blocksand 2 in figure 2). Next, the

Most methods are based on the more simple Lamberti@igrithm consists of three important steps:
model following eq. 2), but some methods adopt the dichro- 1) Estimate the gamut of the unknown light source by
matic reflection model of image formation, following ed).( assuming that the colors in the input image are rep-
These methods use information about the physical interaction ~resentative for the gamut of the unknown light source.
between the light source and the objects in a scene, and are S0, all colors of the input image are collected in the
called physics-based methods. These approaches exploit the iNPut gamutZ. The gamut of the input image is used as
dichromatic model to constrain the illuminants. The underlying  feature in figure2.
assumption is that all pixels of one surface fall on a plane2) Determine the set ofeasible mappingsM, i.e. all
in RGB color space. If multiple of such planes are found, = Mappings that can be applied to the gamut of the input
corresponding to variouslifferent surfaces, then the color image and that result in a gamut that lies completely
of the light source is estimated using the intersection of  Within the canonical gamut. Under the assumption of the
those planes. Various approaches have been proposed that diagonal mapping, a unique mapping exists that converts

use specularities or highlights§, 67, 68, 69). The intuition the gamut of the unknown light source to the canonical
behind such methods is that if pixels are found where the —gamut. However, since the gamut of the unknown light
body reflectance factom, in eq. () is (close to) zero, then source is simply estimated by using the gamutoog

the color of these pixels are similar or identical to the color of ~ INPut image, in practice several mappings are obtained.
the light source. However, all these methods suffer from some ~ Every mapping: in the setM should take the input
disadvantages: retrieving the specular reflections is challenging 9amut completely inside the canonical gamut:

and color clipping can occur. The latter effectively eliminates MTecC (11)
the usability of specular pixels (which are more likely to be ! '
clipped than other pixels). This corresponds to block in figure 2, where the

A different physics-based method is proposed by Finlayson learned model (e.g. the canonical gamut) together with
et al. [70]. This method uses the dichromatic reflection model  the input features (e.g. the input gamut) are used to
to project the pixels of a single surface into chromaticity space.  derive an estimate of the color of the light source.
Then, the set of possible light sources is modelled by using3) Apply an estimator to select one mapping from the set
the Planckian locus of black-body radiators. This planckian  of feasible mappings (block in figure 2). The selected



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, MONTH 2010 5

Canonical gamut estimation

1. 2
Compute Compute
%} i : features : gamut

training data
(with ground truth)

A testing protocol
3. 4 5. e
Compute Compute Determine
::> [ > | feasible set of >
features R R final estimate
illuminants
test image output image
(under unknown (under canonical
light source) light source)

Fig. 2. Overview of gamut-based algorithms. The training phase consists of learning a model given the features of a wide variety of input imabes (block
resulting in the canonical gamut (blo@. The testing protocol consists of applying the learned model to the computed features of the input image (blocks
3 and4). Finally, one illuminant estimate is selected from the feasible set of illuminants (BBlpakd this estimate is used to correct the input image.

mapping can be applied to the canonical illuminarfinlayson [/6] increases the canonical gamut b%, while
to obtain an estimate of the unknown illuminant. Th8arnard [5] systematically enlarges the canonical gamut by
original method [4] used the heuristic that the mappindearning this gamut not only with surfaces that are illumi-
resulting in the most colorful scene, i.e. the diagonal maated by the canonical light source, but also with surfaces
trix with the largest trace, is the most suitable mappinghat are captured under different light sources which are
Simple alternatives are the average of the feasible setrnapped to the canonical illuminant using the diagonal model.
a weighted average’f]. Hence, possible failure of the diagonal model is captured
Several extensions have been proposed. First of all, diffly augmenting the canonical gamut. Another strategy is to
culties in implementation are addressed iff,[77], where Simulate specularities during computation of the canonical
it is shown that the gamut mapping algorithm can also @&mut, potentially increasing the performance of the gamut
computed in chromaticity spac{% ). These madifications mapping method even in situations where there is no null-
correspond to different feature computat|0n in blodkand solution B2, 83]. Alternatively, to avoid this null-solution, an
3 in figure 2. However, the performance of thid) approach e€xtension of the diagonal model called diagonal-offset model
is slightly worse than the performance of th® approach. is proposed §4]. This model allows for translation of the
It is shown that this decrease in performance is caused ipput colors in addition to the regular linear transformation,
the perspective distortion of the possible set of illuminangffectively introducing some slack into the model. All these
(the set of feasible mappings in st@pthat is caused by the modifications are implemented in blogkof figure 2.
conversion of the original image to 2D-chromaticity values. All these variations of the gamut mapping algorithm are
This can be solved by mapping the 2D-feasible set batkstricted to the use of pixel values to estimate the illuminant.
to three dimensions before selecting the most appropriddsenij et al. B5] extended the gamut mapping to incorporate
mapping [7, 7¢] (i.e. a slightly modified blockt in figure 2). the differential nature of images. They analytically show
Alternatively, in [79] an efficient implementation is introducedthat the gamut mapping framework is able to incorporate
using convex programming. This implementation is shown &1y linear filter output, and that, if failure of the diagonal
result in similar performance as the original method. Finallypodel can be prevented by adapting the diagonal-offset model
in [80] a simpler version of the gamut mapping is proposed4], derivative-based gamut mapping will not result in null-
using a simple cube rather than the convex hull of the pixeblutions. Further, they propose several combinations of dif-
values. ferent n-jet based gamut mappings, and show that the best
Another extension of the gamut mapping algorithm deajgerformance is obtained by taking the intersection of feasible
with dependency on the diagonal model. One of the disadva®ts.
tages of the original method is that a null-solution can occur The fusion strategy proposed i@ is based on the smaller
if the diagonal model fails. In other words, if the diagonatet of possible light sources obtained when taking the inter-
model does not fit the input data accurately, then it is possildection of multiple feasible sets. Another method to constrain
that no feasible mapping can be found that maps the inghe feasible set is proposed by Finlayson et &f] [and is
data into the canonical gamut with one single transform. Thialled gamut-constrained illuminant estimation. This method,
results in an empty solution set. One heuristic approach affectively reduces the problem of illuminant estimation to
avoid such situations it to incrementally augment the inpiluminant classificationby considering only a limited number
gamut until a non-empty feasible set is foud,[52]. Another of possible light sources, similar to Color-by-Correlation. One
heuristic approach is to extend the size of the canonical gameanonical gamut is learned for every possible light source.
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Then, the unknown illuminant of the input image is estimate. Methods using medium- and high-level statistics
by matching the input gamut to each of the canonical gamuts,
selecting the best match as final estimate.

