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Abstract. This paper presents a methodology for behavior
characterization of an algorithm in terms of the parametric
description of input images. To develop the work we have
selected an algorithm which implements a model of texture
perception and provides a texture representation. The ap-
proach is based on the definition of an input parametric tex-
ture space, where parameters are related to texton attributes.
Multidimensional scaling provides a dimensional reduction
of space of representation. It allows interpretation of the be-
havior of the algorithm in a low-dimensional space where
points represent textures and distances represent dissimilari-
ties between textures, preserving the metric of the algorithm
representation in a monotonic sense. The resulting behavior
space establishes the basis to construct a quantitative causal
model of an algorithm.
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1 Introduction

Recent work in artificial intelligence [3] focuses on empiri-
cal methods for characterization of the features of programs,
environments, tasks and behaviors. The study of specific
programs using empirical methods can help us find their
general features. An empirical generalization strategy has
been defined in five steps: (1) build a program that exhibits
an interesting behavior; (2) identify specific features of the
program, the tasks and the environments that influence the
target behavior; (3) develop and test a causal model on how
these features influence the target behavior; (4) generalize
the features so that other programs, tasks and environments
are encompassed by the causal model; (5) test whether the
general model predicts accurately the behavior of this larger
set of programs, tasks and environments.

In this paper we focus on the second step of this strategy,
on a classical problem of computer vision. We have chosen

? e-mail: maria@cvc.uab.es
Correspondence to: M. Vanrell

an algorithm that implements a general computational model
of preattentive texture segmentation [12]. The paper has been
organized in the following steps.

Firstly we introduce the texture perception problem and
the algorithm we have studied in this work. Secondly we
give a brief introduction to the multidimensional scaling
method. Then we propose a methodology to construct a be-
havior space in terms of the input parameters. Finally we
test the results on some natural images.

2 Texture

Texture is an important visual cue due to the repetition of
image patterns. It is widely used in several applications, such
as classification of materials, scene segmentation and atten-
tional mechanisms.

Much work has focused on the texture perception prob-
lem. Interesting reviews have been presented [5, 7, 21, 27].
Psychophysical experiments and neurobiological evidence
have provided the basis for the definition of texture per-
ception models [1, 6, 9, 14]. These results have led to com-
putational multichannel approaches that are based on the re-
sponses of linear mechanisms. This type of approach implies
a large amount of image data distributed in a high number
of channels. This means it is difficult to understand how the
model will behave on specific images. In this work we ex-
periment on this type of approach to develop a methodology
to explore the behavior of algorithms.

2.1 An improved algorithm

The work presented by Malik and Perona [12] has been con-
sidered one of the most important computational models of
human preattentive texture perception. In order to explore
the model’s behavior, we firstly propose an efficient algo-
rithm to compute it. We have divided the model into four
stages.
First stage.An image-filtering step with a set of linear fil-
ters.Fi represents the filter of thei channel, whose response
is given by

Ri(x, y) = Fi(x, y) ∗ I(x, y) (1)
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The selected filters are the DOOG family, which are
formed by differences of offset gaussian functions as:

G(x0, y0, σx, σy) =
1

2πσxσy
e
−((

x−x0
σx

)2+(
y−y0
σy

)2) (2)

The expressions for the filters are given in Table 1.
DOG1 and DOG2 are radially symmetric filters modelling
nonoriented simple cells, and DOOG2 is a directional even-
symmetric filter to model bar-sensitive simple cells. The fil-
ter depends on a size parameterσ. Taking 12 possible sizes
for each filter and considering six different orientations on
filters DOOG2, 96 responses are obtained.

In this first step the filtering is followed by a half-wave
rectification that duplicates the number of responses

R+(x, y) = max{R(x, y), 0}
R−(x, y) = max{−R(x, y), 0} (3)

Thus, the result of this first stage is given by the follow-
ing set of 192 responses:

R2k = (I ∗ Fk)+(x, y)

R2k+1 = (I ∗ Fk)−(x, y) ∀k ∈ {0, ..., 95} (4)

Second stage.A non-linear inhibition in two steps. We have
ameliorated these two steps by introducing fast morphologi-
cal operations [15] to compute them. Local maximum oper-
ations have been implemented by a morphological dilation
with an isotropic structuring element [23, 24].

