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Abstract

Extending differential-based operations to color images is
hindered by the multi-channel nature of color images. The
derivatives in different channels can point in opposite di-
rections, hence cancellation might occur by simple addi-
tion. The solution to this problem is given by the structure
tensor for which opposing vectors reinforce each other.

We review the set of existing tensor based features which
are applied on luminance images and show how to expand
them to the color domain. We combine feature detectors
with photometric invariance theory to construct invariant
features. Experiments show that color features perform
better than luminance based features and that the addi-
tional photometric information is useful to discriminate be-
tween different physical causes of features.

Introduction

Feature detection is an important tool in computer vision
[1]. Differential based features for detecting events such
as edges, corners, salient points, are used abundantly in a
variety of applications such as matching, object recogni-
tion, tracking [2] [3] [4]. Although the majority of images
is in color format nowadays, the computer vision commu-
nity still uses luminance based feature extraction. Obvi-
ously, extensions of these feature detection techniques to
the color domain is desired.

A pioneering work on extending edge detection to color
images was proposed by DiZenzo [5]. The paper addresses
the problem of opposing vectors for different color chan-
nels. Opposing vectors occur on edges where for one chan-
nel the signal decreases while for another the signal in-
creases. A simple addition of the opposing derivative sig-
nals of the different channels reduces the total derivative
strength. DiZenzo solves this problem by proposing the
tensor based gradient for which opposing vectors reinforce
one another. Sapiro and Ringach [6] further investigated
the local structure tensor and the interpretation of its eigen-
values within the context of anisotropic diffusion.

Similar equations as found by DiZenzo [5] were pre-
sented by Kass and Witkin [7], who proposed an orienta-

tion estimator for orientated patterns (e.g. fingerprint im-
ages). Oriented patterns differ from non-oriented ones in
that they consist of ridges which have a differential struc-
ture of opposing vectors within a small neighborhood. Just
as for color images, the solution was found in tensor math-
ematics and a set of tensor based features for oriented pat-
terns was proposed [8] [9].

In addition to the apparent loss of information which
occurs by converting an RGB image to a luminance im-
age, photometric information is also lost. In [10] Shafer
introduces the dichromatic reflection model. The theory
provides a physical model which allows for discrimina-
tion of different photometric events in the image, such as
changes caused by shadows, shading or specularities. On
the basis of this model, others provided algorithms invari-
ant to various photometric events [11] [12]. Combining the
photometric invariance theory with geometric operations
has been investigated by Geusebroek et al. [13]. More re-
cently, van de Weijer et al. [9] proposed the quasi-invariants,
which is a set of derivatives invariant to photometric changes.
These derivative filters have the advantage over existing
methods that they remain stable over the entire RGB-space.

In this paper, we start from the observation made by
DiZenzo that tensors are suited to combine first order deriva-
tives for color images. The first contribution that we col-
lect a number of existing features which are based on the
structure tensor and show how to extend these to color im-
ages. The second contribution is that we combine these
features with the photometric derivatives which allows for
photometric invariant feature detection.

Extending Differential Based Operations to
Color Images

The extension of differential based operations to color im-
ages can be done in various ways. The main challenge
here is how to project differential structure back to a scalar
representation. For the first order differential structure of
color images this has been explored in [5] and [6]. Here,
we describe several consideration which will result in the
color tensor framework given in section 3.



(a) (b)
Figure 1: a) The subspace of measured light RGB in the Hilbert space of possible spectra. b) The RGB coordinate system and an
alternative orthonormal color coordinate system which spans the same subspace.

Mathematical Viewpoint

As pointed out in [5], simply adding the differential struc-
ture of different channels may result in a cancellation even
when evident structure exists in the image. E.g. for a red-
green edge the derivatives in the red and green channel
point in opposing directions. Instead of adding the direc-
tion information (defined on [0, 2π〉) of the different chan-
nels, it is more appropriate to sum the orientation informa-
tion (defined on [0, π〉). In the example of the red-green
edge the derivatives in the red and green channel have op-
posing direction, but the same orientation. A well known
mathematical method for which vectors in opposite direc-
tions reinforce each other is provided by tensor mathemat-
ics. Tensors describe the local orientation rather than the
direction. More precise, the tensor of a vector and the ten-
sor of the same vector rotated over 180◦ are equal.

