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Abstract

Linear filters have two major drawbacks. First, edges
in the image are smoothed with increasing filter size.
Second, by extending the filters to multi-channel data,
correlation between the channels is lost. Only a few
researchers have explored the possibilities of mode fil-
tering to overcome these problems. In this article mode
filtering will be motivated from both a local histogram
with tonal scale and a rTobust statistics point of view.
The tonal scale is proved to be equal to the scale of the
error norm function within the robust statistics frame-
work.

Instead of the more commonly studied global mode,
our focus is on the local mode. It preserves edges and
details and is easily extensible to multi-channel data.
A generalization of the spatial Gaussian filtering to a
spatial and tonal Gaussian filter is used to iterate to the
local mode. Results on color images include successful
noise attenuation while preserving edges and detail by
local mode filtering.

1. Introduction

Linear filtering is a widely used framework for many
image processing tasks. Apart from the desired noise
reduction and scale selection, this technique has two
major drawbacks: 1. details and edges are smoothed,
and 2. due to the absence of a natural basis for vector
ordering extension to multi-channel data is done by ap-
plying the operation on the channels separately. Hence
the correlation between the channels is neglected. Es-
pecially for these reasons several nonlinear filters have
been proposed in literature.

The distribution of the pixel values in a neighbor-
hood, i.e. a local histogram, contains significant in-
formation about the zero order local image structure.
All maxima in a distribution are called modes. The
global mode is the highest maximum of the distribution
and hence is the most occurring value in the neighbor-

hood. In this paper the importance of the local mode
is demonstrated. This is the mode found by incorpo-
rating the pixel value in the center of the neighborhood
as a-priori knowledge to the iteration procedure. The
local mode has the property of noise reduction without
the two drawbacks mentioned before.

A solid framework for working with local histograms
is the imprecision space proposed by Griffin [4]. The
imprecision space is determined by two scales. Next to
a spatial scale a tonal scale is introduced to incorporate
the imprecision of the measurement. Griffin uses the
imprecision space to study the evolution of the median
and the stable mode to find perceptual edges.

Koenderink et al. [6] extend the imprecision space
with a third scale, the inner scale. This is the scale
at which the image is observed. The combination of
the three scales is called locally orderless images. This
is because a global topology, but not a local topology
is defined. Van Ginneken et al. [11] have considered a
number of applications on grey scale images. In [10] the
framework is extended to multi-channel images and re-
sults of global mode filtering for color images are given.

The field of robust statistics studies the sensitivity of
statistical methods to deviations of the data from the
underlying models [5]. It has been used in many com-
puter vision problems to reduce the influence of outliers
(e.g. [2]). Black et al. [3] prove that anisotropic diffu-
sion [7] can be related to robust statistics.

In this paper the connection between the histogram
spaces of Griffin [4] and Koenderink [6] and robust
statistics is made. The tonal scale is proved to be equal
to the scale of the error norm function in robust statis-
tics theory. The local mode will be motivated from
both frameworks.

The classical Gaussian filter is extended with a tonal
weight. Not only do pixels further away in spatial
space, T — g, have less influence, but also pixels further
away in sensor space, f(z)— f(zo). This easy to imple-
ment filter is shown to iterate to the local mode of the
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Figure 1: a) edge image. b) histogram of figure 1a. c) smoothed versions of histogram

pixel when keeping the neighborhood data constant. If
used iteratively on the image with small spatial extend
it behaves like anisotropic diffusion [8].

This paper is organized as follows. In section 2 a his-
togram framework and a robust statistical framework
will be used as a foundation for the local mode filter. In
section 3 a generalized version of the spatial Gaussian
filter is proposed which is shown to iterate toward the
local mode. In section 4 results of local mode filtering
are shown. Section 5 finishes with concluding remarks.

2 Local Mode filtering

In figure 1b the histogram of the edge signal of figure 1la
is depicted. The two peaks concur with the two areas
in figure la. All maxima in the distribution are called
modes. We make a distinction between two modes:

o the global mode which is the highest mode of the
distribution.

o the local mode, which is related to a starting point
of iteration. In figure 1b the local mode of the
point indicated by a cross is given. Starting an
iterative search for a maximum from this cross re-
sults in the indicated local mode. The concept of
both global and local mode is easily extensible to
multi-channel data.

In the following section the local and global mode are
motivated from a local histogram point of view. Sub-
sequently the same is done within the framework of
robust statistics.

2.1 Local histogram space

In this section the local histogram space (LHS) is in-
troduced. It was originally introduced by Griffin [4].

The LHS is a combination of the spatial space and the
sensor space. In fact a local histogram is constructed
for every position in the image.

Given an image f : R™ — R™ where n is the spatial
dimension and m the dimension of the sensor space.
The LHS at spatial-scale and sensor-scale zero is de-
fined as

H (z,i,0, =0,0, =0) =6 (i — f(x)) (1)

with & the Dirac delta function. The dimensionsional-
ity of the LHS is n + m.