V. LEARNING-BASED METHODS Despite the large variety of available methods, none of

The third type of algorithms estimate the illuminant usinghe color constancy methods can be considered as univer-
a model that is learned on training data. Indeed, gamut-basgdl All algorithms are based on error-prone assumptions
methods in sectionV can be considered learning-based to@r simplifications, and none of the methods can guarantee
but since this approach has been quite influential in coleatisfactory results for all images. To still be able to obtain
constancy research it has been discussed separately. good results on a full set of images rather than on a subset

Initial approaches using machine learning techniques asgimages, multiple algorithms can be combined to estimate
based on neural networks . The input to the neural network the illuminant. The outline of such approaches is illustrated
consists of a large binarized chromaticity histogram of thgsing figure3. The first attempts of combining color constancy
input image, the output is two chromaticity-values of thaigorithms are based on combining the output of multiple
estimated illuminant. Although this approach, when trainaglethods {03 : ]. In[10, three color constancy meth-
correctly, can deliver accurate color constancy even when oliis are combined using both linear (a weighted average of the
a few distinct surfaces are present, the training phase requifrgninant estimates) and non-linear (a neural network based
a large amount of training data. Similar approaches apmy the estimates of the considered methods) fusion-methods
support vector regressiofid, 89, 9] or linear regression tech- are considered. It is shown that a weighted average, optimizing
niques like ridge regression and kernel regression 92, 93] the weights in a least mean square sense, results in the best
to the same type of input data. Alternatively, thin-plate splingerformance, outperforming the individual methods that are
interpolation is proposed irdf] to interpolate the color of the considered. In 104, a statistics-based method is combined
light source over a non-uniformly sampled input space (i.@ith a physics-based method. Both methods return likelihoods

training images). for a predefined set of light sources, and by combining these
) o likelihoods a posteriori more accurate results are obtained.
A. Methods using low-level statistics Finally, in [105], several different combination strategies are

Color-by-correlation 95] is generally considered to be aemployed. These strategies include the mean value of all
discrete implementation of the gamut mapping, but it is actestimates, the mean value of the two closest estimates, and
ally a more general framework which includes other low-levéhe mean value of all methods excluding tNemost remote
statistics-based methods like Grey-World and White-Patch estimates (i.e. excluding the estimates with the largest distance
well. The canonical gamut is replaced with a correlatioto the other estimates). This latter strategy, excluding two out
matrix. The correlation matrix for a known light soureg of six estimates, resulted in the best performance. All these
is computed by first partitioning the chromaticity space intapproaches use fixed fusion weights in blo8kd6 in figure
a finite number of cells, followed by computation of the3, and the features in blocks and 4 can be seen as the
probabilities of occurrence of the coordinates under illuminailiuminant estimates themselves.