Photometric Viewpoint

A good reason for using color images is the photometric
information which can be exploited. Photometric invari-
ance theory provides invariants for different photometric
variations. Well known results are photometric invariant
colorspaces such as normalized RGB or HSI . Opposing
derivative vectors are common for invariant colorspaces.
Actually, for normalized RGB the summed derivative is
per definition zero. Hence, the structure tensor is indis-
pensable for computing the differential structure of photo-
metric invariant representations of images.

Physical Viewpoint

Next to the photometric invariance discussed above, we
will look into invariance with respect to coordinate trans-
formations. For color images, values are represented in
the RGB coordinate system. The ∞-dimensional Hilbert
space is sampled with three probes which results in the

red, green and blue channels (see fig. 1). For operations
on the color coordinate system to be physically meaningful
they should be independent of orthonormal transformation
of the three axes in Hilbert space. As an example of an
orthonormal color coordinate system the opponent color
space can be mentioned (see fig. 1). The opponent color
space spans the same subspace as the subspace defined by
the RGB-axes and hence physically meaningful features
computed from both subspace should yield the same re-
sults. We will verify the color features to be invariant of
the accidental choice of the color coordinate frame.

Tensor Based Feature Detection for Color
Images

In this section we extend several tensor based features to
color images. As stated before, the tensor basis ensures
that vectors pointing in opposite direction reinforce each
other. Further, the feature detectors are verified to be in-
variant for orthonormal rotations of the RGB-space.

Structure Tensor Based Features

In [5] Di Zenzo pointed out that the correct method to com-
bine the first order derivative structure is by using a local
tensor. Analysis of the shape of the tensor leads to an ori-
entation and a gradient norm estimate.

Given an image f , the structure tensor is given by

G =

(

f2
x

fxfy

fxfy f2
y

)

(1)

where the subscripts indicates spatial derivatives and the
bar .̄ indicates the convolution with a Gaussian filter. As
discussed in section 2 tensors can be added for different
channels. For a multichannel image f =

(

f1, f2, ..., fn
)T



the structure tensor is given by
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(

fT
x fx fT

x fy

fT
y fx fT

y fy

)

(2)

where superscript T indicates the transpose operation. For
color images f = (R, G, B)T , this results in the color
structure tensor
(
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(3)
The color structure tensor describes the 2D first order dif-
ferential structure at a certain point in the image. Eigen-
value analysis of the tensor leads to two eigenvalues which
are defined by
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(4)
The direction of λ1 indicates the prominent local orienta-
tion, which is equal to the orientation in the image with
maximum color change,

θ = 1

2
arctan

(

2fT
x fy

fT
x fx − fT

y fy

)

. (5)

The λ’s can be combined to give the following local de-
scriptors:

• λ1 + λ2 describes the total local derivative energy.

• λ1 is the derivative energy in the most prominent
direction.

• λ1 − λ2 describes the ’line’-energy (see [6]). The
derivative energy in the prominent orientation is cor-
rected for by energy contributed by noise, λ2.

• λ2 describes the amount of derivative energy per-
pendicular to the prominent local orientation which
is important for example to select good features for
tracking [4].

An often applied feature detector, which is based on
the structure tensor in computer vision, is the Harris corner
detector. The color Harris operator H on an image f can
be computed with

Hf = fT
x fx fT

y fy − fT
x fy

2 − k
(

fT
x fx + fT

y fy

)

. (6)

The elements of the tensor are proven to be invariant under
spatial transformations, the invariance with respect to or-
thonormal transformation of the RGB-axis is easily checked,

since ∂
∂x

Rf = Rfx and

(Rfx)T
Rfy = fT

x RT Rfy = fT
x fy (7)

Here R is a rotation operator on the channels of f.

Adapted Structure Tensor Based Features

Similar equations to Di Zenzo’s equations for orientation
estimation are found by Kass and Witkin [7]. They stud-
ied orientation estimation for oriented patterns (e.g. fin-
gerprint images). Oriented patterns are defined as patterns
with a dominant orientation everywhere. For oriented pat-
terns other mathematics are needed than for regular ob-
ject images. The local structure of object images is de-
scribed by a step edge, whereas for oriented patterns the
local structure is described as a set of lines (roof edges).
Lines have the property that they have opposing vectors on
a small scale. Hence for geometric operations on oriented
patterns, mathematical methods are needed for which op-
posing vectors enforce one another. This is the same prob-
lem as encountered for all color images and hence similar
equations were found in both fields. Next to orientation es-
timation, a number of other estimators were proposed by
oriented pattern research [14] [8] [15]. These operation are
based on adaptations of the structure tensor and can also be
applied to the color tensor.

