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Abstract

A well-known color constancy method is based on the Grey-
World assumption i.e. the average reflectance of surfaces
in the world is achromatic. In this article we propose a
new hypothesis for color constancy, namely the Grey-Edge
hypothesis assuming that the average edge difference in a
scene is achromatic. Based on this hypothesis, we propose
an algorithm for color constancy.

Recently, the Grey-World hypothesis and the max-RGB
method were shown to be two instantiations of a Minkowski
norm based color constancy method. Similarly we also
propose a more generale version of the Grey-Edge hypoth-
esis which assumes that the Minkowsky norm of deriva-
tives of the reflectance of surfaces is achromatic. The al-
gorithms are tested on a large data set of images under dif-
ferent illuminants, and the results show that the new method
outperforms the Grey-World assumption and the max-RGB
method. Results are comparable to more elaborate algo-
rithms, however at lower computational costs.

1 Introduction

Color constancy is the ability to recognize colors of objects
invariant of the color of the light source [1], [2] [6]. It gen-
erally consists of two steps. Firstly, the light source color
is estimated from the image data. Secondly, illuminant in-
variant descriptors are computed, which is usually done by
adjusting the image for the color of the light source such
that the object colors resemble the colors of the objects un-
der a known light source.

A simple color constancy method, called max-RGB, esti-
mates the light source color from the maximum response of
the different color channels [1]. Another well-known color
constancy method is based on the Grey-World hypothesis
[4], which assumes that the average reflectance in the scene
is achromatic. Although more elaborate algorithms exists,
methods like Grey-World and max-RGB are still widely
used because of their low computational costs.
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Recently, Finlayson and Trezzi [5] showed that the max-
RGB method and the Grey-World method can be interpreted
as the same algorithm applied with different instantiations
of the error function. The max-RGB method is shown to
be equal to applying the L°° Minkowski norm and Grey-
World is equal to using the L' norm. They further show
that the best color constancy results are attained with the L°
norm. Although these simple color constancy algorithms
are slightly outperformed by more elaborate methods, e.g.
color gamut mapping (for an overview see [1] [2]), they per-
form surprisingly well while their computational costs are
significantly lower.

In this paper, we pursue color constancy by the Grey-
Edge hypothesis, which assumes the average edge differ-
ence in the scene to be achromatic. The method is based on
the observation that the distribution of color derivatives ex-
hibit the largest variation in the light source direction. The
average of these derivatives is used to approximate this di-
rection. The method is tested on a large database of colorful
objects under varying lighting conditions and different illu-
minants. We further extend the method similarly to [5] and
also derive color constancy for the error based on the vari-
ous Minkowski norms.

The paper is organized as follows. In section 2 color
constancy based on the Grey-World hypothesis is explained.
In section 3 we propose the Grey-Edge hypothesis for color
constancy computation. Section 4 contains experiments and
Section 5 finishes with concluding remarks.

2 The Grey-World Hypothesis

The image values, f = (R, G, B)T, for a Lambertian sur-
face are dependent on the light source e (), where A is
the wavelength, the surface reflectance s (\) and the camera
sensitivity functions ¢ (A\) = (R(\),G (), B (X))

£ /e()\)s()\)c()\) dx, ()

w



Figure 1: Three acquisitions of the same scene under different light sources [3]. On the bottom line the derivative distribu-
tions, where the axes are the opponent color derivatives and the surfaces indicate derivative values with equal occurrence
and darker surfaces indicating a more dense distribution. Note the shift of the orientation of the distribution of the derivatives
with the changing of the light source.

where w is the visible spectrum and bold fonts are applied
for vectors. The goal of color constancy is to estimate
the light source color e (\), or its projection on the RG B-
kernels,

= / e(N)e(\)d, )

given the image values f (x), where x is the spatial coordi-
nate in the image. The task of color constancy is not attain-
able without further assumptions.

Buchsbaum [4] proposes the Grey-World hypothesis,
which assumes that the average reflectance in a scene is
achromatic:

[ s (A x)dx
[ dx
The light source color can now be estimated by computing
the average pixel value , since

f f(x)dx

[ ax

= k. 3)

ﬁffe()\)s()\,x)c()\) dX\dx @
k[e(Ne(A)dr= ke ’

I1-723

which yields the normalized light source color :& =
ke/ |ke|. This is indeed a very simple algorithm to find
the light source color of a scene.

