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Abstract
State of the art methods for image matching, content-based

retrieval and recognition use local features. Most of these still
exploit only the luminance information for detection. The color
saliency boosting algorithm has provided an efficient method to
exploit the saliency of color edges based on information theory.
However, during the design of this algorithm, some issues were
not addressed in depth: (1) The method has ignored the underly-
ing distribution of derivatives in natural images. (2) The depen-
dence of information content in color-boosted edges on its spatial
derivatives has not been quantitatively established. (3) To eval-
uate luminance and color contributions to saliency of edges, a
parameter gradually balancing both contributions is required.

We introduce a novel algorithm, based on the principles
of independent component analysis, which models the first or-
der derivatives of color natural images by a generalized Gaus-
sian distribution. Furthermore, using this probability model we
show that for images with a Laplacian distribution, which is a
particular case of generalized Gaussian distribution, the mag-
nitudes of color-boosted edges reflect their corresponding infor-
mation content. In order to evaluate the impact of color edge
saliency in real world applications, we introduce an extension
of the Laplacian-of-Gaussian detector to color, and the perfor-
mance for image matching is evaluated. Our experiments show
that our approach provides more discriminative regions in com-
parison with the original detector.

Introduction
Vision is one of the most important sensory mechanisms

for intelligent living organisms as well as machines, and is con-
ventionally regarded as processing primarily achromatic infor-
mation. Early findings in biological vision indicated that visual
form is perceived only from luminance, whereas the role of color
is limited to filling perceived forms subsequently [1] [2]. How-
ever, color perception is also a central component in primate vi-
sion. Experimental evidence has shown that objects in colored
scenes are more easily detected, more easily identified, more eas-
ily grouped, and more easily remembered than objects in gray-
level scenes [3]. In addition, studies on early visual processing
suggest that color is processed not in isolation, but together with
information about luminance and visual form, by the same neu-
ral circuits, to achieve a unitary and robust representation of the
visual world [4] [5].

Human visual attention is guided by complex interactions
of at least two complementary mechanisms: environment-driven,
bottom-up saliency and knowledge-driven, top-down guidance
[6]. The visual form and color are also two representative at-
tributes that could handle visual attention [7].

In computer vision, local features are very successfully used
to represent the visual form due to their robustness with respect
to occlusion and geometrical transformations [8]. These local
features, also called interest regions, are generally detected based
on the luminance signal, and focus on highly informative visual
forms, typically corner and blob structures in the image [9].

Although the use of color information is limited by various
practical difficulties, the conversion to gray-value has a number
of side-effects that are particularly undesirable for local feature
detection [10]. It is well known that gray-value versions of color
images do not preserve chromatic saliency, i.e. regions that ex-
hibit chromatic variation often lose their distinctiveness when
mapped to scalars based on isoluminance. In this article, we
extend local feature detection to color in a bottom-up manner,
where we aim these features to be salient both from a color per-
spective and a visual form perspective, exploiting the spatiochro-
matic properties of natural images, instead of use a top-down
approach that depends on the task [11].

From the viewpoint of information theory, it is known that
the information content of an event is dependent on its frequency
or probability, i.e. events which occur rarely are more informa-
tive. Therefore, our hypothesis is that egdes detected based on
the statistical properties of luminance and color in natural im-
ages, and weighted according to its information content will pro-
vide us with highly informative regions and therefore better per-
formance in real-world applications.

Moreover, in this work, we propose a generalized color
saliency boosting algorithm that exploits the statistical proper-
ties of natural images, modeled as a generalized Gaussian dis-
tribution, applying a vector transformation (i.e. transforming the
chromatic and intensity components). Furthermore, we show that
for images with a Laplacian distribution, the color-boosted edge
magnitude reflects their information content. In order to evaluate
our hypothesis, we introduce an extension of the Laplacian-of-
Gaussian to color, which is a vector approach to combine color
channels in a mathematically sound manner, then investigate the
impact of color edge saliency in local feature detection for image
matching applications using an experimental framework.

Our Approach
The color saliency boosting algorithm proved to be an effi-

cient method for color feature detection. It was proposed by van
de Weijer et al. [12] and it has been successfully applied to image
retrieval and image classification [13] [14]. The method is based
on information theory and the analysis of the statistics of color
derivatives on the 40,000 images of the Corel database. In ad-
dition, psychophysical experiments have shown that this method
provides accurate predictions of saliency with respect to human
perception [15].