The structure tensor of eq. 1 can also be seen as local
projection of the derivative energy on perpendicular axes,
namely u1 =

(

1 0
)T and u2 =

(

0 1
)T .

G =

(

(fx,yu1)
T

(fx,yu1) (fx,yu1)
T

(fx,yu2)

(fx,yu1)
T

(fx,yu2) (fx,yu2)
T

(fx,yu2)

)

(8)

in which fx,y =
(

fx fy

)

is a n × 2 matrix. In [8] [14]
local symmetry features based on Lie groups of transfor-
mations led to whole sets of perpendicular u1 and u2’s.
They include feature extraction for circle, spiral and star-
like structures. Here the star and circle detector is given
as an example. It is based on u1 = 1√

x2+y2

(

x y
)T

which coincide with the derivative pattern of a circular pat-
terns and u2 = 1√

x2+y2

(

−y x
)T which denotes the

perpendicular vector field which coincides with the deriva-
tive pattern of starlike patterns. These vectors can be used
to compute the adapted structure tensor with eq. 8. Only
the elements on the diagonal have non zero entries and are
equal to

λ1 = H11 = x2fT
x fx + 2xyfT

x fy + y2fT
y fy

λ2 = H22 = x2fT
y fy − 2xyfT

x fy + y2fT
x fx

. (9)

Here λ1 describes the amount of derivative energy con-
tributing to circular structures and λ2 the derivative energy



which describes a starlike structure. Similar to the prove
given in eq. 7 the elements of eq. 9 can be proven to be
invariant under transformations of the RGB-space.

Photometric Derivatives

One of the motivations for color image based feature ex-
traction is the extra photometric information which is lost
by converting to a luminance image. Here we describe a
set of filters, the quasi-invariants [9] which are respectively
invariant for shadow/shading and specular edges. The com-
bination of the photometric invariance theory with the ten-
sor based features of section 3 allows for photometric in-
variant feature detection.

The Dichromatic Reflection Model

The dichromatic model divides the reflection in the inter-
face (specular) and body (diffuse) reflection component for
optically inhomogeneous materials. We assume white illu-
mination, i.e. smooth spectrum of nearly equal energy at
all wavelengths, and neutral interface reflection. Further,
we assume that shadows are not significantly colored. The
RGB vector, f = (R, G, B)T , can be seen as a weighted
summation of two vectors,

f = e(mb
c

b + mi
c

i) (10)

in which c
b is the color of the body reflectance, c

i the
color of the interface reflectance (i.e. specularities or high-
lights), mb and mi are scalars representing the correspond-
ing magnitudes of reflection and e is the intensity of the
light source. For matte surfaces there is no interface re-
flection and the model further simplifies to

f = emb
c

b (11)

which is the well-known Lambertian reflection.

Photometric Quasi-Invariance

Here we describe the set of derivatives called the quasi-
invariants and the photometric variants introduced in [9].
They are called so to distinguish them from the full in-
variants such as normalized RGB and hue. The quasi-
invariants have the advantage that they lack the instabilities
which are inherent to the full invariants, e.g. around the
normalized RGB is unstable near zero intensity. There-
fore the quasi-invariants are a better starting-point for the
derivative based features proposed in section 3.

The quasi-invariants are computed by projecting the
derivative on photometric axes in the RGB-space. These
three axes are

1. the shadow-shading axis in which changes due to
shadow and shading occur. This direction follows
from the fact that changes of the shadow-shading
(i.e. changes in emb) for matte surface are parallel
to the direction of f according to eq. 11.

2. the specular axis in which changes due to specular-
ities occur. As can be seen from eq. 10 this di-
rection is determined by c

i which is equal to the
color of the lightsource. For a white illuminant ci =
1√
3
(1, 1, 1)T .

3. the hue direction in which no changes due to spec-
ularities, shadow and shading occur. The hue di-
rection, b can be found by taking the outer product
between the shadow-shading and the specular direc-
tion.

b̂ =
f̂ × ĉ

i

∣

∣

∣̂
f × ĉi

∣

∣

∣

.

The hat, .̂, is used to denote unit vectors.

The shadow-shading variant, Sx contains the deriva-
tive part which can be explained by shadow or a shading
change. Subtracting this derivative from the total deriva-
tive results in the shadow-shading quasi-invariant Sc

x,

Sx =
(

f
T
x f̂

)

f̂

S
c
x = fx − Sx

. (12)

The specular variant, Ox is found by a projection on the
lightsource color direction ĉ

i, and comprises of the deriva-
tive signal which can be caused by specularity. The spec-
ular quasi-invariant is found by subtracting the specular
variant from the total derivative signal, and contains all the
derivative signal which cannot be explained by specular
reflections.