e;. One correlation matrix is computed for every possible

illuminant that is considered. Then, the information that is Instead of combining the output of multiple algorithms into
obtained from the input image matched to the information PN€ more accurate estimate, a different strategy is proposed
the correlation matrices to obtain a probability for every coy Gijsenij and Gevers1[6 107. They use the intrinsic
sidered light source. The probability of illuminastindicates Properties of natural images to select the most appropriate
the likelihood that the current input image was captured unde@lor constancy method for every input image. Characteristics
this light source. Finally, using these probabilities, one ligif natural images are captured using the Weibull parame-
source is selected as scene illuminant, e.g. using maximi@fization (e.g. grain size and contrast), and they show that
likelihood [95] or Kullback-Leibler divergenced]. the corresponding parameters &nd ) are related to image

Other methods using low-level statistics are based @ributes to which color constancy methods using low-level
the Bayesian formulation. Several approaches are propo&egtures (e.g. Grey-World, White-Patch and Grey-Edge) are
that model the variability of reflectance and light sourcgensitive to. In other words, they select the most appropriate
as random variables. The illuminant is then estimated frof@lor constancy algorithm for every image, depending on the
the posterior distribution conditioned on the image intensi§Pentents of the image. For instance, if an image contains
data P7, 98, 99. However, the assumptions of independerfinly @ few edges (corresponding to a low signal-to-noise
reflectance that is Gaussian distributed, proved to be tt§i0), then pixel-based methods like Grey-World and White-
strong (unless learned for and applied to a specific applicatiBatch are preferred. On the other hand, edge-based methods
like outdoor object recognition[(]). Rosenberg et al.lp7]  (€.9. 1°% and 2"-order Grey-Edge) are preferred when the
replace these assumptions with non-parametric models, usi@hal-to-noise ratio is medium or high. Instead of using
the assumption that nearby pixe|s are correlated. Furth\é{,eibuII-parameterization, various other features are explored
Gehler et al. [07] show that competitive results to state-ofin [10§ , , 117 to predict the most appropriate

the-art can be obtained when precise priors for illuminaticdgorithm for a given image. The most notable differences
and reflectance are used. between these approaches is in bldckf figure 3.
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Fig. 3. Overview of several learning-based algorithms. After the input features are compared to the training features, the optimal fusion weights are determined.
These weights can be static (fixed for all input images) or dynamic (dependent on the features of the input images). After the fusion weights for the current
input image are determined, the estimated illuminants are combined into one final estimate. This combination can either by hard (one of the illuminants is
selected as final estimate) or soft (a weighted average of estimates is computed).

C. Semantic information The general experimental setup is as follows. First, part of the

Recently, several methods have been proposed that ed@t@ is used for training, if the algorithm requires this. Then,
mate the illuminant using some sort of semantic informatiofl€ color of the light source is estimated for every remaining
Gijsenij and Gevers16, , ] propose to dynamically image of the database and compared to the ground truth. The
determine which color constancy algorithm should be used fgpmparison requires some similarity or distance measure; an
a specific image, depending on the scene category. TheyQiien used measure is the angular error:
not discuss the actual classification of the images and how e e
to use the uncertainty in the classification results, but merely dangie(€c, €,) = cos™! (H> ; (12)
assume that the scene category of an image is known. Bianco lleell - flex]l
et al. [L13 propose an indoor-outdoor classifier and use theheree, - e, is the dot product of the estimated illuminast
uncertainty of the classifier to introduce an "unsure’-clasand the ground trutle, and|| - || is the Euclidean norm of a
Then, they learn the appropriate color constancy algorithm feector. Alternate setups exist, depending on the application.
each of these three classes. However, the distinction betw&en instance, Funt et al.1[9 describe an experiment to
indoor and outdoor classes is rather arbitrary. Thereforvaluate the usefulness of color constancy algorithms as pre-
[114, 115 propose to use a stage classifier that distinguishpsocessing step in object recognition.
medium-level semantic classesl1f]. This results in a color  In most situations, for instance when the application is
constancy method that explicitly uses 3D scene informaties obtain an accurate reproduction of the image under a
for the estimation of the color of the light source. white light source, the distance measure should be an accu-

A different approach uses high-level visual informationvate reflection of the quality of the output image. 2],
Rather than classifying images into a specific class and agveral distance measures are analyzed with respect to this
plying different color constancy methods depending on thequirement, and it is shown that the often used angular error
semantic category, van de Weijer et all[] propose to cast correlatesreasonably wellwith the perceived quality of the
illuminant hypotheses that are generated and evaluated baseghut images. However, to optimize this correlation, a data set
on the likelihood of semantic content. Using prior knowledgspecific measure, called perceptual Euclidean distance, should
about the world, an illuminant estimate is selected that resuljs adopted.
in colors that are consistent with the learned model of the Multiple algorithms are typically compared using a large
world. In other words, an illuminant estimate is selected thatimber of images, so the performance of every algorithm
will generate plausible images, e.g. images with a blue rath@$eds to be summarized over all images. An intuitive measure
than purple sky and green rather than reddish grass. A simif@uld be to simply compute the average error over the full
approach is proposed in [, where the termmemory color database. However, the error measures are often not normally
is used to refer to color that are specifically associated wiglistributed, but rather skewed resulting in a non-symmetric
object categories. These object-specific colors are useddietribution. Hence, the mean value of the errors is a poor

refine the estimated illuminants. summary statistic [21, 12(]. More appropriate measures to
summarize the distribution are the mediafa J] or the trimean
VI. EXPERIMENTAL SETUP [120). The median gives an indication of the performance

