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Abstract

We propose a new curvature estimator, which op-
erates on the output of an orientation estimator.
Robust orientation estimators have been available
for a long time. Some properties of the estimator
as well as potential problems and limitations are
discussed. The theory is verified by some exper-
iments and practical limitations are investigated.
The method is robust and performs well over a
wide range of signal to noise ratios, down to about
0 dB.

1 Introduction

Orientation is one of the key features in a variety of
image analysis applications. Robust estimators for ori-
entation have been available for some time [7, 4, 11].
In the current paper we describe a method to estimate
curvature based on these orientation estimators.

We distinguish between two classes of orientation esti-
mators. The first class consists of estimators for a locally
dominant orientation. The second class is able to cope
with complex scenes of overlapping oriented patterns.
Examples of the latter class are the Hough transform
and the orientation space [1, 2, 6, 8] approach. In [3]
we have shown how to estimate curvature using the ori-
entation space approach. When an image can be well
described using a single locally dominant orientation,
the orientation space approach is unnecessarily complex
both with respect to the complexity of the method itself
as well as the computational cost. In this paper we show
a simple method for computing the curvature from the
output of an estimator for locally dominant orientation.

The structure of the paper is as follows; we start with
a few definitions and a short description of the orienta-
tion estimator used in this paper. We then proceed by
defining curvature and our method for estimating cur-
vature. Two variants of the estimator are introduced.
In the sections that follow, we investigate some of the
properties and inherent limitations of the method.

2 Orientation Estimation

Although analysis of curved patterns is our objective, in
the following sections we will first review the analysis of
oriented straight patterns. At a given point an image is
modeled as a straight pattern (curvature zero). Curved
patterns can be analysed by considering a neighbour-
hood of such points, or equivalently a set of slightly
rotated, slightly displaced, straight patterns.

2.1 Orientation

We assume that images can locally be modeled as a
translation invariant pattern or (paintbrush) stroke.
Such a stroke has a one-dimensional intensity profile and
an orientation: the profile orientation across the stroke,
see figure 1.
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Figure 1: An oriented pattern

We refine our definition of orientation by distinguishing
between angles in the interval [−π, π〉 and angles in the
interval [−π/2, π/2〉. The term direction refers to an
angle in the interval [−π, π〉, thus making a distinction
between vectors along the same line, but with a different
sign. We reserve the term orientation for angles in the
interval [−π/2, π/2〉. Vectors in opposite directions have
the same orientation.

2.2 The Gradient Square Tensor

Our curvature estimator is applied to an orientation
field. To test our curvature estimator we use the Gra-
dient Square Tensor (GST) to perform the orientation
estimation. The GST is a well known robust orienta-
tion estimator [7, 4, 11]. We briefly review it here, be-
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cause some of its properties have consequences for the
behaviour of the curvature estimator.

The GST approach is essentially a simple gradient
based orientation estimator, followed by a regularisa-
tion step. The direction of the gradient is an estimator
of the local orientation, but is very susceptible to noise.
The gradient vectors in a neighbourhood of a straight
pattern disturbed by noise have (on average) identical
orientation. This suggests using a simple vector aver-
aging scheme, but this is not a viable scheme due to
the fact that about half the gradient vectors have an
opposite direction with respect to the other half. Av-
eraging results in cancelation of these opposite vectors.
The cancelation problem can be solved by embedding
the gradient of an image I(x, y) in the following tensor
representation:

T = ∇I ∇IT =
(

I2
x IxIy

IxIy I2
y

)
(1)

Each of the tensor elements Tij is averaged over the same
local neighbourhood. Since this tensor representation
is a quadratic form there are no cancelation problems.
The final orientation estimate is obtained by performing
an eigenvalue analysis of the smoothed tensor. The local
orientation is given by the orientation of the eigenvector
corresponding to the largest eigenvalue.

2.3 Curved patterns and the GST

The GST gives correct orientation estimates for straight
patterns such as depicted in figure 1. Since our interest
lies in the analysis of curved patterns, the behaviour of
the GST on such patterns must be briefly discussed. A
prototypical curved pattern is depicted in figure 2.

φ
x

Figure 2: A curved pattern

Consider the local orientation axis in figure 2. As long
as the pattern is symmetrical with respect to the orien-
tation axis, the GST will yield an unbiased orientation
estimate. Any deviation from this model will result in
a biased estimate, and this will also affect the curvature
estimator. The estimator that will be introduced in the
next section depends only on orientation changes, so a
locally constant bias will not influence the result.