In [5] it is shown that the Grey-World hypothesis can
be improved by replacing the averaging operation by the
Minkowski norm. In this case Eq. 4 can be rewritten as

(f f} (;2 dw)% e )

For p = 1 the equation is equal to the Grey-World as-
sumption. For p = oo it is equal to color constancy by
max-RGB, which is based on the assumption that the max-
imum response in the channels is caused by a white patch.
Hence, the maximum responses yield an estimate of the
light source. Finlayson and Trezzi [5] found that the best
results are obtained with a Minkowski norm with p = 6.

3 The Grey-Edge Hypothesis

As an alternative to the Grey-World hypothesis, we propose
the Grey-Edge hypothesis; the average of the reflectance



Figure 2: Examples of the images in group A and B [3].

differences in a scene is achromatic

J 18z (N z)| da
f dx
With the Grey-Edge assumption the light source color can

be computed from the average color derivative in the image
given by:

= k. (6)

|sx (A, x)| e (N) dhdx

f|f (x)ldx .
f! 7

fdx fd

=k[e(N)c(A ke,

where [£ (x)] = (|Rx (x)],|Gx (x)] | B« (x))). The
Grey-Edge hypothesis originates from the observation that
the color derivative distribution of images forms a relatively
regular, ellipsoid-like shape, of which the long axis coin-
cides with the light source color. In Fig. 1 the color deriva-
tive distribution is depicted for three images. The color
derivatives are rotated to the opponent color space

_ Ryx—Gx
le R,:—(G —2Bx
02 = (8)

R+Gf+B

X

In the opponent color space, O3 coincides with the white
light direction. For the scene under white light (the left-
most picture) the distribution of the derivatives are centered
along the O3 or white-light axis. Once we change the color
of the light source as in the second and third picture, the
distribution of the color derivatives no longer align with the
white-light axis. Color constancy based on the Grey-Edge
assumption can be interpreted as skewing the color deriva-
tive distribution such that the average derivative is in the O3
orientation.

Similarly as for the Grey-World based color constancy,
the Grey-Edge hypothesis can also be adapted to incorpo-
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rate the Minkowsky norm

(f|ffdx|p dx) ke, ©)

Color constancy based on this equation assumes that the p-
th Minkowski norm of the derivative of the reflectance in a
scene is achromatic.

4 Experiments

To test the Grey-Edge hypothesis the algorithm is tested on
a large data set of colorful object under varying light sources
[3]. The data set is split in two groups. Group A consists
of 321 images with varying light sources over a total of 32
scenes and group B consists of 220 images of 22 scenes (see
examples in Fig. 2). For all images the correct light source is
measured, e;. As an error measure we use the angular error
between the the estimated light source e, and the measured
light source e;

angular error = cos™ ' (&; - &), (10)

where the (7) indicates the normalized vector. Results of
other color constancy algorithms on this standard data set
are available in [2], [7], [5]. For the derivatives Gaussian
derivatives with o = 3 were applied.

In Fig. 3 the results for the Grey-World and the Grey-
Edge assumption as a function of the applied norm, p, are
depicted. The results of the Grey-World are taken from
[5]. The angular error for the Grey-Edge method outper-
forms the Grey-World method for both groups of images.
Whereas the Grey-World method finds a minimum error for
the same norm, p = 6 for both groups of images, for the
Grey-Edge method the behavior as a function of p varies
for the two groups of images. If we compare p = 6 for the
Grey-World with p = 16 for the Grey-Edge based method,
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Figure 3: Angular error of the Grey-World and the Grey-Edge method as a function of the applied Minkowski norm.

Mean
Grey-World (=L'-norm) 9.8
Max-RGB (=L°°-norm) 9.2
L6-norm Grey-World 6.3
L6-norm Grey-Edge 5.7
Color by Correlation 9.9
Gamut Mapping 5.6
GCIE Version 3, 11 lights | 4.9

Table 1: Mean angular error (degrees) for various color con-
stancy methods on group A images [7].

we attain an improvement of 9% for the images in group A
and of 10 % for the images in group B.