The first inhibition removes spurious responses. That is,
responses in non-optimally tuned channels are suppressed.
This is done by subtracting the following function from each
channeli

Ti(x0, y0) = max
j
{(αjiRj(x, y))⊕BIji} (5)

Values forIji andαji depend on the inhibition that is
selected. In our experiments we have used model A (see
Tables 1 and 2 in [12]).Iji represents the radius of the
isotropic structuring elementB.

The second inhibition expands strong responses to their
own neighborhood. The postinhibition response is given by

PIRi(x0, y0) = (
1

1− αii
[Ri(x, y)− Ti(x, y)]+)⊕BSi (6)

wherek = 1/(1− αii) also depends on model A andSi is
the radius of the neighborhood.
Third stage.A gradient detection on each channel is com-
puted

Gradi(x, y) = ∇(PIRi ∗Gσ′ )(x, y) (7)

Fourth stage.A combination stage where the distributed rep-
resentation in channels is lost and all gradients are joined in
a unique response. In this model this step is computed by a
maximum operation over all gradient of the previous step,
obtaining the textural gradient of the image.

3 Multidimensional scaling

Multidimensional scaling (MDS) methods have been devel-
oped to analyze and visualize data in such a way that con-
figurations of points in a space of dimensionm can be seen
in a space of dimensionk (k < m), preserving the interpoint
distances in a monotonic sense [8, 13, 28]. Although, we will
work on euclidean distances we have based our approach on
nonmetric MDS, since dissimilarity between representations
could be defined with any other measure.

Starting with ann× n matrix,∆ = (δij), whereδij rep-
resents a dissimilarity measure between pointspi andpj in a
m-dimensional space, the objective is to find a configuration
of x1, ..., xn points in ak-dimensional space havingdij as
interpoint distances betweenxi and xj . The values ofdij
must be monotonically related toδij , that is

δij ≤ δqp → dij < dqp ∀ (i, j) ∈ {1, .., n} × {1, .., n} (8)

Given an initial arbitrary configuration of points inRk

with interpoint distanceŝdij , the problem consists of apply-
ing an iterative method that minimizes the following expres-
sion:

S =

√√√√∑i,j(dij − d̂ij)2∑
i,j d̂

2
ij

(9)

The minimum is taken over values ofdij ’s that verify the
monotonic relation withδij . Thus,S gives information about
how good the computed configuration is; it is called “stress”
and was first defined by Kruskal [10]. In this sense, we will
consider the minimum stress value as a measure of badness-
of-fit, hence,S = 0 represents an exact fit on the rank order
of the recovered configuration. Finding the most adequate
value fork has been defined as the dimensionality problem.
There is an interesting approach to this problem in [11].

First approaches to the construction of configurations
based on dissimilarities were presented by Shepard [16, 17].
In [18], he proposes to use MDS as a way to discover
the structure of what he calls the psychological space. It is
formed by the consequential regions which behaves as nat-
ural kinds or classes. In this way a new object is easily rec-
ognized or classified by being introduced in this structured
psychological space. The psychological space is constructed
from a set of dissimilarity data obtained from psychophysi-
cal experiments. Our work has been motivated by this type
of approach since we are trying to explore the underlying
structure of high-dimensional representation spaces provided
by certain algorithms.

4 Defining the behavior space

In a previous section we introduced a texture perception
algorithm from which we extract a high-dimensional texture
representation

r(t) = (v1, ..., v192) (10)

where

vi =
∑

(x,y)∈{0,...,N}2

PIRi(x, y)
N2

(11)
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Table 1. Expressions corresponding to the filtersDOG1, DOG2 andDOOG2.

Filter σ Factor Offset
DOG1(σ) = aG(0, 0, σi, σi) σi : σ : σ0 a : b

+ bG(0, 0, σ0, σ0) 0.71 : 1 : 1.14 1 :−1

DOG2(σ) = aG(0, 0, σi, σi) σi : σ : σ0 a : b : c
+ bG(0, 0, σ, σ) 0.62 : 1 : 1.6 −1 : 2 :−1
+ cG(0, 0, σ0, σ0)

DOOG2(σ, r) = aG(0, ya, σx, σy) σy = σ a : b : c ya = −yc = σ
+ bG(0, yb, σx, σy) σx = r · σ −1 : 2 :−1 yb = 0
+ cG(0, yc, σx, σy) (r = 3)

aDOG1 : aDOG2 : aDOOG2
3 : 4.15 : 2

wheret is an image of sizeN ×N presenting one texture.
Dimension of vectorr depends on the number of channels
in the algorithm1.

