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Abstract

The aim of salient feature detection is to find distinctivedibevents in images. Salient features are
generally determined from the local differential struetof images. They focus on the shape-saliency of
the local neighborhood. The majority of these detectorsnsihance based which has the disadvantage
that the distinctiveness of the local color information dsnpletely ignored in determining salient image
features. To fully exploit the possibilities of salient pbdetection in color images, color distinctiveness
should be taken into account in addition to shape distinots. In this paper, color distinctiveness
is explicitly incorporated into the design of saliency ag¢ien. The algorithm, called color saliency
boosting, is based on an analysis of the statistics of catage derivatives. Color saliency boosting is
designed as a generic method easily adaptable to existutigréedetectors. Results show that substantial

improvements in information content are acquired by taémgetolor salient features.

I. INTRODUCTION

Indexing objects and object categories as an ordered tioleof salient image points has
been successfully applied to image matching, contentebesteieval, learning and recognition
[1], [2], [3], [4], [5], [6]. Salient points are local featas in the image which exhibit geometrical
structure, such as T-junctions, corners, and symmetryt@oirhe aim of salient point detection
is to represent objects more concisely and being robustigngaviewing conditions, such as
changes due to camera zooming, object rotation, and illatioin changes.

Although the majority of image data is in color format nowgslamost salient point detectors

are luminance based. They typically focus on shape salieattyer than color saliency [7], [8].
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For example, they focus on corner points without distinigig (low-salient) black-and-white
corners from (high-salient) red-green corners. Only régeamolor information has been incorpo-
rated in the detection phase. Montesinos et al. [9] propasextension of the luminance Harris
corner detector to color [10]. Heidemann [11] incorporate®r into the generalized symmetry
transform proposed by Reisfeld et al. [12]. Both methods aehée performance gain for near
isoluminant events. However, since the luminance axis msnidie major axes of variation in
the RGB-cube, results do not differ greatly from luminanceeldafeature detection. Itti et al.
[13] use color contrast as a clue for saliency. Their mettodadsed on a zero-order signal
(normalized red, green, blue, yellow), and is not easilygedable to differential-based features.

For the evaluation of salient point detectors, Schmid et[ld] propose two criteria: 1.
repeatability salient point detection should be stable under varyingvivig conditions. 2.
distinctivenesssalient points should focus on events with a low probabdit occurrence. Most
salient point detectors are designed according to theseriari They focus on two dimensional
structures, such as corners, which are stable and disgnatithe same time. Although color is
considered to play an important role in attributing imagieesay [15], the explicit incorporation
of color distinctiveness into the design of salient poingsedtors has been ignored.

Therefore, in this paper, we aim to incorporate color ditueness into salient point detection.
The extension should be general and hence be easy to inatepior existing salient point
detectors. For a color image, with values- (R, G, B)T, salient points are the maxima of the
saliency map, which compares the derivative vectors in ghteirhood fixed by scale,

s=H (f,.f,) (1)

where H is the saliency function and the subscript indicates dffiéiation with respect to the
parameter. This type of saliency maps include [7], [10]][116], [17]. The impact of a derivative
vector on the outcome of the local saliency depends on ittovemrm, ||f.||. Hence, vectors
with equal norm have an equal impact on the local saliencyhdahan deriving saliency from

the vector norm, the novelty of this paper is to adapt theesayi function in order that vectors

with equal color distinctiveness have equal impact on thiersay function.

[I. COLORDISTINCTIVENESS

The efficiency of salient point detection depends on therdisteness of the extracted salient

points. At the salient points’ positions, local neighbartle are extracted and described by
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local image descriptors. The distinctiveness of the dpgaridefines the conciseness of the
representation and the discriminative power of the sajpmts. The distinctiveness of interest
points is measured by its information content [14].