Also the p = oo norm, which is the Grey-Edge variant on
the max-RGB method, achieves a good performance. The
light source is computed from the assumption that the light
source is equal to the maximum derivatives of the various
color channels.

Results of more complex color constancy methods, such
as gamut mapping and color-by-correlation, have been re-
ported in [2], [7] for the images in group A. The results
are comparable to the results reported here and only two
methods perform slightly better, see Table 1. For example
for Gamut mapping an angular error of 5.6° was reported
(opposed to 5.7° for the Grey-Edge based color constancy).
These methods are, however, considerably more complex
and therefore require higher computational costs. In con-
clusion, the presented Grey-Edge method is an useful alter-
native when computational speed is an issue, with a perfor-
mance comparable to the best results reported in literature.
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5 Conclusions

In this paper we proposed a color constancy algorithm based
on the Grey-Edge hypothesis which assumes the average
edge difference in a scene to be achromatic. Further, an
extension based on the Minkowski norm is proposed. The
algorithm is tested on a large data set and is shown to out-
perform color-constancy based on the Grey-World hypoth-
esis and the max-RGB assumption.

References

[1] K. Barnard, V. Cardei, and B.V. Funt. A comparison of com-
putational color constancy algorithms-part i: Methodology
and experiments with synthesized data. /EEFE transactions on
Image Processing, 11(9):972-984, September 2002.

[2] K. Barnard, V. Cardei, and B.V. Funt. A comparison of com-
putational color constancy algorithms-part ii: Experiments
with image data. [EEFE transactions on Image Processing,

11(9):985-996, September 2002.

K. Barnard, L. Martin, B.V. Funt, and A. Coath. A data set for
colour research. Color Research and Application, 27(3):147—
151, 2002.

G. Buchsbaum. A spatial processor model for object colour
perception. Journal of the Franklin Institute, 310, 1980.

(4]

[5] G.D. Finlayson and E. Trezzi. Shades of gray and colour
constancy. In IS&T/SID Twelfth Color Imageing Conference,

pages 3741, 2004.

D.A. Forsyth. A novel algorithm for color constancy. Inter-
national Journal of Computer Vision, 5(1):5-36, 1990.

S.D. Hordley G.D. Finlayson and 1. Tastl. Gamut constrained
illuminant estimation. In Proc. of the Ninth IEEE Interna-
tional Conference on Computer Vision, Nice, France, 2003.



	Index
	ICIP 2005 Home
	Conference Info
	Welcome Message
	Welcome to Genova
	Tech. Pogram Overview
	Sponsors
	Committees
	Venue Access
	Special Info
	Social Activities
	Exhibits
	Submission Statistics
	EDICS
	Call for papers ICIP 06

	Sessions
	Monday, 12 September, 2005
	MonAmOR1-Biomedical Image Segmentation, Analysis and As ...
	MonAmOR2-Interpolation, Super Resolution, Mosaicing and ...
	MonAmOR3-Wavelet and multiresolution Coding 1
	MonAmOR4-Denoising-1
	MonAmOR5-Optical Flow and Transforms/Models for Motion  ...
	MonAmPO1-Video Streaming and Networking
	MonAmPO2-Watermarking-1
	MonAmPO3-Active Contours and Statistical Methods for Se ...
	MonAmPO4-Object Recognition-1
	MonAmPO5-Image Rendering and Quality Assessment
	MonAmPO6-Wavelets and Filter Banks-1
	MonAmPO7-Low-Level Indexing and Retrieval of Images
	MonAmPO8-Image and Video Coding
	MonPmSS1-Interactive Representation of Still and Dynami ...
	MonPmOR1-Remote Sensing Imaging and Processing
	MonPmOR2-Watermarking and Authentication
	MonPmOR3-Video Object Segmentation and Tracking
	MonPmOR4-Wavelets and Filter Banks-2
	MonPmOR5-Error Resilience and Concealment 1
	MonPmPO1-Distributed Coding and Transcoding
	MonPmPO2-Super Resolution
	MonPmPO3-Deblurring and Contrast Enhancement
	MonPmPO4-Watermarking-2
	MonPmPO5-3D Modeling and Synthesis
	MonPmPO6-Block Matching and Change Detection
	MonPmPO7-Computer Assisted Screening and Biomedical Ima ...
	MonPmPO8-Semantic Indexing &amp; Relevance-Feedback App ...