The defined representation permits consideration of a
texture as a point in a representation space of 192 dimen-
sions, in which discriminable textures must be separated by
a distance in the space. From this point of view, the study of
the discriminability of the algorithm can be seen as the study
of the spatial proximities between textures in this represen-
tation space. With this purpose, we define a dissimilarity
measure,δ, such that

δij =

√√√√ 192∑
k=0

(r(ti)k − r(tj)k)2 (12)

whereti and tj are two different texture images andr(ti),
r(tj) are their corresponding points in the representation
space and have been computed by the algorithm.

As we have argued before, the purpose of this work
is to identify specific features that influence the algorithm
behavior and how they do it. In order to do this, we will
define a parametric texture space. It will allow us to work on
sets of images whose features can be isolated and controlled,
in order to be able to prepare valid experiments to interpret
the program behavior.

We have assumed that a texture image is a repetition of
blobs and bars with similar properties. Actually, this assump-
tion has also been made in the work of Vorhees and Poggio
[25], where bars and blobs are first detected and then their
attributes are measured. Contrast, size and orientation are
the most frequently used attributes. In fact, we are treating
blobs and bars as textons [9].

Hence, to carry out the study we will work on synthetic
images formed by aligned blobs or bars2. We have intro-
duced a constant density on all images that agrees with the
inhibition radius of the program. This does not affect the
program behavior since it does not depend on texton loca-
tion but on textons density.

The foregoing considerations permit definition of a tex-
ture as a point in a parametric space of four dimensions.
Each axis is associated to a texton attribute as size, length,
orientation and contrast, where

t = i(p1, p2, p3, p4) = i(s, l, θ, c) (13)

1 The average of the inhibition response has been computed to avoid the
effects of noisy spurious responses.

2 Generated from the expression of a two-dimensional Gaussian function,
size of blobs and bars is given by the standard deviations of the function.

represents an image texture, which is formed by the repe-
tition of one type of texton, and whose attributes are given
by s, l, θ and c. These attributes represent the position of
image t in the parametric space3 (Examples of images in
this parameteric space can be seen in Figs. 5a, 6a and 7a).

Variation on a given axis represents a variation of the cor-
responding attribute on the image texton. As we have stated
before, the images that we are generating present a constant
density of textons and a fixed background gray level.

Heretofore, we have defined a parametric texture space
which will provide interesting sets of images. The algorithm
permits representation of the input image in a representation
space. To explore this representation space we will carry out
a set of experiments according to the following steps:

1. Select a set ofn images in the texture parametric space.
Selection must be made to characterize any given aspect
of the representation space.

2. Apply the algorithm to obtain the representation,r, of
each image.

3. Calculate the set of all interpoint dissimilarities between
texture representations and construct then×n matrix of
dissimilarities.

4. Select thek dimension for the recovered space.
5. Apply a nonmetric MDS algorithm to obtain the config-

uration of then points in thek dimensional space, we
will show it by a k-dimensional plot. This process pro-
vides a stress measure as the badness-of-fit of the new
configuration.

This MDS-based approach will allow construction of the
behavior space of the algorithm, which preserves the same
underlying structure of the representation space. In Fig. 1 we
can see a scheme of this methodology.

4.1 Variations on one parameter

We will first apply this approach to explore, separately, how
the program behaves with variations on each parameter at
the input space. Variations on size and length axis on the
parametric texture space have been recovered by monotonic
variations on a one-dimensional space (badness-of-fit=0.001,

3 In our experiments parameters have been taken from the following
space: [1, 10] × [1, 10] × [0◦, 180◦] × [−128, 128]. In fact we are tak-
ing a subspace of it, since we only consider points accomplishings ≤ l,
otherwise we could have two different points representing the same image
texture.
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Fig. 1. Diagram of the steps in the proposed methodology. In our approach the parametric input space corresponds to a texture space (q = 4) and parameters
have been defined as size, length, orientation and contrast of the image texton. The algorithm implements a computational model of texture perception,
which implies a representation space withm = 192. The reduction of the MDS method provides a behavior space defined in terms of the input parameters,
where dimensions verifyk < m

0.0008, respectively), as is shown in Fig. 2. At this moment,
it implies two dimensions in the behavior space

(f1(s), f2(l)) (14)

wheref1 andf2 represent monotonic functions.
On the other hand, variations along the orientation axis

imply a non-monotonic one-dimensional plot with an impor-
tant stress measure (badness-of-fit=0.26). But it decreases
significantly for a two-dimensional space, presenting the
configuration of Fig. 3 (badness-of-fit=0.0002). This circular
configuration appears indistinctly for whatever size, length
and contrast.