Evaluation of illuminant estimation algorithms requires imef the method on the majority of the images, while the
ages with a scene illuminant that is known (ground truthiximean also gives an indication of the extreme values of the
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distribution. range of surfaces (i.d2G B-values), allowing for a systematic

In addition to these summarizing statistics, more insight inevaluation of color constancy performance. Another database
the performance of the algorithms can be obtained by showitiat is specifically useful for the evaluation of color constancy
box plots or by performing significance tesi’[, 12(]. A box algorithm is created by Foster et ai.Z[3 ]. These two
plot is used to visualize the underlying distribution of the erragets each contain eight natural scenes, that can be converted
metric of one color constancy method. A significance teshto an arbitrary number of images using various illuminant
like the Wilcoxon sign test, is usually performed between twapectra (not provided). Finally, a database by Parraga et al.
methods to show that the difference between two algorithrfis?5 contains29 hyperspectral images with low resolution
is statistically significant]21]. Further, the obtained improve- (256 x 256 pixels).
ment can only be considered to be perceptually significant if Databases withRG B-images are more informative on the
the relative difference between two methods is at 6as6%. performance of the algorithms under realistic circumstances.
Below that, the difference is not noticeable to human observéike first step towards realistic evaluation of color constancy

[129 methods involves isolated compositions of objects that are il-
luminated byl1 different light sourcesi27]. The 11 different
A. Data sets lights include three different fluorescent lights, four different

i&gzandescent lights and four incandescent lights combined

Two types of data can be distinguished that are used blue filt d lected t th f natural
evaluated color constancy methods: hyperspectral data A(HH] a biue Titer, and are selected to span the range ot hatura
gl man-made illuminants as best as possible. The complete

RGB-images. Databases containing hyperspectral data <&% . X o .
g g Nypersp abase contain82 scenes with minimal specularities,

are often smaller (less images) and contain less variation t ih dielectri lariti ith ali
data sets withRG B-images. The main advantage of hyper§Cenes Wi ielectnic specuiarl leb} scenes with metallic
ecularities and scenes with at least one fluorescent surface.

spectral data is that many different illuminants can be used . ) S :
en, for illuminant estimation evaluation, a subset 3df

realistically render the same scene under various light sources, ) . ; o
genes is used that only consists of the scenes with minimal

and consequently a systematic evaluation of the methods fEMeS 1S | ) g .
possible. However, the simulation of illuminants generall nd with dielectric specularities. Even though these images en-

does not include real-world effects like interreflections angPMPass several different illuminants and scenes, the variation

non-uniformity. Consequently, the evaluation Btr B-images 0 ;\he Images 'Sdl'g":eg' . d by Ci d Eunt
results in more realistic performance evaluations. Ideally, both more varied database IS composed by Liurea and un

types of data should be used for a thorough evaluation of color . This data §et contains ove, 000 Images, extrac_ted
constancy methods3, 57]. rom 2 hours of video recorded under a large variety of imag-

An often used hyperspectral database was composed"ﬂr)?/ conditions_(including indoor, .outdoor, desgr_t, cityscape
Barnard et al. 127. This set consists of995 surface re- ard other settings). In total, the images are divided irfio

flectance spectra arg87 illuminant spectra. These reflectancéj'ﬁeren.t clips taken "?‘t different locations. The ground truth.
cquired by attaching a grey sphere to the camera, that is

and illuminant spectra can be used to generate an extenéj&/él X . . ;
P g Isplayed in the bottom right corner of the image. Obviously,