For luminance-based descriptors, the information contenteasured by looking at the dis-
tinctiveness of the differential structure described by kbcal 2-jet [18] at the detected points
[4]. Montesinos et al. [9] argue that, due to the extra infation available in color images, the

color 1-jet is sufficient for the local structure descriptid he color 1-jet descriptor is given by
v—(r G B R G B R G, By)T. ®)
From information theory, it is known that the informationnéent of an event is dependent on
its frequency or probability
I(v)=—log(p(v)), ®3)
where p (v) is the probability of the descriptov. i.e. events which occur rarely are more

informative. The information content of the descriptoryayi by Eq. 2, is approximated by

assuming independent probabilities of the zeroth ordarasignd the first order derivatives

p(v)=pE)pt)p(L). 4)
Hence, the information content of the salient point deteaefined by Eq. 1, will increase if
the probability of the derivativeg; (£,), is small.
By adapting the saliency map to focuss on rare color dergatithe color distinctiveness
of the detector is improved. Traditionally, for saliency peabased on Eg. 1, derivatives with
an equal vector norniif,|| have equal influence on the saliency map. We now adapt this by
requiring vectors with equal information content to haveiagnfluence on the saliency map.

Hence, the aim is to find a transformatign %2 — R3 for which holds that

p(£)=p(£) < llg @)l =g (£)] - (5)

The transformation, attained by functignis calledcolor saliency boostingOnce a functiory

has been found, the color boosted saliency can be computed by

s=H"(g(f:),9(f)). (6)
The traditional saliency map, which derives saliency from gradient strength of the derivatives,

is after color boosting based the information content ob¢hderivatives. Gradient strength has

been replaced by information content, thereby aiming fghér saliency.
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TABLE |
THE COLOR COORDINATE TRANSFORMATIONSTHEIR COLOR DERIVATIVES AND THE PHYSICAL EVENT RELATED TO THE

TRANSFORMATION.

1. STATISTICS OFCOLOR IMAGES

As discussed in Section IlI, the information content of a deatdescriptor depends on the
probability of the derivatives. In this section, we invgstie the statistics of color derivatives to
find a mathematical description of surfaces of equal prdinglso called isosalient surfaces. A
description of these surfaces leads to the solution of Eq. 5.

The channels of,, {R,,G., B, }, are correlated due to the physics of the world. Photometric
events in the real-world, such as shading, shadows, andlspiges influenceRG B values in a
well defined manner [19]. Before investigating the statsst€ color derivatives, the derivatives
need to be transformed to a color space which is uncorrelaitbdrespect to these photometric
events. For this purpose, we apply the color transforma®proposed in [20]. An overview is
given in Table I. These coordinate transformations conéxies which are photometric variant
with respect to a physical cause (see column three of Tapknt) photometric invariant axes
which are invariant with respect to this cause. For morerinégion on the derivation and the
assumptions from which these color spaces are derived e t@{19], [20].

The statistics of color images are shown for the Corel dagbabkich consists of 40,000
images of 256x384 pixels (for a more extensive elaboratiorthe Corel set see e.g. [21]). In

Fig. 1 the distributions of the first order derivativés, are given for the various color coordinate
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Fig. 1. The histograms of the distribution of the transformed derivatdfebe Corel image database in respectively the (a)
RGB coordinates, (b) the opponent coordinates and (c) the spheoizalinates. The three planes correspond with the isosalient

surfaces which contain (from dark to light) respectivet, 99%, 99.9%t of the total number of pixels.

systems. The isosalient surfaces form simple structuresasito ellipsoids. For all three color
spaces, the third coordinate coincides with the axis of marm variation (i.e. the intensity). For
the opponent and the spherical coordinate system, thebdistn on the plane spanned by the
first and second coordinate form an ellipse of which the axesat align with the coordinates.
To accomplish a correct alignment between our coordinaés axd the axes of the ellipsoid,
we rotate, with rotation matrix?, the color coordinate system to coincide with the axes of the

ellipsoid:
(7’ sin @ 0, rgbx)T = R? (rsingb,, ro,)" @)
(61a,02,)" = R? (0l,,02,)" .
The tilde is used to indicate that all axes are aligned wighakes of the ellipsoid. Consequently,
the aligned transformations are given Byf,) = £ andO (f,) = f°.
After the alignment of the axes, isosalient surfaces of thevdtive histograms can be ap-

proximated by ellipsoids
(ahl)’ + (512)" + (112" = R ®)

whereh, = h (f,) = (hL,h2,h3)" andh is one of the color transformatiorts O, or H.