For local feature detection, the distinctiveness of features
can be measured by its information content, which is dependent
on its probability. Let f be a color image and fx = (Rx Gx Bx)T

its corresponding directional spatial derivative. The information
content of the first order derivative in a local neighborhood is
given by

I(fx) =−log(p(fx)), (1)

where p(fx) is the probability of the spatial derivative. Note that
a derivative has a higher content of information if it has a low
probability of occurrence.
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Figure 1. Transformation of the color derivative distribution by the color

saliency boosting algorithm. It first decorrelates the original distribution, and

then applies a scaling of the axes. (a) Original distribution (b) Decorrelated

distribution (c) Whitened distribution

The study of color derivative statistics showed that this dis-
tribution is dominated by a principal axis of maximum variation,
caused by the luminance, and two minor axes, attributed to chro-
matic changes. This means that changes in intensity are more
probable than chromatic changes and therefore have less infor-
mation content. Thus this algorithm transforms the original dis-
tribution to a more homogeneous distribution, so that intensity
and chromatic changes contain equal information content, en-
suring that both contributions have the same impact for feature
detection. This is illustrated in Fig. 1.

However, during the design of this algorithm, some issues
were not addressed in depth:

1. The method has ignored the underlying distribution of
derivatives in natural images.

2. The dependence of information content in color-boosted
edges on its spatial derivatives has not been established.

3. A parameter to gradually balance both contributions can be
useful to evaluate luminance and color contributions to the
saliency of first order derivatives.

These issues will be addreses in this paper.

Natural Image Statistics
To be able to derive the information content of color edges

knowledge of its underlying statistical distribution is indispens-
able. We therefore briefly review relevant works on image statis-
tics and models.

Natural images are significantly redundant, thus their statis-
tical properties can be well characterized [16]. The regularities
in the information of natural images are not limited only to the
spatial structure, but much of the information in natural images is
contained in the spatial pattern of luminance and color [17]. One
of the most well known properties is that the amplitude spectra of
natural images are relatively scale invariant, however, this prop-
erty does not characterize much of the global statistics in natural
images [18].

Studies on natural image statistics have shown that the prob-
ability distribution of first order derivatives are not Gaussian,
highly peaked at zero and have heavy tails [3] [17]. In addition,
previous studies have successfully modeled the statistics of natu-
ral images using the Laplace distribution, the generalized Gaus-
sian and the Weibull distribution [19] [20] [21] [22] [23] [24].

A recent study [25] has analyzed the statistical distributions
of luminance and chromatic edges in natural scenes. Based on
mutual information, they have shown that luminance and chro-
matic edges are independent. This means that information of
luminance and chromatic edges are not redundant but provide in-
dependent sources of information for image understanding. This
study is especially relevant to our work because we evaluate the
impact of these contributions in local feature detection.

In this work, we characterize the statistical properties of first
order derivatives in natural images using a generalized Gaussian
probability distribution. For simplicity in explanation, consider-
ing the image f as a one-dimensional signal and its corresponding
directional derivatives fx, then the marginal probability distribu-
tion of the derivatives is defined by

p(fx) =
γ

2βΓ( 1
γ
)

exp
(
−
∣∣∣∣ fx

β

∣∣∣∣γ) , (2)

where 0 < γ ≤ 2 is the shape parameter, β > 0 is the scale pa-

rameter and the variance of this distribution is
β 2Γ( 3

γ
)

Γ( 1
γ
)

.

Color Edge Saliency Boosting
As discussed above, our aim is to find a color boosting

function which transforms color derivatives to a space in which
derivatives of equal vector norm possess equal information con-
tent. In the new space the statistics of color edges will be
isotropic.

The first step in this transformation is to find new axes
where the original distribution is not correlated. The second step
is to scale the new axes to obtain a new distribution with the same
variance in all directions. This is illustrated in Fig. 1.

A well-known decorrelation technique is principal compo-
nent analysis (PCA), which is suitable for Gaussian probability
distributions [26]. However, we consider the generalized Gaus-
sian probability distribution as a model to better approximate
the actual distribution; therefore a more general technique is re-
quired. In this work we propose to use independent component
analysis (ICA), which has been designed specifically for non-
Gaussian distributions [27]. Here we show some relevant math-
ematical aspects of the proposed algorithm.

