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ABSTRACT
An important class of color constant image descriptors is based
on image derivatives. These derivative-based image descrip-
tors have a major drawback: they are sensitive to changes of
image blur. Image blur has various causes such as being out-
of-focus, motion of the camera or the object, and inaccurate
acquisition settings. Since image blur is a frequently occur-
ring image degradation, it is desirable for object description
to be robust to its variations. We propose a set of descriptors
which are both robust with respect to blurring effects, and in-
variant to illuminant color changes. Experiments on retrieval
tasks show that the newly proposed object descriptors outper-
form existing descriptors in the presence of blurring effects.

Index terms: Image color analysis, Image matching, Im-
age representations, Object recognition.

1. INTRODUCTION

To successfully index objects, image representations should
be robust to scene incidental events, such as viewpoint, shadow,
shading and illuminant color variations. A change of the illu-
minant, e.g. from outdoor sunlight to indoor fluorescent light-
ing, can significantly influence the measured RGB values.
The ability to reliably recognize the color of objects, despite
of the changes in the illuminant color, is called color con-
stancy [1]. An important set of color constant descriptors is
based on color derivatives [2, 3, 4, 5]. In this article we will
focus on these color constant derivative-based descriptors.

Ballard and Swain [6] have shown how to successfully use
color information for object recognition. Their method, Color
Indexing, recognizes objects by using color histograms. Funt
and Finlayson [2] pointed out that this method lacks robust-
ness with respect to changes of the illuminant’s color. Based
on a physical reflection model they deduced a set of color con-
stant derivatives. These color constant derivatives are applied
to construct color histograms which represent objects inde-
pendent of the illuminant color. However, these descriptors
are still dependent on the lighting geometry. Hence, changes
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due to object orientation or camera viewpoint alter the ob-
ject’s description. A solution to this problem was proposed
by Gevers and Smeulders [3]. They introduced a derivative-
based invariant which is both robust to variations of illumi-
nant color and lighting geometry.

Apart from the previously discussed photometric varia-
tions, blur changes are another frequently encountered phe-
nomenon. They can be caused, among others, by out-of-
focus, relative motion between the camera and the object, and
abberations in the optical system [7]. For zero order descrip-
tions (e.g. normalized RGB) variations in blur have little
influence. However, a change in blur will drastically change
edge-based descriptions. Edge-based color methods measure
two intertwined phenomena: the color change between two
regions, and the edge sharpness of the transition between the
regions. A change in blur will have little influence on the
color change, but it will influence the edge sharpness of the
transition. Therefore, representations based on derivatives
have the undesirable effect that they vary under image blur.

We observed that the ratios of some image derivatives are
robust to smoothing [8]. Here we exploit this observation to
obtain blur robustness for the color constant ratios presented
in [2, 3]. In doing so, we are able to describe images both
invariant to physical variations and robust to acquisition pa-
rameters which influence the image blur.

2. SUMMARY OF EDGE-BASED COLOR
CONSTANCY

The sensor responses,C ∈ {R,G,B}, of a camera with spec-
tral sensitivities fC , are given by:

C (x) = mb (x)

∫
b (λ,x) e (λ)fC (λ) dλ, (1)

where mb is a geometric term representing changes due to
lighting geometry, b the surface albedo, and e (λ) the spec-
tral distribution of the illuminant. If we assume delta func-
tions, which is shown to acceptably approximate reality [9],
the equation simplifies to

C (x) = mb (x) bC (x) eC , (2)



where bC (x) = b
(
λC ,x

)
, and eC = e

(
λC
)
.

We first consider the lighting geometry to remain con-
stant, which means thatmb is independent of x. This is called
a Mondrian, or flat world assumption. Funt and Finlayson [2]
showed that the derivative of the logarithm of the sensor re-
sponse is independent of the illuminant color, since

∂
∂x lnC (x) = ∂

∂x

(
ln bC (x) + lnmb + ln eC

)
=
bCx
bC

(3)

is only dependent on the surface albedo. The subscript x is
used to indicate spatial differentiation. For the three color
channels this leads to three color ratios p = {p1, p2, p3} =
{Rx

R , Gx

G , Bx

B }.
Instead of a Mondrian world we now consider the 3D

world case. Thenmb (x) varies with x, e.g. when the viewing
direction or the object orientation is changed. The differently
oriented planes will undergo varying changes of mb, thereby
changing the color ratios of Eq. 3. Gevers and Smeulders [3]
proposed invariants which are both color constant and invari-
ant for lighting geometry changes:

∂
∂x ln

C (x)

D (x)
=
bCx
bC
− bDx
bD

=
bCx b

D − bCbDx
bCbD

, (4)

where D ∈ {R,G,B} and D 6= C. For the three color chan-
nels this leads to two independent ratios m = {m1,m2} =
{RxG−GxR

RG , GxB−BxG
GB }.