From this result we can state that the algorithm presents
maximum distances whenever orientation differs by 90◦ and
that there is no coordinate origin for the orientation axis.
The algorithm does not represent directions but axes. That
is, bars’ orientation is represented by their inertia axis. These
observations lead us to hypothesize that the algorithm rep-
resentation behaves in a two-dimensional space like this:

(f3(cos 2θ), f4(sin 2θ)) (15)

for variations in orientation, wheref3 andf4 determine the
radius of the circular configuration. At present, we are not
able to hypothesize about the shape of these functions.

Likewise, contrast variations through a zero cross implies
a non-monotonic variation of the algorithm representation on
a one-dimensional space (badness-of-fit=0.2), whereas for
a two-dimensional space the badness-of-fit is 0.00004. We
can see this in Fig. 4. The important reduction of the stress
value from one to two dimensions shows that there is a
significant fact that is not represented in a one-dimensional
space. Hence, the inflexion introduced by the zero-cross in
the parametric space has to be considered in the representa-
tion space.

From these results, we can observe that there exists a
symmetric behavior between dark and bright textons, and
an increasing difference between them as the absolute value
of contrast increases. Therefore, we can hypothesize that
the algorithm represents textures with different contrast sign
according to the following two-dimensional space:

(sgn(c) · f5(|c|), f6(|c|)) (16)

wheresgn function represents the sign of the argument and
f5, f6 seems to be monotonic functions.

At this point we can give a first approximation of the
structure of the behavior space, in terms ofs, l, θ andc pa-
rameters. In this case we go from a 19two-dimensional rep-
resentation to an approximation on a six-dimensional space,
b, such as

b(t) = (f1, ..., fk) ' (f1, f2, f3, f4, f5, f6) (17)

wherek would represent the correct dimensionality4 andf1,
f2, f5, f6 are monotonic functions of the following expres-
sions

b(t) ' (f1(s), f2(l), f3(cos 2θ), f4(sin 2θ),

, sgn(c) · f5(c), f6(|c|)) (18)

4.2 Interactions between parameters

In order to refine the previous hypothesis, we will try to
explore how dimensions interact between them. We can do
it by constructing sets of images where variation occurs in
more than one parameter.

Parameters one and two vary in a monotonic sense. We
can see this effect in Fig. 5, where the triangle configuration
in the parametric space is preserved by the algorithm rep-
resentation in a monotonic sense. There is a deviation due
to imagetc, but we can not derive any clear interaction be-
tween these two axes. Other triangle configurations, that has
been experimented in this subspace, present certain devia-
tion for some images, as in this case, but do not allow one
to infer any specific relation.

A contrast variation with respect to size can be seen in
Fig. 6a. From the recovered configuration in Fig. 6b, we can
deduce that distances between textures of the same contrast
increase when contrast increases, that is

f1 = g1(s, c) (19)

where g1 is a monotonic function ofs and c. While dis-
tances between textures of different contrast depend only on
contrast difference, whatever the other parameters are

4 The hypothetical true dimensionality which underlies the data
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Fig. 2. MDS plot configuration of a set of images,t1, ..., t7, where each one presents size variations

Fig. 3. MDS plot configuration of a set of images,t1, ..., t8, where each one present orientation variations from 0◦ to 180◦

Fig. 4. MDS plot configuration of a set of images,t1, ..., t8, where each one presents contrast variations with a zero cross betweent4 andt5

f6 = g6(|c|) (20)

such that,g6 is a monotonic function depending only on|c|.
Equally, the same conclusions can be reached from

square configuration with images with negative contrast. The
squares are equally deviated from the input configuration,
confirming expressions for 19 and 20.