2.4 Singularities

It is important to note that both orientation and curva-
ture do not have to exist over the entire image domain.

At the centre of a radial pattern, of which we can see
a part in figure 2, both orientation and curvature are
undefined. Orientation is well behaved in the vicinity of
this singularity, but curvature becomes unbounded as
the centre is approached. In section 3.2 an upper bound
on the curvatures that can be measured is given.

3 Curvature Estimation

3.1 Curvature

Although our interest lies in the curvature of patterns
such as depicted in figure 2, we will first give the defini-
tion of curvature for a curve. Our definition of curvature
for curved patterns is based on the same principle.

The curvature κ at any point along a two-dimensional
curve is defined as the rate of change in tangent direction
θ of the contour, as a function of arc length s [9].

κ =
dθ

ds
(2)

It is common practice to apply the previous definition
to gray value images by considering isophotes. The cur-
vature of an isophote in a gray-value image I(x, y) is
given by the following formula [10]:

κ = −Icc

Ig
= −

I2
xIyy − 2IxIyIxy + I2

yIxx

(I2
x + I2

y )
3
2

(3)

Where Ig is the derivative in the gradient direction, i.e.
the gradient magnitude, and Icc is the second derivative
in the direction perpendicular to the gradient. Using
equation 3 to estimate the curvature is inappropriate
for images consisting of the type of patterns shown in
figure 2, due to the fact that the gradient vanishes on
ridges and in valleys [10]. The isophote curvature also
changes sign at these locations, thus giving information
on which side of the ridge (closer or farther away from
the centre) we are located. The estimator introduced
below uses the sign to give more useful information.
Finally, isophote curvature is susceptible to noise and
there is no easy way to regularise equation 3.

c

Figure 3: The estimator computes the derivative of the
orientation field along the dotted lines.

Since isophote curvature is an inappropriate tool for our
type of images, we use the following definition of cur-
vature instead: curvature is the change in orientation
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in the direction along the strokes, perpendicular to the
orientation, as indicated by the dotted lines in figure 3.
Our curvature definition is given by:

κ(x, y) = −∂φ(x, y)
∂c

=

− sinφ(x, y)
∂φ(x, y)

∂x
+ cos φ(x, y)

∂φ(x, y)
∂y

(4)

where c is the direction perpendicular to the local orien-
tation. It is apparent from figure 3 that in the right half
of the picture the orientation increases along the c axis,
while it decreases in the left half. The sign of the cur-
vature will therefore be positive for the pattern in the
right half and negative for the pattern in the left half.
It shows in which direction to look along the orientation
axis in order to find the origin of the pattern.

Equation 4 cannot be implemented directly due to
the fact that φ(x, y) contains jumps, because φ lies in
the interval [−π/2, π/2〉. This and other problems are
discussed in the following sections.

3.2 Phase jumps

There are two possible ways to deal with the jumps in
the φ image: either remove the jumps or make the com-
putation of κ insensitive to them. Getting rid of such
jumps is called phase unwrapping and can be easily done
for one-dimensional signals. In two dimensions this pro-
cess is non-trivial [12] and we do not pursue this ap-
proach in this paper.

Instead we will make equation 4 insensitive to jumps
in φ. We start by noting that exp(2iφ(x, y)) is a con-
tinuous function of x and y. Taking the derivative with
respect to x yields:

∂ exp(2iφ(x, y))
∂x

= 2iφx(x, y) exp(2iφ(x, y)) (5)

Reordering yields an equation that allows us to compute
φx even though φ contains jumps:

φx(x, y) = −1
2
i exp(−2iφ(x, y))

∂ exp(2iφ(x, y))
∂x

(6)

In this way φx and φy can be computed despite the
jumps in φ. Equation 4 can subsequently be used to
estimate the curvature. The method is strongly related
to the work on phase analysis by Jepson and Fleet [5].

It is possible to establish an upper limit on the curva-
ture that can be estimated using this method. Consider
the one-dimensional signal φ(x) = κx. If κ is larger
than or equal to π/2, then exp(2iφ(x)) will be under-
sampled. The largest curvature allowed is therefore π/2,
corresponding to a radius (1/κ) of approximately 0.64.

From here on, we will use the convention that the value
between brackets behind a curvature value indicates the
corresponding radius, for instance 0.2(5).

Implementation of equation 6 for sampled images re-
sults in some subtle problems. These will be addressed
in the next section and alternative versions of equation 6
will be given.