IV. BOOSTINGCOLOR SALIENCY

In this section, the goal is to incorporate color distinetiess into salient point detection. Or

mathematically, to find the transformation for which vestaith equal information content have
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equal impact on the saliency function. In the previous sectit was shown that derivatives of

equal saliency form ellipsoids. Since Eqg. 8 is equal to
2 2 a2\ 2
(anl)"+ (812) + (vh3)" = AR (£)], 9)

the following holds
p(£) =p(£) < [AR(E)]| = |ATA (£)

: (10)

where A is a 3x3 diagonal matrix witlA; = o, Ay = 3, and A3z = ~. A is restricted to

A2, + A3, + A%, = 1. The desired color saliency boosting function (see Eq. ®btmined by
9(f) = Ah(f.), (11)

whereh is one of the color transformatiorts O, or H. By a rotation of the color axes followed
by a rescaling of the axis, the oriented isosalient elligsare transformed into spheres, and

thus vectors of equal saliency are transformed into veabeqqual length.

A. Influence of Color Saliency Boosting on Repeatability

The two criteria for salient point detection are distinetiess and repeatability. The color
boosting algorithm is designed to focus on color distirertess, while adopting the geometrical
characteristics of the operator to which it is applied. lis $ection, we examine the influence of
color boosting on the repeatability. We identify two phemwora which influence the repeatability
of ¢ (f,). Firstly, by boosting the color saliency, an anisotrop@nsformation is carried out,
which will negatively reduce the signal-to-noise ratio.c&eadly, by boosting the photometric
invariant directions (more than the photometric variamections), the robustness is improved
with respect to scene accidental changes.

Loss of signal-to-noise ratiofor isotropic uncorrelated noise, the measured derivativé

can be written af, = f, + ¢ and after color saliency boosting by

g (k) =g(t) + Ac. (12)

Note that isotropic noise remains unchanged under the mothaal curvilinear transformations.
Assume the worst case in whidh only has signal along the photometric variant axis. In this

case, the noise can be written as

lg (Bl Ass ||l
[Aell A le]

(13)
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£, | lIfl, | £ | S¢ | £ | Os | fF |HS
A1 | 0.577 1 0.851 | 0.856 | 0.850 | 0.851 | 0.858 1
Ao | 0.577 - 0.515 | 0.518 | 0.524 | 0.525 | 0.509
As | 0.577 - 0.099 0 0.065 0 0.066 0
TABLE Il

THE DIAGONAL ENTRIES OFA FOR THE COREL DATA SET COMPUTED FORGAUSSIAN DERIVATIVES WITH o = 1.

Hence, the signal-to-noise ratio reduces ﬁ! The loss of signal will negatively influence
repeatability to geometrical and photometrical changes.

Gain in photometric robustnesby boosting color saliency the influence of the photometric
variant direction diminishes while the influence of the m&at directions increases. As a
consequence the repeatability under photometric charsge$, as changing illumination and
viewpoint, increases.

Depending on the task at hand, color distinctiveness magdgedesired than signal-to-noise.
For this purpose the: parameter is proposed, which allows for choosing betweeah signal-

to-noise characteristice; = 0, and best information content, = 1:

ga (fx> = alAh (fx) + (1 - a) h (fx) . (14)

V. EXPERIMENTS AND ILLUSTRATIONS

Color saliency boosting is tested on information content @apbatability. The salient points
based on color saliency boosting are compared to luminafige, RGB gradient,f,, and the
quasi-invariant-based salient point detectors. The gusaariants are derived from the same color
transformation as given in Table | by only using the invariemordinates of the transformation:
the shadow-shading quasi-invariefﬁﬁ = (rsinp 6,,rp,, 0), the specular quasi-invariaﬁl; =
(0l,,02,,0), and the shadow-shading-specular quasi-invatépt= (s h,, s,,0). An extensive
analysis of the quasi-invariants can be found in [17], [Edpally, the generality of the approach

is illustrated by applying color boosting to several exigtfeature detectors.

