Robust Optical Flow from Photometric I nvariants

J. van de Weijer

Th. Gevers

Intelligent Sensory Information Systems
Faculty of Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{joostw, gevers} @science.uvanl

Abstract

Optical flow is widely in use in the field of image process-
ing. In general, optical flow is computed from luminance
images. However, optical flow based on luminance infor-
mation highly depends on moving shadows, varying shad-
ing and moving specularities due to camera movement, and
fluctuations in the light source intensity.

In this paper, we propose a novel method to compute op-
tical flow based on photometric invariants. A major draw-
back of photometric invariants and their derivatives is that
they are unstable for certain RG B values. Therefore, we
study on photometric invariant derivatives and noise prop-
agation yielding a confidence measure indicating the stabil-
ity of the corresponding photometric invariant derivatives.
This confidence measure is integrated into the optical flow
framework to provide robustness against noisy data.

Experimental results show that the proposed method sig-
nificantly outperforms optical flow estimation that does not
take the instability of the invariants into account.

1 Introduction

Optical flow is used as a low-level input for object motion
estimation[6], [7]. In general, it is based on the bright-
ness assumptions which states that points on the same ob-
ject location (and hence the corresponding pixel values)
have constant brightness over time. However, for real-world
scenes varying lighting conditions, changing camera posi-
tions, moving shadows and changing intensity of the light-
source, all brake the brightness assumption.

A major advantage of color images is that they contain
more photometric information. Based on the dichromatic
reflection model of Shafer [8], photometric invariants with
respect to shadows, shading and specularities can be de-
rived. This allows for photometric invariant optical flow,
which replaces the brightness assumption with a less restric-
tive constant chromaticity assumption, or a constant hue as-
sumption.

Research on color optical flow acknowledged the advan-
tage of photometric invariance [1] [2], [5]. A major draw-
back of photometric invariants is that they exhibit inherent
instabilities [4]. E.g. the hue is unstable near the achromatic
line.

In this paper, we derive reliability measures for each of
the photometric invariants. This reliability is used to im-
prove the photometric optical flow estimation. The novelty
of the paper is the use of photometric invariants and the in-
corporation of the reliability measure within the optical flow
framework to obtain robust object motion estimation even
under severe illumination conditions and noisy data.

This paper is organized as follows. In section 2, multi-
channel optical flow is described. Section 3 handles photo-
metric invariants and their uncertainty. The uncertainty and
the optical flow theory is combined in section 4. In section
5, experiments are given. Section 6 finishes with conclud-
ing remarks.

2 Multi Channel Optical Flow

In this section, we extend the optical flow of Lucas and
Kanade [7] to the multi channel case. The vector of a multi-
channel point over time stays constant [6]
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with the multi-channel image f = (f!, f2, ...7f”)T. Dif-
ferentiating yields the following set of equations

fo-v+f=0 (2

with f, = (f; f,) and the subscript indicates the derivative
with respect to the used variable and v the optical flow. To
solve the singularity problem and to robustify the optical
flow computation we follow Simoncelli [9] and assume a
constant flow within a Gaussian window. Solving equation
2 leads to the following optical flow equation

v=(ff) ' fIf, =M 'b (3)
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The bar ~ indicates the convolution with a Gaussian filter

3 Photometric Invariants

In this section we describe a number of invariants. A draw-
back of using invariants is that they are unreliable due to
instabilities. Therefore we propose a certainty measure to
accompany the invariants. First the dichromatic reflection
model is described which allows us to derive the invariants.

3.1 Dichromatic Reflection Model

The dichromatic model divides the reflection in the inter-
face (specular) and body (diffuse) reflection component for
optically inhomogeneous materials. We assume white illu-
mination, i.e. smooth spectrum of nearly equal energy at
all wavelengths, and neutral interface reflection. The RGB
vector, f = (R, G, B)7, can be seen as a weighted summa-
tion of two vectors,

f = e(mbe® + m'e?) (6)

in which &° is the color of the body reflectance, & the color
of the interface reflectance (i.e. specularities or highlights),
m? and m® are scalars representing the corresponding mag-
nitudes of reflection and e is the intensity of the light source.
Note that the hat, 7, is used to denote unit vectors. For matte
surfaces there is no interface reflection and the model fur-
ther simplifies to

béb (7)
which is the Lambertian reflection. For more on the validity
of the photometric assumptions see [3], [8].

f=em

3.2 Photometric Invariants

In this section we look at two other colorspaces which can
also be used for optical flow.

An photometric invariant colorspace with respect to
shadow-shading changes is the Op-space which can be
found after a spherical coordinate transformation of the
RG B coordinates

r=VR>+G?+ B? = [f]|
6 = arctan(%) ) (8)
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Here both the 6 and the ¢ are invariant for shadow and
shading changes for Lambertian reflection. This can be
proven by substituting eq. 7 in 8 after which the terms e
and m® drop out. For the computation of distances (and
hence derivatives) the scale factors of the spherical coordi-
nate transformation should be taken into account.
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The last part of this equation we will use as a shadow-
shading invariant derivative

0
sin @,

We will use the opponent colorspace

ol = E=G

02 = R\-{?ggQB (11)
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to derive the hsi colorspace

h = arctan (%)
s =017+ 02 . (12)
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The hue h is a well known photometric invariant with re-
spect both to shadow-shading and specular reflectance. This
can be proven by substituting eq. 6 in eq. 12 after which e,
m? and m? all cancel out. For the computation of deriva-
tives in hsi space one should take the scale factors of the
polar transformation into account.

shy 0 hy
f, = Sz =| sz | +s 0 (13)
i Ig 0

The derivative of the hue
h, = 0 (14)

is used in this article for shadow-shading and specular in-
variant optical flow estimation.