This interpretation has also been done from experiments
where variations on size have been substituted by length
variations [22], obtaining

f2 = g2(l, c) (21)

whereg2 is a monotonic function.
Interaction between orientation and the rest of the pa-

rameters has also been checked. In Fig. 7a we have selected
a set of images varying in contrast and orientation, and in
Fig. 7b we see the consequential configuration for the algo-
rithm representation, where we can approximately say that
on the recovered space dimension 1 corresponds to contrast
variation and dimensions 2 and 3 correspond to orientation
in the sense that we have expressed withf3 andf4 functions.
We can see that images varying in orientation and with the
same contrast are positioned in a circle configuration over
the same plane. We can also observe that for a given orienta-
tion the algorithm representations are on the same plane and
maintaining the configuration that we have seen in Fig. 4 for
a contrast sign change. Finally we can state that the radius
of the circle configuration depends on contrast values.

f3 = g(|c|) cos(2θ) (22)

f4 = g(|c|) sin(2θ) (23)

Following this last inference we have tried to prove if
the radius depends only on contrast, or if it also depends
on the rest of parameters. Graphics in Fig. 8 give support to
this hypothesis, since, as we can observe, the radius varies
for different lengths of bars (Fig. 8a), and for different size
(Fig. 8b). From this observation we can deduce the following
expressions

f3 = g(s, l, |c|) cos(2θ) (24)

f4 = g(s, l, |c|) sin(2θ) (25)

which means that the radius depends on monotonic varia-
tions of size, length and absolute value of contrast. It has
been expressed with the sameg function, since the shape of
the circular configuration presents no distorsion in either of
its two dimensions.

Other experiments can be found in [22] which confirm
the expressions of the behavior space that we have con-
structed.

Thus far, we have obtained the following expression for
the six-dimensional space, in which we have expressed the
behavior of the algorithm, that is, the behavior space in this
way:

b(t) ' (g1(s, c), g2(l, c), g(s, l, c) cos(2θ),

, g(s, l, |c|) sin(2θ), sign(c) · g5(|c|), g6(|c|)) (26)

4.3 Underlying dimension

The last question that we will attempt to respond is about the
true dimensionality for the constructed space. Classical tech-
niques to solve this problem have been based on a Monte
Carlo approach [19, 20]. A computer simulation using ran-
dom data with known configurations was used as the basis
to construct sets of dissimilarities, which were scaled by a
nonmetric MDS algorithm. Some errors were introduced in
these sets of data. The stress values of these simulated data
can be used as a guide to recover the unknown dimension-
ality.

We have computed the stress values for a set of 36 im-
ages from our experiments. In Fig. 9 we show the obtained
stress values versus the stress values of the simulated data
in the Monte Carlo approach, given in [19]. From this we
can deduce that our data present an underlying dimension of
4.

Taking this into account, we will give a last hypothesis
about the behavior space of the algorithm. We can eliminate
previous redundant dimensions and give the following final
approach:
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Fig. 5. a Points in the texture parametric space in a triangle configuration. Imagesta, tb and tc are at the vertex of an equilateral triangle,tij2 is the
midpoint betweenti andtj andtabc is the triangle centroid. Variations are taken on size and length parameters (assuming size≤length).b 2D MDS solution
of the dissimilarities computed from the algorithm representation of points ina (badness-of-fit=0.003)

Fig. 6. a Square configuration of points in the parametric space. Variations of size and contrast.b 2D MDS solution of the algorithm dissimilarities on
points ofa (badness-of-fit=0.00061)

b(t) ' (g(s, l, c) cos(2θ), g(s, l, |c|) sin(2θ),

, sign(c) · g5(|c|), g6(|c|)) (27)

since parameters in the two first dimensions were also con-
sidered in the others. This new space maintains all the con-
straints that we have been introducing during the study. At
any rate, the relevant conclusion is that we have an important
reduction and we know how the input parameters interact,
independently of knowing the true dimensionality.

5 Experiments on natural images

To give support to the behavior space defined in the previous
section, we have tested it on some natural images. We have
taken a set of images from the Brodatz album [2] that can be
perceived as points in the defined parametric texture model.