A. Initialization

Experiments are performed on a subset of 1000 randomly nhossges from the Corel data

set. Before color saliency boosting can be applied Athmarameters (Eq.9) have to be initialized
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(d)

Fig. 2. (a) Example Soil data set and (c) frame from table-tennis sequéb) and (d) results of Harris detector (red dots)
and the Harris detector with color boosting (yellow dots). The red dots magaifycide with black and white events, while the

yellow dots are focussed on colorful points.

by fitting ellipses to the histogram of the data set. The axdseoellipsoid are derived by fitting
the isosaliency surface which contains 99 percent of thelpiaf the histogram of the Corel
data set. Changing this parameter to 99.9 or 99.99 percengebkanatrixA only slightly. The
results for the various transformations are summarizedaiblel' ll. The relation between the
axes in the various color spaces clearly confirms the dom@ar the luminance axis in the
RGB-cube, since\ss, the multiplication-factor of the luminance axis, is muchadler than the
color-axes multiplication factors);; and A,.

To give an idea on how th&-parameters vary when changing the data set, we have estimat
the A parameters for two other data sets, the Soil data set [22¢hwisi an uncompressed set
of object images and a table-tennis sequence, given in kig. For the Soil data set and the
opponent color model, thd-parameters aré\;; = 0.542, Ay, = 0.780, and A33 = 0.313.
Since this set consists of colorful objects the luminancis & less suppressed than for the
Corel set. For the tennis sequence the difference with thel Qataset is smaller);; = 0.588,

Asy = 0.799, and A33 = 0.124. A change inA-parameters can have various causes such as the
guality of the camera, the applied compression and therdiitecolor content of the image data.

To test the influence of compression on the shape of the eitipswe have repeated the
ellipse fitting procedure for the same Corel images but aR&G compression with a quality of
30%. For the opponent color model, we obtainag; = 0.822, Ay = 0.567, and Az3 = 0.062,
which only slightly differ from the parameters found in Tall. Hence, JPEG compression has
been found to have little influence on the shape of the fittirarg@dure of the ellipses.

We have chosen the color Harris point detector [9], [10] &t tlor boosting in following

June 30, 2005 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, DATE 108

experiments. It is computed with

Ho(6.8,) =8 £, -, £ £, k(6 & +5,f,) (15)

by substitutingf,, andf, by ¢ (f,) andg (f,) and withk = 0.04. The bar: indicates convolution
with a Gaussian filter and the dot indicates the inner prodivet applied Gaussian derivatives

of ¢ = 1 and Gaussian smoothing with= 3.

B. Color Distinctiveness

Here, the extend in which color boosting improves the colstirtttiveness of the Harris de-
tector is examined. In [14], the Harris detector has beewsho outperform other detectors both
on 'shape’ distinctiveness and repeatability. The colstidctiveness of salient point detectors is
described by the information content of the descriptorsaexed at the locations of the salient
points. From the combination of Eq. 3 and Eq. 4, it followst tth& total information is computed
by summing up the information of the zeroth and first ordet,pafv) = I (f)+ I (f,) + 1 (£,).

The information content of the parts is computed from thamadized histograms by

I(f) =— Zpi log (p:) (16)

wherep; are the probabilities of the bins of the histogramfof

The results for 20 and 100 salient points per image are showable I1l. Next to the absolute
information content, we have also computed the relativermétion gain with respect to the
information content of the color gradient based Harris dete For this purpose, the information

content of a single image is defined as
I=—>"log(p(v;)), (17)
j=1

wherej = 1,2,...n andn is the number of salient points in the image. Hete,) is computed
from the global histograms, which allows comparison of thgutts per image. The information
content change is considered substantially for a 5 percenéase or decrease.

The highest information content is obtained with, which is the color saliency boosted
version of the opponent derivatives. The boosting resultari increase of% to 13% of the
information content compared to the color gradient basedctir. On the images of the Corel