3.3 Uncertainty of the Invariants

Photometric invariants have inherent instabilities due to the
transformation to obtain these photometric invariants e.g.
the invariants for shadow-shading are unstable around the
intensity of zero. The invariants for shadow-shading and
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Figure 1: a) test edge with decreasing intensity. b,c) standard deviation and mean of the optical flow based on RG B (black
line), shadow-shading invariant (blue line) and robust shadow-shading invariant (red line). d) test edge with increasing
achromaticity. e,f) standard deviation and mean of the optical flow based on RG B (black line), shadow-shading and specular
invariant (blue line) and robust shadow-shading and specular invariant (red line).

specularities are unstable round the gray axis, which is the
axis consisting of points with equal RGB values. These
instability greatly reduce the applicability of the invariant
derivatives where a small deviation of the original pixel
value may result in a large deviation in the transformed
value. In this section, we study on the reliability of the in-
variant derivatives by means of error propagation. The goal
is to couple a certainty measure to each invariant derivative
measurement.

If we assume additive uncorrelated uniform Gaussian
noise then the derivatives of the RGB will also be uni-
formly distributed. After an orthogonal transformation and
taking the scaling factors into account this noise is still uni-
formly distributed for each of the channels, hence

N 0 O
rcy = . +| o, (15)
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with o, = o0, = 0y¢. The invariant c, can now be written
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and hence the standard deviation of the measurement of ¢,
is inversely proportional with » = |f].

A similar derivation results in the standard deviation of
the derivative of the hue to be inversely proportional with
the saturation.

4 Combining Certainty and Optical
Flow

In this section we will combine the color optical flow from
section 2 with the photometric invariants, hereby construct-
ing robust photometric optical flow. The standard deviation
of the invariants will be used as a weighting factor.

The assumption of color optical flow based on RGB is
that the RG B pixel values remain constant over time (see
eg.1). A change of brightness introduced due to a shadow,
or a lightsource with fluctuating brightness such as the sun
results for this intensity constraint in non existent optical
flow. This problem can be overcome by assuming constant
chromaticity over time.

As discussed before the standard deviation of derivative
in the chromaticity sphere is inversely proportional with
r = |f|. We therefor weigh the derivative vectors within
the local window accordingly, e.g. the second matrix ele-
ment of eq. 4 becomes

r2cTe, 12 (paipy + sin® ¢0,0,,)

r2 r2

7)

The other matrix elements in eq. 4 and 5 can be replaced
with similar expressions after which the shadow invariant
optical flow is computed with eq. 3.

For specular object a change of the lightsource direction
results in both moving shadows and moving specularities,
thereby falsely influencing the measured optical flow. This
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Figure 2: a) frame 1 with filtersize superimposed on it b) frame 10 c) estimated optical flow over time on the x-position which
is indicated in a), with RG B (dotted line), shadow-shading invariant (red line), and shadow-shading and specularity invariant

(thick black line).

can be overcome by applying hue based optical flow. In
section 3.3 the deviation of the hue is shown to be inversely
proportional to the saturation. The saturation is therefor ap-
plied as weight for hue based optical flow, e.g.

s?hlh,

§2

s2hghy

. (18)

5 Results

The shadow-shading photometric optical flow is tested on
a synthetical image sequence. A test image with decreas-
ing intensity (see fig. 1a) ) is shifted one pixel per frame.
Uncorrelated Gaussian noise with ¢ = 20 is added to the
sequence. The derivatives are computed with a Gaussian
derivative kernel at scale & = 1 and for the local neighbor-
hood a Gaussian of scale o = 5 is chosen. In fig. 1b,c the
mean and the standard deviation of the optical flow along
the y-axis of fig.1a are depicted. Similarly the shadow-
shading and specular invariant optical flow is tested on a
sequence with increasing achromaticity along the axes (see
fig.1d,e,f.). The results show that the optical flow meth-
ods which take the reliability of the measures into account
(red lines) outperform the standard photometric optical flow
(blue lines). Especially the difference for the standard devi-
ation is striking; the improvement is more than a factor two
for almost all the measured points.

As an example of a real-world scene, multiple frames
are taken from two objects while the lightsource position is
changed. This results in a violation of the brightness con-
straint by the moving shadows and specularities. Since both
the camera and the objects did not move the ground truth
optical flow is zero. Two of the frames of the sequences are
depicted in fig. 2a) and b). Fig. 2c. shows the estimated
optical flow for the point indicated in 2a). The violation of
the brightness constraint can clearly be seen in the optical
flow estimation based on the RGB. The shadow-shading

invariant optical flow remains near zero over the frames, ex-
cept for frame 10 where a specularity violates the constant
chromaticity constraint. The hue-based optical flow is not
influenced by the shifting specularity.

6 Conclusions

In this paper we proposed a method for photometric invari-
ant optical flow. This allows for a more realistic model
including events such as moving shadows, varying shad-
ing and shifting specularities due to camera movement, and
fluctuations in the light source. The instabilities of the pho-
tometric invariants are investigated and a reliability measure
is Froposed. Results show that the robust photometric opti-
cal flow significantly outperforms the standard optical flow.
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