3. BLUR ROBUST AND COLOR CONSTANT IMAGE
DESCRIPTION

Image degradation due to blur can have multiple causes [7].
Relative motion of the camera with respect to the object and
varying acquisition parameters such as aperture and shutter
time result in blurring effects. First we will investigate the un-
desired influence of blur on the color constant ratios discussed
above. Next, we propose a method to reduce the sensibility of
color ratios to image blur.

The ratios are computed by derivation with a Gaussian
derivative at scale σd. As a consequence the ratios have a
certain scale, e.g. pσd1 = Rσdx /Rσd . We model blur by a con-
volution with a Gaussian kernel with σb. Then blurring will
have a similar effect as computing the ratio at a different scale
σ =

√
σ2
d + σ2

b , since

pσ1 =
(R⊗Gσb)⊗ ∂

∂xG
σd

R⊗Gσb ⊗Gσd =
R⊗ ∂

∂xG
√
σ2
b+σ2

d

R⊗G
√
σ2
b+σ2

d

, (5)

and hence robustness with respect to blur is equal to robust-
ness with respect to changing the scale of the ratios.

We will now analyse the influence of scale on the ra-
tios. We assume that an edge can be modelled by a step edge
R (x) = αu (x) + β. Then,

pσ1 =
∂
∂x (αu (x) + β)⊗Gσ

(αu (x) + β)⊗Gσ =
αδ (x)⊗Gσ

(αu (x) + β)⊗Gσ , (6)

where we used the fact that the derivative of the step edge is
the delta function δ. Let us now consider the ratio response
exactly at the edge, x = 0. Here the denominator remains
constant, and

pσ1 =
α

β + 1
2α
Gσ (0) =

α

β + 1
2α

1

σ
√

2π
. (7)

This response is clearly not independent of the scale, which
proves that color ratios vary with blur.

To obtain robustness with respect to blur we propose the
following color angles ϕp = {ϕ1

p, ϕ
2
p}:

ϕ1
p = arctan

(
p1

p2

)
, ϕ2

p = arctan

(
p2

p3

)
. (8)

The dependence on blur is diminished by the division of the
color ratios. Consider the edge of the green channel to be
modelled by G (x) = λu (x) + γ, then,

ϕ1
p = arctan

(
α
(
γ + 1

2λ
)

(
β + 1

2α
)
λ

)
(9)

which is independent of the scale σ, and therefore robust to
variation of blur. Moreover, ϕ1

p is invariant for illuminant
color changes since both p1 and p2 are.

A similar derivation of dependence to blur can be given
for the color constant and lighting geometry invariant ratios
m1 and m2. To obtain robustness with respect to blur we
propose the following color angle:

ϕm = arctan

(
m1

m2

)
. (10)

When using the color angles proposed in Eq. 8 and Eq. 10
one should take the reliability into account [10]. Application
of error analysis to any of the color angles yields the following
results: (

∂ arctan
(a
b

))2

=
(∂ε)

2

√
a2 + b2

, (11)

where ∂a = ∂b = ∂ε. This equation informs us that color
angles, for which

√
a2 + b2 is low, are less reliable. This fact

will be exploited to construct reliable histograms.

4. RESULTS

We apply the proposed image descriptions to an image re-
trieval task. The task is designed to test the descriptions with
respect to blur and illuminant color variations. The perfor-
mance is assessed by the rank results of the correct matches,
where the rank indicates after how many images the correct
image was retrieved. We also provide the normalized average
rank which is defined for a single query as

NAR =
1

NNR

(
NR∑

i=1

Ri −
NR (NR + 1)

2

)
(12)



Fig. 1. Examples of object images from the Simon Fraser data set (637×468 pixels). First line: images of two objects and
their smoothed versions used to test robustness with respect to Gaussian blur. Second line: four instantiations of a single object
under 4 different illuminants and with varying object orientation. These are used to test the image description with respect to
illuminant color and illuminant geometry changes.

where N is the number of images in the database, NR the
number of relevant images to the query, Ri is the rank at
which the ith relevant image is retrieved. A NAR of zero
indicates perfect results, and a NAR= 0.5 is equal to ran-
dom retrieval. We will give the average NAR results over all
queries, indicated by ANAR.