Ox =
(

f
T
x ĉ

i
)

ĉ
i

O
c
x = fx −Ox

. (13)

Finally, the specular shadow-shading quasi-invariant, Hc
x

can be computed by projection the object direction and
contains the derivative signal which cannot be explained
by shadow-shading changes nor by specularities.

H
c
x =

(

f
T
x · b̂

)

b̂

Hx = fx −H
c
x

. (14)

By projecting the local spatial derivative on three pho-
tometric axis in the RGB cube we have derived photo-
metric quasi-invariants. These can be combined with the
structure tensor eq. 4 for photometric quasi-invariant fea-
ture detection. As discussed in section we would like fea-
tures to be independent of orthonormal changes of color
coordinates. For this to be true a rotation of the color co-
ordinates should result in a rotation of the quasi-invariant



(a) (b) (c) (d) (e)
Figure 2: a) input image with Canny edge detection results on successively b) the luminance image c) the RGB image d) the shadow-
shading quasi-invariant e) the specular shadow-shading quasi-invariant.

derivatives. For the shadow-shading quasi-variant Sx this
can be proven by

(

(Rfx)
T

Rf̂

)(

Rf̂

)

=
(

f
T
x R

T
Rf̂

)(

Rf̂

)

= R

(

f
T
x f̂

)

f̂ = RSx

(15)

For the other photometric variants and quasi-invariants sim-
ilar proofs can be given.

Experiments

In this section experiments of the tensor based features of
section 3 in combination with photometric theory of sec-
tion 4 are given. During these experiments we assume
white illumination, and hence ĉ

i = 1√
3

(1, 1, 1)
T .

Color Canny Edge Detection

In fig.2 the results of color Canny edge detection for sev-
eral photometric quasi-invariants is shown. The algorithm
finds the edges in images, based on the differentail struc-
ture within a local window. The algorithm consists of the
following steps

1. Compute the spatial derivatives, fx and combine them
if desired into a quasi-invariant (eq. 12, 13, 14).

2. Compute the maximum eigenvalue (eq.4) and its ori-
entation (eq.5). In this step the vectorial derivatives
are projected on a scalar eigenvalue.

3. Suppress the pixels which are not a local maximum
of λ1 in the promiment orientation(, also known as
non-maximum suppression).

The results show the advantage of applying Canny on the
color image given in fig2a, above the luminance image
fig2b. Also the removal of spurious edges by photomet-
ric invariance is demonstrated. In fig2d the edge detection
is robust to shadow and shading changes and only detects
material and specular edges. In fig2e only the material
edges are depicted.

Color Features for Tracking

In [4] Shi and Tomasi propose a features for tracking. The
method selects points for which λ2 > threshold (see
eq.4), or points for which the derivative energy perpen-
dicular to the prominent direction is above a threshold.
This typically selects corners in images. In fig.3 results
based on the photometric derivatives are depicted. Again
the luminance based method misses some important fea-
tures. The results in fig.3c,d show that scene incidental
points can be removed by applying photometric invariant
features.

Local Color Symmetry

Here we apply the circle detector disccussed in section
3. The experiment is performed on an image with lego-
blocks. Because we know that the color within the blocks
remains the same, the circle detection is done on the shadow-
shading specular variant, Hx (eq. 14). The shadow-shading
specular variant contains all the derivative energy except
for the energy which can only be caused by a material
edge. With the shadow-shading variant the circular energy
λ1 and the starlike energy λ2 are computed (Eq. 9). Di-
viding the circular energy by the total energy yields a good
descriptor of local circularity (see fig.9)

C =
λ1

λ1 + λ2

. (16)

In fig.4c the maxima of C are superimposed on the input
image. Most of the circles are detected.

Conclusions

In this we paper we proposed a set of tensor based color
image features. The tensor basis of these features ensures
that opposing vectors in different channels do not cancel
out, but instead reinforce each other. Experiments show
that the features outperform their luminance counterparts,
and that the combination with photometric invariance the-
ory allows for the removal of undesired features.



(a) (b) (c) (d)
Figure 3: Features selection based on λ2 successively applied on a) the grey image b) the RGB image c) the shadow-shading quasi-
invariant d) the specular shadow-shading quasi-invariant.

(a) (b) (c)
Figure 4: a) input image (from Corel-database[16]) b) the circularity coefficient C c) the detected circles.
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