The influence of the neighboring values on the local
histogram is obtained by convolution along the spatial
plane, indicated by ®,, of the LHS at scale zero with
a Gaussian

H(x,i,az,O) :H($7i7030) Qz G(az,az), (2)

where the Gaussian of dimensionality n is defined as

G(2,0) = — o 5F 3)
(2m)2 o™

At this point the LHS consists of a Gaussian weighted
local histogram at every position with the size of the
neighborhood determined by the spatial scale 0.

Finally, the tonal scale of the histogram is tuned.
This is the scale at which the histogram is observed.
This is achieved by convolution with a m dimensional
Gaussian without normalization

m

H(2,,00,00) = H (3,1,02,0) @; ((271) % 0™ G (i,01)

(4)
The reason for convolution with a Gaussian without
normalization becomes clear in the next subsection
where the connection between this kernel and the er-
ror norm is made. Clearly, it has no influence on the
location of the modes.
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Figure 2: top: the error norm of eq. 8 and its influ-
ence function. bottom: least squares error norm and
influence function

The LHS is dependent on the two scale parameters:
the spatial scale o,,, and the tonal scale ¢;. The spatial
scale o, regulates the size of the neighborhood of the
local histogram. With a spatial scale of zero, only the
center pixel itself is represented in the local histogram.
In the case o, = oo the LHS at every position is equal
to the histogram of the image observed at scale o; .

The tonal scale o; is the scale at which the local
histogram is smoothed. In figure 1c the evolution of the
histogram is depicted for different sensor space scales.
For o; = 0 the traditional mode is found, i.e. the most
common value of a set. For o; = oo both the local
and the global mode are equal to applying a classical
Gaussian filter.

For small details in a larger background the local his-
togram will be dominated by two peaks. A large peak
for the background and a smaller peak for the detail.
Applying a global mode filter to such images erases the
detail. In this case local mode filtering is preferable.
The center pixel of the neighborhood will be taken as
a starting point of iteration for the local mode and the
averaged color of the detail will be found instead of the
background color. A consequence of this approach is
that local mode filtering will consider speckle noise also
as a detail, and preserve it.

2.2 Robust statistics and mode filtering

Robust statistics is used to reduce the influence of
outliers [5]. Given a set of data measurements d =
{do,d1,...,ds}, the parameters, a = {ag,a1,...,as} of

the model u(s; a) are found by minimizing the residual

error
5:Zp(ds—u(s;a),a) (5)
s€S

where p is an error norm and o a scale parameter.
Depending on the desired robustness for outliers dif-
ferent functions for p can be chosen (see figure 2). For
normally distributed noise the optimal p is the least
squares estimate. The influence function ¥, which is
the derivative of p is also depicted in figure 2. The
influence function describes the effects of an measure-
ment of value x on the estimate. The sensitivity of the
least-squares method to outliers clearly follows from
the influence function.

Besl et al. [2] used robust statistics for the design
of filters which are robust to outliers. Outliers are pro-
duced by both noise other than normally distributed,
and by pixels which belong to another set.

The zeroth order estimate, u = ¢, is found by mini-
mizing

€ (@0 i 00, 07) = /p(f (@) —i,01)s (& — 30, 03) da

€T
(6)
with respect to . We added a function s to incorporate
spatial dependence of data. If a Gaussian function for s
is used the residual error can be rewritten as an integral
over all the values of the sensor-space by using the LHS
defined in section 2.

6(1’0,i,0z,0i) :/H(xo,j,az,O)p(j—i,ai)dj, (7)
J

which can be rewritten as a convolution of the local
histogram with the p kernel.

5($07i70£70i):H(x07i70$70) ®1p(7’702) (8)

The correspondence between this equation and eq. 4 is
apparent. If the following function for p is chosen

2

p(z,0)=1—¢ 22, 9)
the following holds
e(x,i,04,0;) =1 — H(x,i,04,0;). (10)

The error norm of eq. 9 and its influence function
are shown in figure 2. From the influence function the
robustness to outliers is clearly visible in the fact that
for large |z| the influence function goes to zero.

Since the residual error is equal to 1 minus the lo-
cal histogram, also the residual error of the zero order
estimate of figure la as a function of o; is depicted in
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Figure 3: a) color image (300x300) b) degraded with uncorrelated Gaussian noise of o = 20 ¢) 1 iteration of tonal
Gaussian with o, = 3 and o; = 40 d) 1 iteration of tonal Gaussian with o, = 3 and o; = oo. This is equal to

classical spatial Gaussian filter .

figure 1c (, this can be seen by holding the figure up-
side down). And hence the global mode, which is the
mazimum of the smoothed histogram is equal to the ze-
roth order robust estimate, which is the minimum of
the residual error. The tonal scale o; at which the his-
togram is observed can also be interpreted as a scale
of robustness. With increasing tonal scale the robust-
ness decreases. Hence, whereas the spatial scale has
a statistical interpretation as the size of the measure-
ment set, the tonal scale determines the robustness of
the measurement to outliers.