Histograms of the color ratios and the newly proposed
color angles are constructed to represent the image. We have
used 16 bins in each color dimension (there are 3 dimensions
for p, two dimensions for ϕp and m, and one dimension for
ϕm). To robustify the construction of the histograms of the
color angles we use Eq. 11. E.g., for ϕm we update the his-
togram with

√
m2

1 +m2
2. The retrieval is based on the Eu-

clidean distance between the histograms and the derivatives
are computed with Gaussian derivative filters with a standard
deviation of σ = 2. The first two experiments are performed
on a set of 20 colorful object, all taken under 10 different light
sources with varying object orientations [11], of which exam-
ples are given in Fig. 1.
Robustness to Gaussian blur. First we test the image de-
scriptions with respect to changes in blur. To this end, we
take a single image of all twenty objects taken under the same
illuminant. Next, Gaussian smoothing with standard devia-
tion of σ = 2 is applied to the images, which leads only to a
slight visual change on the images (see Fig. 1). We used the
non-smoothed image as a query to find its smoothed coun-
terpart in the set of twenty smoothed images. The retrieval
results of this experiment are given in Table 1. The unrelia-
bility of the color ratios p and m under blur is apparent: only
for a few of the queries the relevant image was found with
rank 1. The two color angles, which were designed to be ro-
bust with respect to blur, obtain good results. For ϕp only for

rank 1 2 > 2 ANAR
p 5 0 15 0.218
ϕp 19 1 0 0.003
m 1 3 16 0.258
ϕm 15 3 2 0.023

Table 1. Rank and ANAR for robustness to blur experiment.

a single image the relevant image was not the first image to be
retrieved. In conclusion, color angles provide a more reliable
image description under image blur.
Robustness to illuminant color. Here we test the image de-
scriptions with respect to robustness to illuminant color vari-
ations. For each of the twenty objects we pick one single
image as a query. For each query there exist 10 relevant im-
ages of the same object taken under different light sources and
in various object orientations. The results are summarized in
Table 2. These images were all taken at a similar distance and
hence the edges are equally sharp in most images. Therefore
robustness with respect to blur is not required and the two
color ratios, p and m, obtain good results. The added robust-
ness with respect to blur for color angles results in lower dis-
criminative power, however for ϕp the drop in performance
is minimal. For the 16 bin representation of ϕm the perfor-
mance drop due to loss of discriminative power is bigger.
Robustness to real-world blurring effects. For this exper-
iment we have collected a set of 20 pairs of images 1. Each
pair consists of two images of the same scene, however the
images vary in blur. The blur is caused by changing the ac-
quisition parameters such as shutter time, and aperture, and

1We acknowledge Matthijs Douze for the image acquisition. The data is
available on http://lear.inrialpes.fr/people/vandeweijer/data/



Fig. 2. Examples database: (a),(b) motion blur, (c) change in focus from foreground to background, and (d) out-of-focus blur.

rank 1− 10 11− 20 > 20 ANAR
p 180 5 15 0.010
ϕp 169 17 14 0.012
m 155 22 23 0.024
ϕm 115 23 65 0.049

Table 2. Rank and ANAR for the robustness to color con-
stancy experiment.

rank 1 2 > 2 ANAR
p 7 2 11 0.365
ϕp 16 3 1 0.018
m 6 2 12 0.303
ϕm 13 1 6 0.053

Table 3. Rank and ANAR for the robustness to real-world
blurring experiment.

due to relative movement between the camera and the object
(see Fig. 2). Table 3 provides the results. The variations in
blur cause the color ratios, p and m, to perform badly. Al-
though the real-world blurring effects are often not modelled
by a Gaussian [7], the proposed blur-robust color angles ob-
tain good results: for ϕp only a single image is not retrieved
within the first two images.

5. CONCLUSIONS

In this paper we have proposed a set of new image descrip-
tions which are invariant with respect to the illuminant color
and are robust to image blur. Retrieval results on data with
real-world blur show that existing image representations fail
for these cases, whereas the proposed color angles obtain ex-
ellent results.
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