	Tuesday, 13 September, 2005
	TueAmSS1-Display Algorithms: Image Processing for New F ...
	TueAmOR1-Multimodal Biometrics: Fingerprints,Gait and G ...
	TueAmOR2-Artifacts Compression Removal and Multiframe I ...
	TueAmOR3-Stereo and 3D Modeling and Processing
	TueAmOR4-Image Filtering-1
	TueAmOR5-Video Networking
	TueAmPO1-Remote Sensing
	TueAmPO2-Image Coding 1
	TueAmPO3-Video Coding 1
	TueAmPO4-Face Detection and Characterization
	TueAmPO5-Video Object Segmentation &amp; Tracking
	TueAmPO6-Source and Image Modeling
	TueAmPO7-Document Image Processing
	TueAmPO8-Cultural Heritage and Video Surveillance
	TueAmPO9-Color Processing and Image Segmentation
	TuePmSS1-Distributed Video Coding
	TuePmOR1-Color &amp;Multi/Hyper Spectral Image Processi ...
	TuePmOR2-Lossless Image Coding
	TuePmOR3-Deblurring, Denoising and Contrast Enhancement
	TuePmOR4-Active Contours and Level-Set-Based Methods
	TuePmOR5-Object Recognition-2
	TuePmPO1-Video Coding 2
	TuePmPO2-Face Recognition and Classification
	TuePmPO3-Interpolation
	TuePmPO4-Image/Video Restoration and Artifacts Removal
	TuePmPO5-Authentication, Criptography, Stegananalysis
	TuePmPO6-Camera Calibration and Stereo/3D Processing
	TuePmPO7-Clustering &amp; Model-Fitting-Based Segmentat ...
	TuePmPO8-Biomedical Image Segmentation and Quantitative ...
	TuePmPO9-Image Modeling

	Wednesday, 14 September, 2005
	WedAmSS1-Multi-View Image Processing and Its Applicatio ...
	WedAmOR1-Image Coding 2
	WedAmOR2-Forensics, Authentication and Steganalysis
	WedAmOR3-Change Detection and Object Tracking
	WedAmOR4-Perceptual Human Vision System and Image Model ...
	WedAmOR5-Content-Based Image and Video Retrieval
	WedAmPO1-Wavelet and Multiresolution Coding 2
	WedAmPO2-Multimodal Biometrics: Fingerprints, Gait, and ...
	WedAmPO3-Denoising-2
	WedAmPO4-Stereo Image Processing
	WedAmPO5-Image Segmentation for Image and Video Analysi ...
	WedAmPO6-Image/Video Processing Applications
	WedAmPO7-Image Filtering-2
	WedAmPO8-Biomedical Imaging and Processing
	WedAmPO9-Scalability and Transcoding
	WedPmSS1-Adaptive Wireless Video Streaming
	WedPmOR1-Biomedical Imaging
	WedPmOR2-Face Detection, Recognition and Classification
	WedPmOR3-3D Image/Video Modeling
	WedPmOR4-Image Segmentation
	WedPmOR5-Video surveillance
	WedPmPO2-Error Resilience and Concealment 2
	WedPmPO3-Color Processing
	WedPmPO4-Hardware: Embedded Real Time Systems, Hw/Sw Co ...
	WedPmPO5-Transform Based and Parametric Motion Models
	WedPmPO6-Registration and Mosaicing/ Segmentation
	WedPmPO7-Perceptual/Human Visual System Modeling and Ev ...
	WedPmPO8-Content-Based Retrieval Applications
	WedPmPO1-Optical Flow and Motion Detection/Recognition

	Plenary Sessions
	Special Sessions
	Tutorials

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	Papers by Session
	All papers
	Papers by Topic
	Table of Contents