We have applied the process on the set of images in
Fig. 10a, presenting a predominant direction on bars and
with different bar contrast. The 2D MDS configuration of
the resulting representations present the form that we have
predicted in the behavior space (see Fig. 10b). Dissimilarities
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Table 2. Stress values for scaled data to different dimensions expressed as
k. Dissimilarity for our data has been computed over a set of 36 points
in the representation space. Selected points corresponds to a subset of the
images used in this work. The simulated data from a Monte Carlo approach
have been obtained from the work of Spence and Graef [19]

Stress Monte-Carlo simulation

k (our data) e=0.0000 e=0.0625
1 0.37402 0.387 0.447
2 0.19609 0.204 0.233
3 0.10843 0.097 0.125
4 0.05063 0.000 0.060
5 0.02685 0.000 0.055
6 0.02000 - -

due to orientation are configured on a circle, whose radius
depends on the bar contrast value.

In a similar way we have tested the size parameter by
reducing image resolution. We have constructed a square
configuration of textures varying in contrast and resolution,
simulating variations on contrast and size of texture blobs
(see Fig. 11a). The 2D MDS configuration of the resulting
representations preserve the square configuration in the same

way as we had predicted for textures of the parametric space
(see Fig. 11b).

6 Conclusions

In this work we present a methodology to explore the behav-
ior of algorithms. We have based our approach on new ten-
dencies in artificial intelligence which use empirical methods
to establish causal models of programs. The approach relies
on the extraction of general features of environments, tasks
and behaviors.

We have particularly worked on the texture perception
problem. Defining a simplified parametric texture space we
have obtained a way to synthesize images by controlling
certain interesting parameters. Any image has been formed
by the repetition of a blob with specific parameters of size,
length, orientation and contrast. We are not concerned about
the specific location of textons, we only consider attribute
densities as in Julesz’s texton theory. This parametric space
also agrees with Marr’s image model based on bars and
blobs and their attributes, which has been computationally
defined in the work of Voorhees and Poggio [26].



269

Dimension 1

3210-1-2-3

D
im

en
si

on
 2

2.0

1.5

1.0

.5

0.0

-.5

-1.0

-1.5

-2.0

t8_8

t7_8

t6_8

t5_8
t4_8

t3_8

t2_8

t1_8

t8_4

t7_4

t6_4

t5_4t4_4
t3_4

t2_4

t1_4

-1.0

t3_5 t2_5

-1.0 -.5 Dimension 3

-1.5

-1.0

t3_2
D
i

m
e
n
s
i
o
n
 
1

0.0

t4_5

-.5

-.5

0.0

t2_2

.5

t1_5

.5

t4_2

1.0

1.0
0.0

1.5

t5_5

1.5
2.0

Dimension 2

t8_5

.5

t1_2

t6_5

t5_2

t7_5

1.0
1.5

t8_2
t6_2

t7_2

8a 8b

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7

"36-examples"
"Monte-Carlo-36-4-E=0.0"

"Monte-Carlo-36-4-E=0.06"

Fig. 8. a 2D MDS solution of the algorithm dissimilarities on two sets of
points {t14, ..., t84} and {t18, ..., t88}, where tki represents the texture
with orientationθk and lengthi (badness-of-fit=0.016)b 3D MDS solu-
tion of the algorithm dissimilarites on two sets of points{t12, ..., t82} and
{t15, ..., t85}, where tkj represents the texture with orientationθk and
lengthj (badness-of-fit=0.002). (In both cases consecutive orientations are
separated by 23◦)

Fig. 9. Graphical representation of the stress values in Table 2 versus values
from the Monte Carlo approach on four-dimensional data with two different
error levels

9

The selected image model defines the algorithm environ-
ment. We propose to test the algorithm in its environment
by isolating specific features of it, in the same way that
psychologists do in psychophysical experiments.

Assuming that the algorithm returns a high-dimensional
representation of the input image, we have based our ap-
proach on the use of the multidimensional scaling method.
It has been applied from a dissimilarity matrix constructed
by distances between representations of different images.
An exhaustive study on variations of specific parameters
of the input images has permitted formulation of a four-
dimensional behavior space for this algorithm on this sim-
plied image model. Considering that the bars and blobs
model has been defined as a general image model, the re-
sults on this parametric space should be able to be extended
to any image.

This behavior space can be understood as a qualitative
causal model, which is the basis for development of the
quantitative causal model of the algorithm. It also provides
a representation of the algorithm in such a way that it facil-
itates the comparison between different algorithms.