set this resulted in a substantial increase2?ff; to 63% of the images. The advantage of color
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standard descriptor normalized descriptor
20 points 100 points 20 points 100 points
method || inf. ‘ incr(%) ‘ decr(%) | inf. ‘ incr. ‘ decr. || inf. ‘ incr. ‘ decr. | inf. ‘ incr. ‘ decr.
f, 20.4 - - 20.0 - - 13.2 - - 13.9 - -
1211 19.9 0 1.4 19.8 0 0.8 13.0 0 2.7 | 13.8 0 1.0
Se 22.2 45.5 10.1 204 | 9.1 | 17.7 || 179 | 929 | 09 | 16.2 | 69.8 | 2.8
£2 22.3 494 .6 208 | 13.1 | 1.3 16.9 | 86.9 | 0.6 | 15.5 | 57.6 7
oc 22.6 51.4 12.9 20.5 | 12.0 | 34.2 || 189 | 925 | 1.3 | 16.5 | 64.6 | 10.8
£o 23.2 62.6 0.0 214 | 21.5 | 0.9 184 | 88.2 | 0.3 | 16.4 | 65.0 | 1.7
H¢ 21.0 21.7 43.4 190 | 1.8 | 774 || 173 | 77.1 | 10.9 | 14.8 | 31.7 | 37.9
£r 23.0 57.2 0.3 213 | 16.7 | 1.1 183 | 874 | 0.5 | 16.2 | 62.3 | 2.2
rand. 14.4 0 99.8 14.4 0 100 10.1 | 2.7 89.1 | 10.2 .6 96.7
TABLE Il

THE INFORMATION CONTENT OF SALIENT POINT DETECTORSMEASURED IN 1. INFORMATION CONTENT AND 2. THE
PERCENTAGE OF IMAGES FOR WHICH A SUBSTANTIAL DECREASE—5%) OR INCREASE(+5%) OF THE INFORMATION
CONTENT OCCURS THE EXPERIMENT IS PERFORMED WITH BOTH20 OR 100 SALIENT POINTS PER IMAGE THE

EXPERIMENT IS REPEATED WITH A NORMALIZED DESCRIPTOR WHICHS INVARIANT FOR LUMINANCE CHANGES.

boosting diminishes when increasing the number of saliemttp per image. This is caused by
the limited number of color clues in many of the images, whiglespecially visible for the
results of the photometric quasi-invarians, O¢, or H¢. Note that these detectors discard all
intensity information, which in the case of 100 salient peiper image results in many images
with a substantial decrease in information content. Bnatl is noteworthy to observe how
small the difference is between luminance dd B-based Harris detection. Since the intensity
direction also dominates theG' B derivatives, usingRG B-gradient instead of luminance-based
Harris detection only results in a substantial increasafiorimation content in% of the images.
Itis often desirable for the descriptor to be invariant fogise incidental events like shading and
shadows. In these cases the information content of the di@edadescriptor, which is invariant
to luminance changes, better reflects the information cordkéthe salient point detector
_(R G B R, G, B, R, G, By>

[T 3 e 9 I 4 s
The results of the normalized descriptor are given in thatrigalf of Table Ill. The increase

(18)

in information content of the quasi-invariants and the cdloosted detectors stands out even
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(d)

Fig. 3. (a) and (c) Corel images. (b) and (d) results of Harris det€otd dots) and the Harris detector with color boosting
(yellow dots). The red dots mainly coincide with black and white events, whieyéilow dots are focussed on colorful points.

more, with substantial gains in information content up®6o. Here the quasi-invariants based
detectors outperform the other detectors.

In Fig. 3 results of thekRG B-gradient based and color boosted Harris detector are téelpic
From a color information point of view, the performance of tRG B-gradient based method is
poor. Most of the salient points have a black and white loeagmborhood. The salient points
after color boosting, focus on more distinctive points. mresults are depicted in Fig. 2b,d,

where the results are shown computed with iparameters belonging to their data sets.

C. Repeatability: signal-to-noise

Repeatability measures the stability with respect to varyiiewing conditions. As indicated
in section IV-A, color saliency boosting reduces the sigoahoise ratio. Repeatability with

respect to geometrical changes, scaling, and affine tranatmns are considered an inherent

‘ method “ 20 points | 100 points . 21.6
f, 88 84 80 / 212
6, 88 83 g \{ :
& 2 60 20.8
Se 53 42 £ / E
. a S
ffs 62 54 T 40 204 g
o¢ 46 34 & / £
£o 51 41 20— 20 £
HS 35 25
h., 0 . . : T 19.6
£ 52 42 00 02 04 06 08 (10
(a) (b)