this grey sphere should be masked during experiments to
avoid biasing the algorithms. Some examples of images that
are in this data set are shown in figuféa). The main
disadvantage of this set is the correlation that exists between
some of the images. Since the images are extracted from video
sequences, some images are rather similar in content. This
should especially be taken into account when dividing the
images into training and test-sets. Another issue of this data
set is that an unknown post-processing procedure is applied
to the images by the camera, including gamma-correction
and compression. A similar data set is recently proposed in
[127]. Although the number of images in this s&B(outdoor
images) is not comparable to the previous set, the images are
not correlated and are available Y Z-format, and can be
considered to be of better quality. Further, an extension of the
data set is proposed in}d, where an additional 26 images
with varying environments (e.g. forest, seaside, mountain snow
and motorways) are introduced. Gehler et aj] introduced
a new database, consisting &8 images, both indoor and
outdoor. The ground truth of these images is obtained using
a MacBeth Color Checker that is placed in the scene. The
(b) Example images of color-checker-set main advantage of this database is the quality of the images
(which are free of correction), but the variation of the images
Fig. 4. Some examples of the two data sets that are used for the experimeigtqiot as large as the data set containing aven00 images.
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Some examples of images that are in this data set are shahnomatic and consequently this leads to higher angular errors
in figure 4(b). Finally, Shi and Funt generated a setl66 3. This paper is the first to apply color constancy to the linear
high dynamic range image$d, 59. These images use fourimages of the grey-ball SFU-set and the obtained results are
color checkers to capture the ground truth and are constructedrefore not comparable to previously published results.
from multiple exposures of the same scene. All algorithms are trained using the same setup, based
A summary of available data sets is presented in tahd@ cross-validation. Training on the grey-ball SFU-set is
I. Generally, a distinction can be made between real-worgtrformed by dividing the data intth parts, where we ensure
RGB-images and images with controlled illumination condithat the correlated images (i.e. the images of the same scene)
tions. The latter type of data, including hyperspectral imagese grouped in the same part. Next, the method is trained on
should mainly be used to aid the development of new algb4 parts of the data and tested on the remaining part. This
rithms and for the systematic analysis of methods. Conclusigerocedure is repeatdd times, so every image is in the test set
about the performance with respect to existing methods base@ctly once and all images from the same scene will either be
on such data sets should be avoided as much as possitnié¢he training set or in the test set at the same time. The color-
since it is relatively easy to tune any algorithm to obtain éhecker-set adopts a simpler 3-fold cross-validation. The three
high performance on such data sets. The real-wdéitdB- folds are provided by the authors of the data set and to ensure
images are more suited to compare algorithms, as such dapeatability of the results we did not diverge from this. This
are probably the target data of the intended application of ma@soss-validation-based procedure is also adapted to learn the

color constancy algorithms. optimal parameter setting for the static algorithms (optimizing
p ando) and the gamut-based algorithms (optimizing the filter
VII. EVALUATION size o). Further, the regression-based method is implemented

] ] . ) using LIBSVM [13(], and is optimized for number of bins of
This section consists of a large-scale evaluation of vathe pinary histogram and for the SVR-parameters. Finally, all
ous color constancy algorithfisMost methods selected arecompination-based methods are applied to a select set of static

evaluated using publicly available source-code, ensuring th&inhods: using eq9) we systematically generat@dmethods
repeatability of these results. Two different data sets are Usj‘sqng pixel valuesg methods usingS-order derivatives and

for evaluation: the grey-ball SFU-set and the color-checker-§8kthods using™-order derivatives. Based on the details of the
(note that the data used in this paper is obtained frofi]).  corresponding methods, the following strategies are deployed.
These sets are selected because of their size (they are the{W® No— N —Max combination method P9 is applied to a
largest sets available to date), their nature (the sets consist@fset of6 methods (finding the optimal combination 6f
real-world images in an unconstrained environment) and thgilathods using the same cross-validation-based procedure), the
benchmark-status (the grey-ball SFU-set is widely used, thesthod using high-level visual information 17 is applied
recent color-checker-set has the potential to become widelyihe full set of methods (setting the number of semantic

used). topics to 30) and the method using natural image statistics
[106 ] is applied to a subset of methods (one pixel-
A. Experimental details based, one edge-based and d€-order derivative-based

. . method, finding th imal combination using th me Cross-
Both data sets contain a marker used to obtain the gro%rﬁt od, finding the optimal combination using the same cross

. : . . idation procedure).
truth. This marker is masked during all experiments. Further, P )
all experiments are performed on lineRt B-images, as the g Grey-ball SFU-set

lor formation model in ionl-A i n linear .
color 1o atio ode sectio NS based © ea The result$ on the SFU-set are shown in tablg and
images. Moreover, color constancy is generally |mplement§ atistical significance is demonstrated in tablga). Some
on a digital camergrior to the conversion of the raw data g '

to device-dependentG B-images. Hence, using line&G B- example results are _shpwn in figue Pixel-based gamut
images is basically the only logical option. The color-checkef-2PPNg performs - similar tq the Grey-Edgg method, .bUt
set is available insRGB-format, but Shi and Funt1pd judging from these results, simple methods like the White-
' L . ... Patch and the Grey-World are not suited for this data set with
reprocessed the RAW data to obtain linear images with & X o
higher dynamic rangel{ bits as opposed to standasi the current preprocessing strategy. As expected, combination-

bits). The ground truth of the grey-ball SFU-set is obtaine?]ased methods outperform single algorithms, where the dif-

using the original images (color model of these images | rence between illuminant estimation using high-level visual

NTSC-RGB). Therefore, we recomputed the ground truthnforma?io_n and u_sin_g_ natural image statistics is negligible (i.e.

by converting the images frolvT'SC-RGB to linear RGB not statistically significant).