	Topics
	MOD-a Perceptual / human visual system
	MOD-b Source modeling
	MOD-c Binary and morphological image modeling
	MOD-d Noise modeling
	MOD-e Data fusion
	MOD-f Other
	FLT-a Linear filtering
	FLT-b Rank and morphological filtering techniques
	FLT-c Partial differential equations
	FLT-d Other
	MRP-a Wavelets
	MRP-b Filter banks
	MRP-c Scale-space
	MRP-d Other
	SEG-a Edge or color segmentation
	SEG-b Texture segmentation
	SEG-c Active-contour and Level-set-based methods
	SEG-d Morphological-based methods
	SEG-e Clustering-based methods
	SEG-f Model-fitting-based methods
	SEG-g Statistical methods
	SEG-h Video object segmentation and tracking
	SEG-i Video shot/scene segmentation
	SEG-j Other
	RST-a Contrast enhancement
	RST-b Deblurring
	RST-c Denoising
	RST-d Compression artifacts removal
	RST-e Multiframe image restoration
	RST-f Other
	COD-a Lossy image coding
	COD-b Lossless image coding
	COD-c Image compression standards
	COD-d DCT-based video coding
	COD-e Wavelet-based video coding
	COD-f Model-based video coding
	COD-g Object-based video coding
	COD-h Scalability
	COD-i Transcoding
	COD-j Video compression standards
	COD-k Distributed Source Coding
	COD-l Other
	SRE-a Low-level indexing and retrieval of images
	SRE-b Semantic indexing and retrieval of images
	SRE-c Relevance feedback and interactive retrieval
	SRE-d Browsing and navigation
	SRE-f Video features extraction for retrieval
	SRE-g Content summarization and editing
	SRE-h Video event detection
	SRE-i Machine Learning for image and video Classificati ...
	SRE-j Other
	SEC-a Authentication
	SEC-b Watermarking
	SEC-c Cryptography
	SEC-d Steganography and Steganalysis
	SEC-e Forensics
	SEC-f Other
	SDP-a Scanning and Sampling
	SDP-c Color Reproduction
	SDP-d Image Representation and Rendering
	SDP-e Display and Printing Systems
	SDP-f Image Quality Assessment
	COL-a Color processing
	COL-b Multispectral processing
	COL-c Hyperspectral processing
	COL-d Other
	ISR-a Interpolation
	ISR-b Super-resolution
	ISR-c Mosaicing
	ISR-d Registration / alignment
	ISR-e Other
	MDE-a Block matching
	MDE-b Optical flow
	MDE-c Transform based approaches
	MDE-d Parametric models for motion estimation
	MDE-e Change detection
	MDE-f Other
	STE-a Stereo image processing
	STE-b 3D modeling &amp; synthesis
	STE-c Camera calibration
	STE-d Stereoscopic and 3-D Coding
	STE-e Other
	COM-a Source/channel coding
	COM-b Networking
	COM-c Error resilience / concealment
	COM-d Video streaming
	COM-f Other
	BMT-a Face detection, recognition and classification
	BMT-b Fingerprint analysis and coding
	BMT-c Iris analysis
	BMT-d Human activity, gait, and gaze analysis
	BMT-e Other
	BMI-a Super-acoustic imaging
	BMI-b Tomography
	BMI-c Radionucleide and x-ray imaging
	BMI-d Magnetic resonance imaging
	BMI-e Biomedical image segmentation and quantitative an ...
	BMI-f Computer assisted screening and diagnosis
	BMI-g Visualization of biomedical data
	BMI-h Biomedical image compression
	BMI-i Biomedical image registration and fusion
	BMI-j Molecular and cellular bioimaging
	BMI-k Other
	GEO-a Remote Sensing Imaging
	GEO-b Radar imaging
	GEO-f Multispectral / hyperspectral imaging
	GEO-g Geophysical and Seismic Imaging
	GEO-h Other
	HDW-a Hardware and software co-design
	HDW-b Embedded and real-time systems
	HDW-c Paralleled and distributed systems
	HDW-d Other
	OTH-b Synthetic-Natural Hybrid Image Systems
	OTH-c Document Image Processing and Analysis
	OTH-e Video surveillance
	OTH-f Object recognition
	OTH-g Other

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Joost Van de Weijer
	Theo Gevers