3.3 Implementation

The derivations in the previous section assume a con-
tinuous image. The curvature estimator that was devel-
oped involves derivative operations. Great care should
be taken whenever an operator involving derivative op-
erators is carried over to the discrete domain.

Equation 6 is potentially sensitive to improper im-
plementation of the derivative operators. It is not pos-
sible to create a true discrete derivative. Instead we
have to resort to sampled versions of regularised deriva-
tive operators. It is indeed the regularisation rather
than the dicretisation itself, that causes the problems.
Consider an arbitrary regularised derivative operator
D(xx, y) = (∂/∂x)S(x, y), where S is the regularisation
filter. Applying D to exp(2iφ) yields:

Dx(x, y) ∗ exp(2iφ(x, y)) =

=
∂

∂x
(exp(2iφ(x, y)) ∗ S(x, y))

= (
∂

∂x
exp(2iφ(x, y)) ∗ S(x, y)

= (2i
∂φ(x, y)

∂x
exp(2iφ(x, y)) ∗ S(x, y)

6= 2i exp(2iφ(x, y))(
∂φ(x, y)

∂x
∗ S(x, y))

(7)

The last inequality shows that we cannot simply assume
the complex exponential above to cancel with the com-
plex exponential exp(−2iφ(x, y) in equation 6, when we
replace the derivative in equation 6 by Dx(x, y). In fact,
φx will generally be complex valued.

3.3.1 Modifying the estimator

Despite the arguments above we still expect equation 6
to be approximately correct for discrete images. Two
modified versions of equation 6 are introduced below
and will be evaluated by the experiments in section 4.

The simplest way of dealing with the complex valued
φx is to simply disregard the imaginary part (since we
expect it to be small). The estimate φ̃x for φx becomes:

φ̃x(x, y) = Re
{
−1

2
i exp(−2iφ(x, y))

Dx ∗ exp(2iφ(x, y))
} (8)
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Instead of trying to cancel the phase, it is also possi-
ble to directly ignore the phase by only considering the
magnitude. The approximation for equation 6 becomes:

φ̃x(x, y) = sign(φx(x, y))
1
2

∣∣∣Dx ∗ exp(2iφ(x, y))
∣∣∣ (9)

The sign of φx is taken from equation 8.
The last variant is based on the idea that it may be

possible to compensate for the regularisation by also
smoothing the cancelation factor:

φ̃x(x, y) = Re
{
−1

2
i
[
S(x, y) ∗ exp(−2iφ(x, y))

]
Dx ∗ exp(2iφ(x, y))

} (10)

3.3.2 Discrete derivative operators

Discrete derivative operators are always approximations
to the true derivative operators in the continuous do-
main. A popular class of derivative operators is the fam-
ily of Gaussian derivative filters. These have a very good
localisation in both the spatial and the Fourier domain.
Furthermore they are relatively insensitive to noise be-
cause of the Gaussian regularisation filter. Examination
of the frequency characteristic of the Gaussian and the
first derivative of Gaussian filters in figure 4a shows that
for low frequency signals a Gaussian derivative filter is
nearly identical to a ”true” derivative operator (it shows
”jω” behaviour).
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Figure 4: Fourier transforms of a) the Gaussian regular-
isation filter and its derivative. b) The non-distorting
regularisation filter and its derivative.

For many applications the Gaussian derivative family is
the ideal set of derivative operators. Despite this, given
equation 6’s potential sensitivity to the choice of deriva-
tive operator, the distortion by the Gaussian regulari-
sation filter may already be too severe. To investigate
the influence of the derivative operator, we have also
considered another regularisation filter. It has a flat re-
sponse in the pass band and a smooth transition to the
stop band. Its frequency response is shown in figure 4b
along with the response of the derivative operator based

on it. This non-distorting regularisation filter N is given
by:

N(ω, r, σ) =
1
2
(1− erf(σ(ω − r))) (11)

The position of the transition band is controlled by r and
its width by σ. To prevent spatial aliasing the width of
the transition band should not be too small.