From the statistical properties of the first order derivatives
we know that the distribution is centered at the origin of coordi-
nates, i.e. mathematically E[fx] = 0. Thus, the covariance matrix
is defined by

Σx = E[fxfT
x ]. (3)

From this matrix we can estimate the derivative energy as

ξ (fx) = trace(Σx). (4)

Applying the singular value decomposition, we can determine
the principal axes of the distribution and their corresponding
squared relative half-lengths λ1,λ2 and λ3:

Σx = U

 λ1 0 0
0 λ2 0
0 0 λ3

V T , (5)

where U is a 3x3 matrix whose kth column is the kth eigen-
vector of Σx. These eigenvectors are the new axes of the three-
dimensional first order derivatives distribution. To transform this
pattern into a more isotropic one (whitening, or also called spher-
ing), a linear transformation is applied using the inverse square

root matrix Σ
− 1

2
x fx.

So far we have done the preprocessing steps of ICA. It has
been shown that this algorithm can produce axes rotated with re-
spect to the actual distribution, in these cases we estimate this
rotation by using the algorithm proposed by Comon [28]. There-
fore, the desired energy-normalized color boosting function can
be obtained by



g(fx) = τΣ
− 1

2
x fx. (6)

This function has changed the probability distribution of the
derivatives in a white distribution, i.e. the color-boosted channels
are uncorrelated and their variances are close to unity. Replacing
eq. (6) and (5) we obtain

g(fx) = τ U



1√
λ1

0 0

0
1√
λ2

0

0 0
1√
λ3

V T fx, (7)

where τ is the rate of derivative energy and is defined as

τ =

√√√√ ξ (fx)

ξ (Σ
− 1

2
x fx)

. (8)

This ensures energy conservation, i.e. ξ (fx) = ξ (g(fx)) and the
idempotent property g(g(fx)) = g(fx).

In real-world applications we need a distinctiveness and
signal-to-noise trade-off. For this purpose the α parameter is
proposed, which allows for choosing a balance between signal-
to-noise α = 0, and information content, α = 1:

gα (fx) = τΣ
− α

2
x h(fx). (9)

For α = 0 this is equal to color gradient-based salient point
detection. The impact of this parameter will be studied in our
performance evaluation experiments. Similar equations hold for
p(fy). The theory can be straightforwardly extended to higher
image structures.

Fig. 2 illustrates two examples of edge detection obtained
by the proposed algorithm. Note the significant contribution of
the luminance at the edges of color compared to the contribution
of color. Moreover, the color-boosted edges show that chromatic
changes that are less frequent provide more distinctiveness.

Information content of color-boosted edges
The original color boosting algorithm [12] transforms color

derivatives with equal information content to a space in which
they possess an equal vector norm. However this theory does
not provide a framework to combine the information content of
various derivatives. To be able to do so, we need to transform the
derivatives to reflect their corresponding information content.

To simplify our analysis on the behavior of information
content in natural images, considering the image f as a one-
dimensional signal and its corresponding directional derivatives
fx, then we can easily analyze the information content of the
edges on images.

From the definition of content information in eq. (1) and the
probability in eq. (2), we obtain the dependence of the informa-
tion content on its derivatives:

I(fx) = log

2βΓ

(
1
γ

)
γ

+
∣∣∣∣ fx

β

∣∣∣∣γ . (10)

An important observation here is that if the variance of this

probability distribution is close to one (i.e. β =
√

Γ( 1
γ
)

Γ( 3
γ
)
), which
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Figure 2. Comparative results obtained for edge detection (a),(b) input

images, (c),(d) color edges, i.e. alpha=0, (e),(f) color-boosted edges, i.e.

alpha=1

was done during whitening, and using the constrains of the
parameters γ and β from the eq. (2) to the eq (10), we know that

log(
2βΓ

(
1
γ

)
γ

) < 1 and β 2 ≤ 2.

Therefore, the information content can be considered pro-
portional to the absolute value of the directional first order deriva-
tives to the γ-th power (i.e. I(fx) ∝ |fx|γ ) when

log(
2βΓ

(
1
γ

)
γ

) <<

∣∣∣∣ fx

β

∣∣∣∣γ . (11)

This shows that using a generalized Gaussian distribution to
model the natural image statistics, the strength of the color-
boosted edges in natural images reflects its information content.
In addition, notice that when γ = 1 (i.e. a conventional Laplace
distribution) the proportionality is direct.

Color Laplacian-of-Gaussian Detector
We will evaluate the saliency of color edges on an image

matching task. Therefore we first need to extend the local feature
detectors to the color domain.

A suitable framework to handle image structures at different
scales has been the scale-space theory [29]. However, relatively
little effort has been made to extend this theory to color, and in
particular, on how to combine the differential structure of color
images in a principled way. Luminance edges are still the main
source of information for feature detection.

According to their invariance model, local features can be
classified as multi-scale, scale-invariant and affine-invariant fea-
tures. A detailed description of state-of-the-art of local features
is provided by [9].