The local mode uses the value of the center pixel as
a-priori knowledge to chose between the different min-
ima of the residual error . The value of the center pixel
is the starting point of iteration to the local minimum.

3 Local mode finding by spatial
and tonal filtering

In this section the concept of tonal filtering is intro-

duced. An intuitive introduction of the filter was given

in [9]. Here we prove that iteratively applying this filter
results in the local mode operation.

3.1 Tonal and spatial Gaussian filtering
Spatial Gaussian filtering of an image f leads to an

image g¢:

9(950)=/f($)G(9«"—$070z)d$ (11)
J

Because the Gaussian kernel G is normalized there is
no explicit need for normalization of the weighted av-
erage performed in the above Gaussian convolution.

However, we can write:
J f(@)G (2 - 20,05) dx
_ R
9(z0) = [ G(z —zg,0;)dz
R’n

(12)

to make the normalization explicit.

As mentioned before, a well known disadvantage
when using the Gaussian convolution to eliminate ad-
ditive noise, is that image structure is also smoothed.

Consider the example of an image showing a steep
edge (figure 1a) . The Gaussian filter not only sup-
presses the noise but also smoothes the edge. The
reason for this is clear, we are mixing the grey val-
ues from two constant regions in the image, leading to
the (weighted) mean of both grey values. The weights
being dependent on the area within the Gaussian aper-
ture of the two areas.

We propose a straightforward generalization of the
Gaussian filter where we not only use a spatial scale o,
but also a tonal scale ¢;. The spatial scale o, is used to
weigh the contribution of a value f(z) depending on its
distance from the central point zo. The tonal scale o;
weighs the contribution of f(z) in the local averaging
according to its tonal distance, f(x) — f(xo), from the
tonal value in the central point;

S F@)G@—a0,00) G (@)~ f(@o)] 00 do

an G (z = 20,02) G (|f(2) = f(wo)],0:) dx

(13)
This filter is easily implemented, and shows some re-
markable properties in practical applications. In figure
3 examples are shown of tonal (and spatial) Gaussian
filtering. We may observe that:

g (o) =

e Edges are preserved better then in classical (spa-
tial) Gaussian filtering.
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Figure 4: a) grayscale signal, with grayvalue differ-
ence of 100 between valleys and ridges polluted with
Gaussian Noise ¢ = 15. b) local mode filtered result
with o, = 5 and o; = 20. The spatial filter size with
radius = 20, is superimposed in a).

e For o; — oo tonal Gaussian filtering is equal to
spatial Gaussian filtering.

e Small details are preserved. The spatial scale is of
little influence on this property.

3.2 Local mode finding

Here we show that iteratively applying the spatial and
tonal Gaussian will lead to the local mode. For the
local mode of the residual error ¢ with p as given in
eq. 8 the following holds,

_U=)—i)?

%:/G(x—xo,az)ﬁ(l—e 27 )dz =0 (14)

i
This can be written as

_ UG
[ f(@)G(z—=x0,00)e > dx
1=1=

(f(@)—i) (15)

[G(x—x0,00)e > dx

which is of the form ¢ = F(i) and can be solved by
functional iteration, i.e. ¢, = F (i,_1). Hence f, will
approach the local mode for increasing n,

fn (x()’ a:cy Ui) =
J 1(@)G(@—=20,04)G(fo() = fa—1(20),0%)dm (16)
[ Ge=20,04)G(fo(2)— fa—1(z0),0:)dz

This equation is an iterative version of the proposed
tonal and spatial Gaussian in eq. 13.

Once more, applying eq.13 to the data and replacing
the starting point of iteration with every step by the
outcome of the previous step, results in the local mode.

3.3 Anisotropic Diffusion

In this subsection we shortly discuss the link between
local mode filtering and anisotropic diffusion.

To prevent edges from blurring Perona and Malik
[7] adapted the diffusion equation to

of (x,y,t)
ot

where t is the direction of iteration, g the edge-stopping
function, which reduces diffusion across edges.

In [3] Black proves that iteratively minimizing the
residual error € is equal to anisotropic diffusion. The
fact that the local minimum is desired and found, in-
stead of the global minimum, is not mentioned.

In the previous subsection we showed that iterating
towards the local mode is equal to applying the spatial
and tonal Gaussian. Hence, diffusion can be written as
follows,

=div[g (VI)VI] (17)

fn (.’I»'(), Oz, Ui) =
J $(@)G(e=20,02)G(fn-1(2)—fn-1(z0),0:)dz  (18)
[ G(e—20,02)G(faz1(2)— fr-1(z0).00)dz

The difference with eq. 16 is that instead of keeping the
neighborhood data constant, the neighborhood data is
updated with every iteration step.