4 Experiments

4.1 One-dimensional experiments

In this section we examine how φx is influenced by
the choice of derivative operator and the equation used
to implement the estimator. Our first test signal is
φ(x) = κx. For this simple signal it is possible to
predict the distortion by the derivative filters. Con-
sider κ = π/4; the derivative operator is applied to
exp(2iφ(x)) = exp(i(π/2)x). The effect of the regulari-
sation filter on this signal is a simple scaling, because the
signal has only one frequency component (at ω = π/2).
In the Gaussian case with σ = 1 the scaling factor will
be exp(−(π/2)2/2) ≈ 0.291 resulting in a estimate of
0.229 instead of π/4 ≈ 0.785. Equation 10’s smoothing
of the cancelation factor will introduce a second scaling
and make the results twice as bad. We have therefore
not further considered this variant. The non-distorting
filter with r = π/2 and σ = 0.1 results in a scaling by
0.5, yielding an estimate of 0.393. This can be verified
by the results in the following table:

Table 1: The estimated curvature κ for φ(x) = κx. Both
derivative operator types and equations 8 and 9 have
been used. The values have been obtained by averaging
over 128 pixels. The corresponding standard deviations
are of the same order as the floating point precision and
are therefore not listed.

estimated κ
true Gaussian Non-distorted
κ σ = 1 r = π/2, σ = 0.1

eq. 8 eq. 9 eq. 8 eq. 9
0.7854 (= π/4) 0.2287 0.2287 0.3927 0.3927

0.5 0.3033 0.3033 0.4950 0.4950
0.2 0.1846 0.1846 0.2000 0.2000
0.1 0.0980 0.0980 0.1000 0.1000

The results are in complete agreement with the theory.
They show that as long as the signal (the complex expo-
nential) lies in the pass-band of the non-distorting filter,
the correct answer is obtained. For curvatures smaller
than 0.1(10) the error is less than 2% when using Gaus-
sian derivative filters.
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Figure 5: a) The true derivative of φ(x, y) (solid) and the
estimate using Gaussian derivatives (dashed). b) The
difference between the true derivative and the estimate
using non-distorting derivatives.

The linear test signal used in the previous shows that the
error depends on the slope of the signal. A second test
signal, φ(x) = (24/π) sin(πx/64), with a varying slope
has been used to gain further insight into the error. The
slope varies between 0 and 0.375. Figure 5a shows the
true derivative and the estimate obtained by equation 8
using Gaussian derivatives. The same experiment was
done using the non-distorting derivatives with r = π/2
and σ = 0.1. The error of the estimated derivative is too
small to be visual in a graph such a figure 5a. Instead the
difference between the true and the estimated curvature
is given in figure 5b. Note the difference in axis scaling
between figure 5a and b.

We have also examined the difference in performance
between equation 8 and 9. For both the Gaussian and
the non-distorting filters the maximum deviation be-
tween the two estimates is very small, 1.8 10−4 and
8.9 10−8 respectively.

4.2 Synthetic orientation data

In the previous section we investigated the behaviour of
our derivative estimator on one-dimensional signals. In
this section we look at the limitations of the curvature
estimator by applying it to noise free, generated, orien-
tation data. The test image is φ(x, y) = atan(y/x) and
is shown in figure 8a. The curvature of this image is
given by κ(x, y) = 1/

√
(x2 + y2).

Figure 8b shows the absolute errors of the estimated
curvature along a horizontal line through the middle of
the test image starting from the centre. Although the
errors made by the Gaussian derivative filters are several
orders of magnitude larger than those made by the non-
distorting filters, they are so small that for all practical
purposes both implementations perform without error,
assuming that the curvature is not too large. The large
errors at the right end of the graph should be ignored;
they are caused by border effects.

(a)
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Figure 8: a) Synthetic orientation data. b) The er-
ror in the curvature estimate using Gaussian derivatives
(dashed) and using non-distorting derivatives (solid).

4.3 Noise sensitivity

In this section we examine the effect of noise on the
curvature estimator. φ(x, y) is not directly polluted by
noise. The noise present in φ(x, y) is non-additive and
non-white, since φ(x, y) is obtained from an input image
using a non-linear estimator, the Gradient Square Ten-
sor. Testing the performance of the curvature estimator
on artificial φ(x, y) data is therefore useless.

Instead we generate noisy images I(x, y) and apply
the complete scheme, including the GST stage. The
test image is I(x, y) = cos(

√
(x2 + y2)). Gaussian dis-

tributed noise is added to I(x, y) and the estimator is
applied. For each signal to noise ratio we have repeated
the experiment for 25 different noise realisations. The
signal to noise ratio is defined by:

SNR =
A

σN
(12)

A is the amplitude of the signal (in this case 1, half the
peak to peak value) and σN is the standard deviation
of the noise. Figure 6 shows the results for SNR’s of
4, 2 and 1. The GST stage uses Gaussian derivatives
with σ = 1 and the tensor elements are smoothed using
a Gaussian with σt = 10.