assumingy = 2.2. It is important to note that recomputing theC_ Color-checker-set

ground truth from the gamma-correction images is different ) )

from applying gamma-correction to the originally provided 1he results on this data set are shown in table(see

ground truth values of the illuminants. Due to the gammd2ple V(D) for statistical significance) and some example

correction, the illuminant estimation of the scenes are MOr&the new ground truth can be downloaded frotip:/www.colorconstancy.
com

2All estimated illuminants can be downloaded frorhttp:/www. 4Bayesian color constancy is omitted from this table because we did not
colorconstancy.com obtain satisfactory results on this data set.


http://www.colorconstancy.com
http://www.colorconstancy.com
http://www.colorconstancy.com
http://www.colorconstancy.com
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Data set

Pros

Cons

SFU hyperspectral sef.p7]
(1, 995 surface spectra)

+ Large variety
+ Allows for systematic evaluation

— Best-case assessment of performance

Foster et al. [23 124
(8 + 8 images)

+ High quality hyperspectral images
+ Real-world natural scenes

— Limited amount of data

Bristol set [L2]
(28 images)

+ Hyperspectral images
+ Real-world natural scenes

— Low quality images

SFU set [ 2]
(223 + 98 4 149 4 59 images)

+ Scenes with varying characteristics
+ Captured with calibrated camera

— Laboratory setting

Grey-ball SFU-set[2€]
(11, 346 images)

+ Largest set available
+ Large variety of images

— Correlation exists between images
— Images are post-processed

Barcelona set1” /]
(83 + 126 images)

+ Uncorrelated images
+ High-quality XY Z-data available

— Few images
— Short time-frame

Color-checker-set1[D7]
(568 images)

+ High quality images
+ Uncorrected data

— Medium variety

HDR images §8, 59
(105 images)

+ High Dynamic Range images
+ Uncorrected data

— Few images

10

TABLE |
SUMMARY OF DATA SETS WITH ADVANTAGES AND DISADVANTAGES.

Fig. 5. Some example results of various methods applied to several test images. The angular error is shown in the bottom right corner of the images. The
methods used are, from left to right, perfect color constancy using ground truth, Grey-@dlstder Grey-Edge, Inverse Intensity Chromaticity Space and
using High-level Visual Information.

Method Mean u Median Trimean Best-25% (u) Worst-25% (1)
Do Nothing 15.6 14.0 14.6 2.1° 33.0°
White-Patch ¢7-°°:0) 12.7° 10.5° 11.3° 2.5° 26.2°
Grey-World €°:1:9) 13.0° 11.0° 11.5° 3.1° 26.0°
general Grey-World¢®-?+) 12.6° 11.1° 11.6° 3.8° 23.9°
15'—order Grey-Edged*'?*7) 11.1° 9.5° 9.8° 3.2° 21.7°
2"_order Grey-Edged?'?*7) 11.2° 9.6° 10.0° 3.4° 21.7°
Spatial Correlations (without reg.) 12.7° 10.8° 11.5° 2.4° 26.0°
Spatial Correlations (with reg.) 12.7° 5.3° 5.7° 1.2° 16.1°
Using Inverse Intensity Chromaticity Space 14.7 11.0 11.6 3.2° 32.7°
Pixel-based Gamut Mapping 11.8° 8.9° 10.0 2.8° 24.9°
Edge-based Gamut Mapping 13.7° 11.9° 12.3° 3.7° 26.9°
Intersection: Complete 1-jet 11.8° 8.9° 10.0° 2.8° 24.9°
Regression (SVR) 13.1 11.2 11.8 4.4 25.0°
Statistical Combination (Ne N —Max) 10.3 8.2° 8.8° 2.7° 21.2°
Using High-level Visual Information 9.7° 7.7° 8.2° 2.3° 20.6°
Using Natural Image Statistics 9.9° 7.7° 8.3° 2.4° 20.8°
TABLE Il

PERFORMANCE OF SEVERAL METHODS ON TH#inear GREY-BALL SFU-SET (11, 346 IMAGES).

results are shown in figuré. On this data set, the edge-similar. This indicates that the performance of methods using
based methods, i.e. Grey-Edge, Spatial Correlations and edger~level information (either static algorithms or learning-

based Gamut Mapping, perform significantly worse than pixdtased methods) is bounded by the information that is present.
based methods like Gamut Mapping and general Grey-Worldsing multiple algorithms is required to decrease the error of
However, it can be observed that the error on "difficult” imagehese "difficult” images, as can be seen by the performance
(i.e. images on which the method estimates an inaccurate ilaf-combination-based methods. Even though the increase in
minant, theWorst25% column) for both types of algorithms isoverall performance is not very high, methods using High-
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Fig. 6. Some example results of various methods applied to several test images. The angular error is shown in the bottom right corner of the images. The
methods used are, from left to right, perfect color constancy using ground truth, White-P&oider Grey-Edge, pixel-based Gamut Mapping and using
Natural Image Statistics.