Finally, we conclude that the construction of the behavior
space of any given texture representation is a relevant step
in solving automatic classification problems. In this sense
we can see this behavior space as a representation space
with a known underlying structure which will allow us to
construct systems based on this representation, i.e. systems
able to describe any new texture by their proximity to some
given set of prototypes in this space, as it has been done
with the shape recognition problem in [4].

An immediate continuation to this approach is to test
it on images presenting more than one kind of textons. In
this case, the approach would permit representation of any
texture in terms of texture prototypes of the defined model.

It would be very interesting to test the approach on differ-
ent neural networks in which the high dimensionality prob-
lem of certain intermediate steps sometimes makes predic-
tion of their behavior difficult. In this case, we should extract
the information of an intermediate stage in the network and
use it as a representation space.

The construction of the behavior space of a computa-
tional model based on the human visual system opens a
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new line to systematically test whether it behaves as hu-
mans do. This point of view implies construction of the per-
ceptual space of human vision from a set of psychophysic
experiments on stimuli constructed from the same paramet-
ric model. These experiments will allow construction of a
dissimilarity matrix. A computational model of vision will
be valid if the behavior space presents the same structure
of the perceptual space constructed from the same set of
images.

References

1. J.R. Bergen, M.S. Landy (1991) Computational Models of Visual Pro-
cessing, chapter Computational Modeling of Visual Texture Segrega-
tion, pp 253–271. MIT Press, Cambridge, Mass.

2. P. Brodatz (1966) Textures. New York: Dover
3. P. R. Cohen (1995) Empirical methods for Artificial Intelligence. MIT

Press, Cambridge, Mass.
4. S. Duvdevani-Bar, S. Edelman (1995) On similarity to prototypes in

3d object representation. Technical report, Weizmann Institute
5. L.van Gool, P. Dewaele, A. Oosterlinck (1985) Survey: Texture anal-

ysis anno 1983. Computer Vision, Graphics and Image Processing
29:336–357

6. N. Graham, A. Sutter (1996) Effect of spatial scale and background
luminance on the intensive and spatial nonlinearities in texture segre-
gation. Vision Research 36:1371–1390

7. R.M. Haralick (1979) Statistical and structural approaches to texture.
In Proceedings of the IEEE, pp 304–322, May

8. M.J. Norusis/ SPSS Inc. (ed) (1994) SPSS Professional Statistics 6.1
9. B. Julesz, J.R. Bergen (1983) Textons, the fundamental elements in

preattentive vision and perception of textures. Bell Systems Techno-
logical Journal 62:1619–1645

10. J.B. Kruskal (1964) Nonmetric multidimensional scaling: A numerical
method. Psychometrika 29:115–129

11. J.B. Kruskal, M. Wish (1978) Multidimensional Scaling. Sage Uni-
versity Paper

12. J. Malik, P. Perona (1990) Preattentive texture discrimination with
early vision mechanisms. Journal of the Optical Society of America
7:923–932

13. K.V. Mardia, J.T. Kent, J.M. Bibby (1995) Multivariate Analysis,
chapter Multidimensional Scaling, pp 394–423. Academic Press, New
York

14. D. Sagi (1991) Early Vision and Beyond, chapter The Psychophysics
of Texture Segmentation, pp 69–78. MIT Press, Cambridge, Mass.

15. J. Serra (1982) Image analysis and mathematical morphology. Aca-
demic Press, New York

16. R.N. Shepard (1962) The analysis of proximities: multidimensional
scaling with an unknown distance function. i and ii. Psychometrika
27:125–140,219–246

17. R.N. Shepard (1980) Multidimensional scaling, tree-fitting, and clus-
tering. Science 210:390–210

18. R.N. Shepard (1987) Toward a universal law of generalization for
psychological science. Science 237:1317–1323

19. I. Spence, J. Graef (1974) The determination of the underlying dimen-
sionality of an empirically obtained matrix of proximities. Multivariate
Behavioral Research 9:331–342

20. I. Spence, J.C. Oglivie (1973) A table of expected stress values for
random rankings in nonmetric multidimensional scaling. Multivariate
Behavioral Research 8:511–517

21. M. Tuceryan, A.K. Jain (1993) Handbook of Pattern Recognition and
Computer Vision, chapter Texture Analysis, pp 235–276. World Sci-
entific, Teaneck, NJ

22. M. Vanrell (1996) Exploring the behavior of a texture perception
algorithm. Technical Report 12, CVC
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