3.4 Vector valued images

Extension of mode filtering to color images is straight-
forward. For color images, f = {R,G, B}, the LHS is
five dimensional space. The local histogram now con-
sists of 3D Gaussians positioned at the R, G, B values
of the neighborhood. The modes can again be found by
iteratively applying eq. 13 with the Euclidean distance
in sensor space as the tonal distance

V/(R(z)—R(20))*+(G (2)—G(20))*+(B(z)— B(=0))?

4 Results

In figure 4 the local mode is applied to a synthetical
gray-scale image degraded with Gaussian noise. The
image is a 2D version of a block function for which
local mode filtering is especially suitable. The size of
the mode filter is superimposed on the image and is
several periods of the block signal. The local histogram
at this scale contains two modes. One for the ridges
and one for the basins. Since local mode filtering uses
the centerpixel of the neighborhood as a starting point
of iteration almost everywhere the correct mode was
found. Applying a classical Gaussian filter or a median
filter to this pattern has disastrous effects.
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Figure 5: a) color document image (150x150) b) corrupted with uncorrelated Gaussian noise o = 20 ¢) local mode
filter with o, = 5 and o; = 16 d) vector median filter (3x3)(see [1])

In figure 5b a color document image degraded by
Gaussian noise is depicted. The result of noise attenua-
tion without blurring the details is depicted in figure 5c.
At the applied tonal scale the characters are far enough
separated in sensorspace from the background to ini-
tiate a local mode. Consequently they are preserved.
Increasing the tonal scale will eventually induce a blur-
ring effect. A vector median filter of size 3 x 3 already
blurs the characters, see figure 5d.

Note that a consequence of the preservation of detail
is that also other sorts of noise, like e.g. speckle noise,
are preserved.

5 Concluding Remarks

In this paper we have connected a framework of his-
togram based computations to the theory of robust
statistics. Both are used as a theoretical foundation for
local mode filtering. This filter reduces normally dis-
tributed noise without blurring edges and details and
is easily extended to multi-channel images.

For the implementation of the local mode a gener-
alized version of the Gaussian filter is proposed. Next
to the spatial distance also the distance in sensor space
is used to weight the values in the neighborhood. This
filter preserves edges and details and is easily exten-
sible to multi-channel data. If used iteratively on an
image it is shown to approach the local mode.

Future research will focus on extending the frame-
work to higher order local image structure. ”Clever
choices” to iterate to a local minimum in the residual
error for these models are still subject of research.

Application of a Gaussian filter in the sensor domain
was motivated from the histogram space point of view.
From the robust statistics field several other functions
are proposed, with different robustness to outliers [5].
Adaptation of the theory to incorporate these functions

is expected diserable for some applications.

References

[1] J. Astola, P. Haavisto, and Y. Neuvo. Vector median
filters. IEEE Proceedings, 78(4):678—689, April 1990.

[2] P.J. Besl, J.B. Birch, and L.T. Watson. Robust win-
dow operators. Machine Vision and Applications,
2:179-191, 1989.

[3] M. Black, G. Sapiro, D. Marimont, and D. Heeger.
Robust anisotropic diffusion. IEEE Trans. Image Pro-
cessing, 7(3):421-432, March 1998.

[4] L.D. Griffin. Scale-imprecision space. Image and Vi-
sion Computing, 15:369-398, 1997.

[5] P.J. Huber. Robust Statistics. “probability and math-
ematical statistics”. Wiley, 1981.

[6] J.J. Koenderink and A.J. van Doorn. The structure
of locally orderless images. International Journal of
Computer Vision, 31(2/3):159-168, 1999.

[7] P.Perona and J. Malik. Scale space and edge detec-
tion using anisotropic diffusion. IEEE trans. on pat-
tern analysis and machine intelligence, 12(7):629-639,
1990.

[8] G. Sapiro and D. Ringach. Anisotropic diffusion of
multivalued images with applications to color filtering.
IEEE Trans. Image Processing, 5(11):1582-1586, Oct
1996.

[9] C. Tomasi and R. Manduchi. Bilateral filtering for gray
and color images. In Proc. of the Sizth International
Conference on Computer Vision, Bombay, India, Jan-
uary 1998.

[10] J. van de Weijer and Th. Gevers. Color mode filtering.
In Proc. Int. Conference on Image Processing, Thessa-
loniki, Greece, Oct. 2001, accepted.

[11] B. van Ginneken and B.M. ter Haar Romeny. Ap-

plications of locally orderless images. In Proceedings
Scale-Space 99, pages 10-22, 1999.