In figure 7 we have attempted to visualise the influ-
ence of noise. We have taken the same test pattern as
above with SNR=4. After computing the curvature, we
generate the following image: I(x, y) = cos(1/κ(x, y)),
which should yield an image containing concentric cir-
cles. Figure 7b shows the results for tensor smoothing
σt = 5. It is clear that the estimator is accurate for
large curvatures (except the very large near the centre
of the pattern), but fails for smaller curvatures. Note,
however, that the cos mapping is very sensitive; good
results mean a good estimate, but bad results do not
imply a bad estimate. Small curvatures correspond to
patterns slowly varying in orientation. To accurately
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Figure 6: Results of the curvature estimation on noisy data. For interpretation purposes we depict 1/|κ| rather
than κ itself. 1/|κ| was averaged over 25 noise realisations. The standard deviations are indicated. The experiment
was repeated for different SNR’s: a) SNR=4, b) SNR=2, c) SNR=1.

(a) (b) (c) (d)

Figure 7: a) A noisy pattern of concentric circles (SNR=4). b) and c) show cos(1/|κ|) for tensor smoothing σt is
5 and 10 respectively. d) The same as c), only 1/|κ| was averaged over 25 noise realisations.

describe the orientation at such locations, we need to
use a larger analysis window. Indeed, figure 7c shows
that after doubling the tensor smoothing (σt = 10) the
results are accurate for small curvatures as well. This
indicates that the amount of tensor smoothing should be
adjusted to the local curvature, suggesting a two stage
estimation. The first to get a rough estimate of the cur-
vature, followed by a more accurate estimation using a
spatially variant tensor smoothing.

Some artifacts can be observed in figure 7c. To make
sure that these aren’t systematic, we have averaged
κ(x, y) over 25 realisations. The result in figure 7d show
that the estimator has no systematic deviations.

4.4 Real data

So far, the estimator has only been applied to various
kinds of artificial data to test its limitations and ac-
curacy. In this section we apply the estimator to real
data, in particular an image of a fingerprint. There is no
ground truth for verifying the results. The evaluation
will therefore be strictly qualitative.

Figure 9a shows the finger print image. The (abso-

(a) (b) (c)

Figure 9: a) A finger print image. b) The absolute value
of the estimated curvature. c) finger print image over-
layed with a Gaussian (σ = 5) filtered logarithmic ver-
sion of the absolute curvature.

lute) curvature as estimated by our method is shown
next to it. Two hot spots are visible that clearly cor-
respond to topologically important points characterised
by a large curvature.

The last image is an attempt to visualise the results
using a fair amount of postprocessing. We start by tak-
ing the natural logarithm of the image. The resulting
image has too many small scale fluctuations that make
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interpretation difficult. The image is smoothed by a
Gaussian filter with σ = 5 and subsequently added to
the finger print image to create the final overlayed im-
age. The nearly horizontally oriented bright blob indi-
cates a region with relatively high curvature. The two
regions above and below the bright blob contain rela-
tively straight patterns with a low curvature, which is
evident from the dark blobs in the results.

5 Discussion

We have introduced a new curvature estimator which
operates on the output of an arbitrary orientation es-
timator. The implementation of the estimator required
careful consideration, because it depends in a subtle way
on the quality of the derivative operators used. We have
considered three versions of the estimator (equations 8, 9
and 10), as well as two different sets of derivative oper-
ators (Gaussian and non-distorting).

The experiments in sections 4.1 and 4.2 show that
there is no difference in accuracy between equations 8
and 9. Equation 10 was shown introduce more errors
than the other two.

These experiments also indicate that except for large
curvatures, the distortion caused by the Gaussian reg-
ularisation is not significant. In fact, experiments on
noisy data show that this distortion is insignificant even
for large curvatures.

The experiments on noisy data show that the esti-
mator is unbiased, rotation invariant and performs well
even when a considerable amount of noise is present.

The results can be summarised as follows: equation 8
using Gaussian derivative filters implements a robust
curvature estimator. The curvature that is to be mea-
sured should be smaller than 0.2(5) or, even better,
0.1(10) for the best results.

We have not compared the performance of the esti-
mator to other curvature estimators, both existing and
under development. This issue will be addressed in a
separate paper evaluating several curvature estimators.
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