Method Mean p Median Trimean Best-25% (u) Worst-25% ()
Do Nothing 13.7 13.6 13.5 10.4° 17.2°
White-Patch €Y:>°0) 7.5° 5.7° 6.4° 1.5° 16.2°
Grey-World €%1:0) 6.4° 6.3° 6.3° 2.3° 10.6°
general Grey-Worldg®-?+7) 4.7° 3.5° 3.8° 1.0° 10.1°
15t —order Grey-Edged*'?:7) 5.4° 4.5° 4.8° 1.9° 10.0°
2"_order Grey-Edged?'?'7) 5.1° 4.4° 4.6° 1.9° 10.0°
Spatial Correlations (without reg.) 5.9° 5.1° 5.4° 2.4° 10.8°
Spatial Correlations (with reg.) 4.0° 3.1° 3.3° 1.1° 8.5°
Using Inverse Intensity Chromaticity Space 13.6 13.6 13.5 9.5 18.0°
Pixel-based Gamut Mapping 4.1° 2.5° 3.0° 0.6 10.3°
Edge-based Gamut Mapping 6.7° 5.5° 5.8° 2.1° 13.7°
Intersection: Complete 1-jet 4.1° 2.5° 3.0° 0.6° 10.3°
Bayesian 4.8° 3.5° 3.9° 1.3° 10.5°
Regression (SVR) 8.1° 6.7° 7.2° 3.3° 14.9°
Statistical Combination (Ne N —Max) 4.3° 3.4° 3.7° 1.4° 8.5°
Using High-level Visual Information 3.5° 2.5° 2.6° 0.8° 8.0°
Using Natural Image Statistics 4.2° 3.1° 3.5° 1.0° 9.2°
TABLE Il

PERFORMANCE OF SEVERAL METHODS ONinear COLOR-CHECKER-SET (568 IMAGES).

level Visual Information and Natural Image Statistics arAdvantages of such methods are a simple implementation
statistically similar to the pixel-based Gamut Mapping, théoften, merely a few lines of code are required) and fast

largest improvement in accuracy is obtained on these difficeikecution. Further, the accuracy of the estimations can be quite
images (the mean angular error on the wabst of the images high, provided the parameters are selected appropriately. On
drops from10.3° to 8.0° and 9.2°, respectively). Hence, to the other hand, inaccurate parameter selection can severely
arrive at a robust color constancy algorithm that is able teduce the performance. Moreover, the selection of the optimal
accurately estimate the illuminant on any type of image, it garameters is quite opaque, especially without prior knowledge

necessary to combine several approaches. on the input data. Physics-based methods discussed in section
[lI-B suffer less from the parameter selection, but are also less
VIIl. DISCUSSION ANDFUTURE DIRECTIONS accurate (even for properly selected parameters).

In this article, an overview of often used approaches toIn sectionlV the gamut-based methods and an extension
illuminant estimation is presented, together with recent devép incorporate the differential nature of images are described.
opments. Criteria that are important for computational coldihe main advantages of gamut-based methods are the elegant
constancy algorithms are the requirement of training data, thederlying theory and the potential high accuracy. However,
accuracy of the estimation, the computational runtime of thgoper implementation requires some effort and appropriate
method, the transparency of the approach, the complexity @eprocessing can severely influence the accuracy.
the implementation and the number of tunable parameters. AFinally, in sectionV, methods that can not operate without
summary of the discussed methods is presented in ¥able training phase are discussed. SectibA discusses methods
sectionlll-A , methods that are based on low-level informatiothat learn low-level statistics, like regression techniques and
are presented. These methods are not dependent on traifdagesian approaches. Advantages of such methods are that
data and the parameters are not dependent on the input ddiay are (relatively) simple to implement and that they can be
and are therefore callestatic. Existing methods include thetuned towards specific data (like indoor or outdoor images).
Grey-World and the White-Patch, and recent developmerdssadvantages are that the output is often rather non-intuitive
extended these methods to incorporate higher-order statistaince the model that is learned is quite opaque. On the
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14. (1 |-1|{o0|-1|-1|-1|-1]|-1[-1]-1[{O0[-1][O0 [-1]-1]-1 13.] 1 1 1 (-1 1 1 1|(-1|{1|-1[1]-1|[O 1 0 |-1][-1
15.| 1 1 1 1 1 1 0 1 1 1 1 1 1 0|-1]|-1 4.{1|-1|(-1|{-1|-1|-1|-1|-1|1|-1|-1|-1[-1|O0 |-1]-1]-1
16.| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 0 15. ] 1 1 1 0 1 1 1(-1|{1|-1(1]|-1|O 1 0O|-1|0
17.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0] 0 16. | 1 1 1 1 1 1 1 1 1[0 1 1 1 1 1 0 1
17.1 1 1 1 1 1 1 1 0 1|0 1 0 1 1 0O|-1|0
(a) linear grey-ball SFU-set ) linear color-checker-set