Multi-scale features
A multi-scale representation consists of a stack of images at

different discrete levels of scale [30]. It is crucial for many appli-
cations, and especially for local feature detection and extraction.
Koenderink [31] showed that spale-space satisfies the diffusion
equation for which the solution is a convolution with a unique
Gaussian kernel, which has also been confirmed in other studies
[32]. Images at coarse scales are obtained by smoothing images
at finer scales with a circularly symmetric kernel and parameter-
ized by one scale factor σ .

The semi-group property reduces the computational com-
plexity of scale-space representation. Nevertheless, it is possible
to accelerate the operation by sampling the coarser scale image
with the corresponding scale factor after every smoothing opera-
tion. However, it is important to be careful choosing the scale and
the sampling factor as it may lead to aliasing problems. More-
over, additional relations have to be introduced in order to find
the corresponding point locations at different scale levels. This
makes any theoretical analysis more complicated, but computa-
tionally very efficient. This representation is often referred to as
the scale-space image pyramid [33].

Generally, the pyramid representations are based on the spa-
tial convolution [34] [35]. It is well known in image processing
that in the spatial domain the processing time increases expo-
nentially with respect to the kernel size [36], thus a trade-off be-
tween spatial convolution and Fourier filtering performance can
be useful [37]. A very similar approach is a hybrid multi-scale
representation [38] which was tested for local feature detection
in [39].

When an interest operator is applied on multiple scales we
call the detections multi-scale interest regions. A very well-
known example is the Harris operator [40].

Scale-invariant features
The number of multi-scale features extracted from images is

very high for practical applications. Thus, instead of extracting
regions for every scale level, automatic scale selection techniques
determine one of a few characteristic scales at each location.
Scale-invariant features are obtained by performing automatic
spatial and scale selection [41]. The Laplacian detector extracts
image regions whose locations and characteristic scales are given
by scale-space maxima of the Laplace operator. A desirable
property for a scale-space differential operator is that it should
always produce the same response to an idealized scale-invariant
structure. However, we cannot just take a blurred derivative be-
cause we will obtain weaker responses at larger scales. This mo-
tivates the definition of scale-normalized differential operators,
whose output remains constant if the image is scaled or resized
by an arbitrary factor.

Mikolajczyk [42] evaluated different scale selection cri-
teria for scale-invariant image matching environments. Apart
from the Laplacian he studied the squared image gradients, the
Difference-of-Gaussians and the Harris function. His evaluation
shows that the Laplacian operator selects the highest percentage
of correct characteristics scales.

Since the original Laplacian-of-Gaussian is a scalar opera-
tor, its entry is an gray-level image. Thus, the definition of the
scale-normalized Laplacian detector is

LoG(σ) = σ
2|Lxx +Lyy|, (12)

where Lxx and Lyy represent the second-order derivatives of a
gray-level input image. One local feature is scale-invariant if this
operator simultaneously achieves a local maximum with respect
to the scale parameter and the spatial variables.

(a) (b) (c) (d)

Figure 3. A colored pattern and its components (a) RGB channels, (b)

red, (c) green, and (d) blue channel. The square structure which is clearly

visible in the color pattern is not present in any of the channels.

From luminance to color
From a mathematical perspective color images are vec-

tor signals, thus their derivatives cannot be represented only as
changes in magnitude (or intensity) but also angular (or chro-
matic) changes should be considered. In general, this produces
several theoretical and practical difficulties. For instance, if we
consider only changes in intensity, smoothing a color image in-
troduces new chromaticities in edges. In addition, a combination
of corner or blob information from the separate channels might
fail. This is illustrated in Fig. 3. The structures generated by our
visual perception are not reflected in the separate channels of the
image, therefore cannot be detected properly.

The extension from luminance to color signals is an exten-
sion from scalar-signals to vector-signals. A basic approach to
extend existing detectors to color is compute the derivatives of
each channel, separately, and then combine the partial results.
However, combining the first derivatives with a simple addition
of the separate channels results in cancellation in the case of op-
posing vectors [43], and the same situation occurs for second-
order derivative operators. Therefore, new methods are required
to combine the differential structure of color images in a princi-
pled way [10].