Fig. 4. (a) The percentage of Harris points which remain detected aftiingaGaussian uncorrelated noise. (b) The information

content (blue line) and the repeatability (red line) as a function of the anaiwolor saliency boosting.
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Fig. 5. (a), (b) Two frames from two sequences with changing illuminatimmditions. (c) Repeatability as a function of the
amount of color saliency boosting. Dotted line for the sequence (a) andaifitinuous line for sequence (b).

property of the detector and will not be considered here. [Blss of repeatability caused by
color saliency boosting is examined by adding uniform, uredated Gaussian noise ef= 10.
This yields a good indication of loss in signal-to-noisejathin its turn will influence the results
of repeatability under other variations, such as zoomiligmination changes, and geometrical
changes. Repeatability is measured by comparing the Havindspdetected in the noisy image
to the points in the noise-free images. The results in Figcdmespond to the expectation
made by Eq. 13. The larger the difference betwaenand As3, the poorer the repeatability. In
Fig. 4b, the information content and repeatability as a fioncof the amount of color boosting,
determined by thex-parameter, is given for the opponent color space (see EqIi# results

show that information content increases at the cost of Igtabi

D. Repeatability: photometric variation

Photometric robustness increases with color boostingjsesissed in Section IV-A. In Fig. 5
the dependance of repeatability is tested on two sequenteshanging illumination conditions
[23]. The experiment was performed by applying boosting e spherical color space;,
since changes due to shadow-shading will be along the plettmmvariant direction of the
spherical system. For these experiments two intertwiningnpmena can be observed: the
improved photometric invariance and the deteriorationigrial-to-noise ratio with increasing.
For the nuts-sequence, with very prominent shadows andrghatie photometric invariance is
dominant, while for the fruit-basket the gained photoneativariance only improves performance

slightly for mediuma values. For total color saliency boosting= 1 the loss of repeatability,
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Fig. 6. Horizontally, respectively, the input imagR(G B-gradient based saliency map, the color boosted saliency map and
the results with red dots (lines) for the gradient-based method and yells\(ldees) for the salient points after color saliency

boosting. Row one (a,b,c,d): results after [11], row two (e,f;,g:@3ults after [16], and row 3 (i,j,k,l): results after [24]

due to loss of signal-to-noise, is substantial.

E. Generality: lllustrations

Color saliency boosting can be applied on functions which lwarwritten as a function of
the local derivatives. Here we apply it to three differerdtéee detectors. First, the focus point
detector which was originally proposed by Reisfeld et al] @rd recently extended to color by
Heidemann [11]. The detector focuses on the center of pesglinmetric structures. On the first
row of Fig. 6, the result of the focus point detector are shdvg. 6b shows the saliency map as
proposed in [11]. In Fig. 6¢ the saliency map after salienmydting is depicted. Although focus
point detection is already an extension from luminance forcblack-and-white transition still
dominate the result. Only after boosting the color salietiog less interesting black-and-white
structures in the image are ignored and most of the red Chisigee are found, see Fig. 6d.

Similar difference in performance is obtained by applyira@oc boosting to the star detector
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proposed by Bign [16]. This detector focuses on corner and junction likacstires. ThekRG B
gradient based method (Fig. 6f) focuses mainly on blackvalnide events while the more salient
signboards (Fig. 6g) are found only after color saliencydtiog.

As a final illustration, we illustrate that color saliencydsting can be applied to gradient based
methods. In the third row of Fig. 6, color boosting is applteda gradient based segmentation
algorithm proposed by Jermyn and Ishikawa [24]. The alborifinds globally optimal regions
and boundaries. In Fig. 6b and c respectively B@&B gradient and the color boosted gradient
are depicted. While th&G B-gradient based segmentation is distracted by the mank-alad-

white events in the background, the color boosted segnentihds the salient traffic signs.

VI. CONCLUSIONS

In this paper, color distinctiveness is explicitly integg@ in the design of salient point
detectors. The method, called color saliency boostingbeammcorporated into existing detectors
which are mostly focused on shape distinctiveness. Salieonosting is based on the analysis
of the statistics of color image derivatives. Isosalientiv@gives form ellipsoids in the color
derivative distributions., which is exploited to adaptidatives in such a way that equal saliency
implies equal impact on the saliency map. Experiments shuat tolor saliency boosting
substantially increases the information content of theaet points. A substantial information

content increase is obtained on up2o— 60% of the Corel images.
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