TABLE IV
WILCOXON SIGN TEST ON THE TWO DATA SETS A POSITIVE VALUE (1) AT LOCATION (4, j) INDICATES THE MEDIAN OF METHOD IS SIGNIFICANTLY
LOWER THAN THE MEDIAN OF METHOD j AT THE 95% CONFIDENCE LEVEL A NEGATIVE VALUE (-1) INDICATE THE OPPOSITE AND A ZERO (0)
INDICATES THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN THE TWO METHODS

other hand, methods using higher-level statistics and semantic$ appropriate. According to this theory, methods closer to
discussed in sectionsB andV-C, like the selection algorithm human color constancy are methods that learn correspondences
using natural image statistics, are often quite intuitive sincelietween images and possible illuminaniS{. This implies
can be predicted beforehand which method will be selectdtht the experimental setup be changed, as the illuminant is
for a specific input image. Moreover, the accuracy of suatot explicitly estimated.
approaches has been proven to be state-of-the-art. HoweveFinally, all methods discussed so far are based on the
the use of multiple single algorithms means it is inherentlyssumption that the illuminant in the image is spatially uni-
slower than the single algorithms themselves. form. However, in real-life scenarios, this assumption is easily
violated: indoor images can depict multiple rooms in the
same image, while all rooms can have spectrally different
light sources. Furthermore, outdoor images can show parts
As explained in sectiorl, explanations for human colorof the scene in shadow and other parts in bright sunlight.
constancy and computational approaches are diverging.Ftir simplification, such examples are ignored by most current
would be interesting to bring the recent advances in humapproaches. Only a few methods have been proposed that
color constancy closer to the computational level, to mamnsider the presence of multiple light sources. For instance,
the computational advancements to human explanations. Farlayson et al. [37] and Barnard et al. 1[38 propose a
instance, [06 ] suggest that the optimal computationaRetinex-based approach that explicitly assumes that surfaces
approach that is taken for a specific image is based on txist in the scene that are illuminated by multiple light sources.
statistics of the scene. It is unknown to what extent humamother Retinex-based approachs] uses stereo images to
observers use a similar approach; if multiple cues are availabierive 3D information on the surfaces that are present in the
then in what order are they processed and what weightiisages, to be able to distinguish material transitions from local
given to each cue? On the other hand, recent developmentfight color changes. In1[39, human interaction is employed
human color constancy suggest that color memory, possilityspecify locations in images that are illuminated by different
in addition to contextual clues, could play an important roldight sources. Finally,§7] proposes a Grey-World-like method
[137 A , 134). It is worth exploring the correspondingthat is based on the assumption that the light source smoothly
computational approaches, if they exist. varies across the scene. An additional difficulty of this line of
A first step towards convergence of human and comptesearch is the lack of ground truth. In sectioh, several
tational color constancy might be to adapt a new imagttabases are described, all based on the assumption that
correction model. It is suggested that human color constarityere is only one light source in the scene. Consequently,
is relational rather than absolute and recently experimefgfore proposing new methods that depart from the uniform
are performed that indicate that human observers do rmstsumption, new proper databases for evaluation have to be
explicitly judge the color of the illuminant135. Mapping designed.
this to computational methods would imply that the two-stage To conclude, interesting future research directions include
setup (illuminant estimation followed by image correction) isvestigation of the relation between human and computational

A. Future directions
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Method Ex. Pros Cons
Static [49] — [62] + Simple to implement — Opague parameter selection
(using low-level + Accurate for adequate parameters — Inaccurate for inferior parameters
statistics) + Fast execution
Static [63] — [69] + No training phase — Difficult to implement
(physics-based) + Fast execution — Mediocre performance
+ Few parameters
Gamut-based [70] — [81] + Elegant underlying theory — Requires training data
+ Potentially high accuracy — Difficult to implement
— Requires proper preprocessing
Learning-based [82] — [96] + Tunable for specific data set — Requires training data
(using low-level + Simple to implement — Non-intuitive
statistics) — Slow execution
Learning-based [97] — [104] | + Potentially high accuracy — Requires training data
(using higher- + Intuitive — Inherently slower than single methods
level statistics) — Difficult to implement
Learning-based [105] — [111] + Potentially high accuracy — Requires training data
(using + Incorporates semantics — Difficult to implement
semantics) — Slow execution

TABLE V

SUMMARY OF METHODS WITH ADVANTAGES AND DISADVANTAGES.

color constancy theories, adopting alternate image correctiQs] J. Golz and D. MacLeod, “Influence of scene statistics on colour constancy,’

models besides the two-stage approach used in this paper, ?’P/f‘

departure of the uniform light source assumption.

[18]
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