The definition of the Laplacian-of-Gaussian operator comes
from the Hessian matrix. Thus, in order to extend to color this op-
erator we need a precise mathematical definition of the Hessian
matrix for color images, which considers the problem of oppos-
ing channels. Shi et al. [44] showed an extension of this matrix
to color using a quaternic representation of color images. From
this definition it can be demonstrated that it is possible to derive
an extension to color by combining channels in a vector fashion.
Therefore, we propose to extend the Laplacian-of-Gaussian de-
tector to multiple channels by combining responses of individual
channels using a generalized scale normalized Laplacian opera-
tor, defined by

Color LoG(σ) = σ
2‖(Lxx +Lyy)‖, (13)

where Lxx = ( Rxx Gxx Bxx )T and ‖ · ‖ is the vector norm. This
simple extension leads to a scale-space representation which in-
cludes the contributions of luminance and chromatic components
in a scalar-valued representation. This is an appropriate represen-
tation to exploit the saliency of both luminance and color edges
in images.

Experiments
We adopt the evaluation framework constructed by Mikola-

jczyk et al. [45]. They evaluate the discriminative power and in-
variance over various imaging conditions. Discriminative power
for any detector and descriptor combinations can be evaluated
over different: illumination intensity, viewpoint changes, blur-
ring and JPEG compression. In order to obtain quantitative re-
sults, this software exploits ground-truth information, which was
provided by mapping the regions detected on the images in a set
to a reference image using homographies.



In this experiment we evaluate the impact of the color edge
saliency algorithm on the performance of the color Laplacian-of-
Gaussian detector for the transformations defined by the frame-
work. We vary the luminance and color contributions to the
saliency of edges by changing the α parameter from eq. 9. Note
that α = 0 is equal to feature detection on normal RGB chan-
nels. An α = 1 is equal to the theoretical optimal for color edge
saliency boosting.

Because we want to evaluate whether the color information
provides more discriminative local features, we only detect 200
points per image. We have tested the matching score based on
two descriptors, namely SIFT [46] and C-Color SIFT [47]. Here
we report the mean matching score as a function of α . These
values are obtained by averaging over all frames of the sequence.

Fig. 4 shows the performance evaluation based on the
matching score. Table 1 summarizes the results obtained for
all sequences, showing the percentage increase in the matching
score. The results show that boosting color edges has a positive
impact on the performance for four sequences. For the graffiti se-
quence after an initial improvement the results drop for increased
α (alpha).

Table 1. Increase in Matching Scores for α=1.
Transformation Matching Score (incr.%)
Viewpoint 09
Zoom+rotation 08
Blur 11
Light 11
Compression -52

Discussion
The most significant changes are obtained in the ubc se-

quence, where the images have variable amount of JPEG com-
pression. The dramatic drop in performance is caused by the fact
that color is significantly more compressed than the luminance
signal. This effect occurs because artifacts caused by compres-
sion modify the probability distribution in the image, making the
probabilistic model used inadequate. Applying the proposed al-
gorithm to these images amplifies the JPEG artifacts. From this
it can be concluded that this algorithm should not be applied on
significantly compressed images.

Apart from this sequence the proposed algorithm improves
the matching score in four of six remaining sequences, and
only slightly deteriorates for the graffiti sequence. The optimal
amount of luminance and color contribution to color edge boost-
ing varies for each sequence. This indicates that more research is
needed to automatically select optimal settings.

Other studies also have investigated the impact of luminance
and color for feature detection [48] [49], however they report
their results only in terms of repeatability, i.e. from a theoretical
viewpoint. We have chosen to report our results from a practi-
cal approach using matching scores. Notice also that previous
studies exploting color information for detection have shown the
same strongly negative behavior with respect to image compres-
sion [50].

Conclusions
In this work we have extended the color boosting theory. By

modelling the first order derivatives as a Laplace distribution, we
established a direct relationship with the information content of
color edges in natural images. Furthermore, we introduced and

evaluated a generalized color edge saliency boosting based on
independent component analysis.

To evaluate luminance and color contributions to the
saliency of edges, we have extended the Laplacian-of-Gaussian
to the color domain. Experiments on matching applications show
that our detector outperforms the original detector. For variations
in scale, blur and lightening color boosting provides more dis-
criminative regions and therefore improves the results. However,
it was found to be very sensitive (and hence unusable) to JPEG
compression.

Our results suggest that detection of color information could
improve the performance of matching score around 10%. How-
ever, there is still the drawback of automatically setting the best
parameters to obtain good performance.
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(a) Viewpoint - wall sequence (b) Zoom and Rotation - bark sequence
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(c) Blur - bikes sequence (d) Light - leuven sequence
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(e) Viewpoint - graffiti sequence (f) JPEG compression - ubc sequence

Figure 4. Matching scores for different transformations using two descriptors: SIFT and Color-SIFT. Examples of dataset images are shown above the
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