
M. van Ginkel, J. van de Weijer, P.W. Verbeek, and L.J. van Vliet, Curvature estimation from
orientation fields, in: M. Boasson, J.A. Kaandorp, J.F.M. Tonino, M.G. Vosselman (eds.), ASCI’99,

Proc. 5th Annual Conference of the Advanced School for Computing and Imaging
(Heijen, NL, June 15-17), ASCI, Delft, 1999, 299-306.

Curvature Estimation from Orientation Fields

M. van Ginkel, J. van de Weijer, P.W. Verbeek, L.J. van Vliet

Pattern Recognition Group
Department of Applied Physics,
Delft University of Technology,

Lorentzweg 1, 2628 CJ Delft, The Netherlands,
{michael,joostw,piet,lucas}@ph.tn.tudelft.nl

Keywords: lines, edges, orientation, curvature

Abstract

We propose a new curvature estimator, which op-
erates on the output of an orientation estimator.
Robust orientation estimators have been available
for a long time. Some properties of the estimator
as well as potential problems and limitations are
discussed. The theory is verified by some exper-
iments and practical limitations are investigated.
The method is robust and performs well over a
wide range of signal to noise ratios, down to about
0 dB.

1 Introduction

Orientation is one of the key features in a variety
of image analysis applications. Robust estima-
tors for orientation have been available for some
time [7, 4, 11]. In the current paper we describe
a method to estimate curvature based on these
orientation estimators.

We distinguish between two classes of orienta-
tion estimators. The first class consists of esti-
mators for a locally dominant orientation. The
second class is able to cope with complex scenes
of overlapping oriented patterns. Examples of the
latter class are the Hough transform and the ori-
entation space [1, 2, 6, 8] approach. In [3] we
have shown how to estimate curvature using the
orientation space approach. When an image can
be well described using a single locally dominant
orientation, the orientation space approach is un-
necessarily complex both with respect to the com-
plexity of the method itself as well as the com-
putational cost. In this paper we show a sim-
ple method for computing the curvature from the
output of an estimator for locally dominant ori-
entation.

The structure of the paper is as follows; we start
with a few definitions and a short description
of the orientation estimator used in this paper.
We then proceed by defining curvature and our
method for estimating curvature. Two variants
of the estimator are introduced. In the sections
that follow, we investigate some of the properties
and inherent limitations of the method.

2 Orientation Estimation

Although analysis of curved patterns is our ob-
jective, in the following sections we will first re-
view the analysis of oriented straight patterns. At
a given point an image is modeled as a straight
pattern (curvature zero). Curved patterns can be
analysed by considering a neighbourhood of such
points, or equivalently a set of slightly rotated,
slightly displaced, straight patterns.

2.1 Orientation

We assume that images can locally be modeled
as a translation invariant pattern or (paintbrush)
stroke. Such a stroke has a one-dimensional in-
tensity profile and an orientation: the profile ori-
entation across the stroke, see figure 1.

φ
x

Figure 1: An oriented pattern

We refine our definition of orientation by distin-
guishing between angles in the interval [−π, π〉
and angles in the interval [−π/2, π/2〉. The term
direction refers to an angle in the interval [−π, π〉,
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thus making a distinction between vectors along
the same line, but with a different sign. We re-
serve the term orientation for angles in the in-
terval [−π/2, π/2〉. Vectors in opposite directions
have the same orientation.

2.2 The Structure Tensor

Our curvature estimator is applied to an orienta-
tion field. To test our curvature estimator we use
the Structure Tensor (ST) to perform the orien-
tation estimation. The ST is a well known robust
orientation estimator [7, 4, 11]. We briefly re-
view it here, because some of its properties have
consequences for the behaviour of the curvature
estimator.

The ST approach is essentially a simple gra-
dient based orientation estimator, followed by a
regularisation step. The direction of the gradi-
ent is an estimator of the local orientation, but
is very susceptible to noise. The gradient vec-
tors in a neighbourhood of a straight pattern dis-
turbed by noise have (on average) identical ori-
entation. This suggests using a simple vector av-
eraging scheme, but this is not a viable scheme
due to the fact that about half the gradient vec-
tors have an opposite direction with respect to
the other half. Averaging results in cancelation
of these opposite vectors. The cancelation prob-
lem can be solved by embedding the gradient of
an image I(x, y) in the following tensor represen-
tation:

T = ∇I ∇IT =
(

I2
x IxIy

IxIy I2
y

)
(1)

Each of the tensor elements Tij is averaged over
the same local neighbourhood. Since this tensor
representation is a quadratic form there are no
cancelation problems. The final orientation es-
timate is obtained by performing an eigenvalue
analysis of the smoothed tensor. The local orien-
tation is given by the orientation of the eigenvec-
tor corresponding to the largest eigenvalue.

2.3 Curved patterns and the
Structure Tensor

The ST gives correct orientation estimates for
straight patterns such as depicted in figure 1.
Since our interest lies in the analysis of curved
patterns, the behaviour of the ST on such pat-
terns must be briefly discussed. A prototypical
curved pattern is depicted in figure 2.
Consider the local orientation axis in figure 2. As
long as the pattern is symmetrical with respect
to the orientation axis, the ST will yield an un-
biased orientation estimate. Any deviation from

φ
x

Figure 2: A curved pattern

this model will result in a biased estimate, and
this will also affect the curvature estimator. The
estimator that will be introduced in the next sec-
tion depends only on orientation changes, so a
locally constant bias will not influence the result.

2.4 Singularities

It is important to note that both orientation and
curvature do not have to exist over the entire im-
age domain. At the centre of a radial pattern,
part of which we can see a in figure 2, both orien-
tation and curvature are undefined. Orientation
is a well behaved quantity in the vicinity of this
singularity, but curvature becomes unbounded as
the centre is approached. In section 3.2 an upper
bound on the curvatures that can be measured is
given.

3 Curvature Estimation

3.1 Curvature

Although our interest lies in the curvature of pat-
terns such as depicted in figure 2, we will first give
the definition of curvature for a curve. Our def-
inition of curvature for curved patterns is based
on the same principle.

The curvature κ at any point along a two-
dimensional curve is defined as the rate of change
in tangent direction θ of the contour, as a function
of arc length s [9].

κ =
dθ

ds
(2)

It is common practice to apply the previous
definition to gray value images by considering
isophotes. The curvature of an isophote in a gray-
value image I(x, y) is given by the following for-
mula [10]:

κ = −Iww

Iv
= −

I2
xIyy − 2IxIyIxy + I2

yIxx

(I2
x + I2

y )
3
2

(3)

Where Iv is the derivative in the gradient direc-
tion, i.e. the gradient magnitude, and Iww is the
second derivative in the direction perpendicular
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to the gradient (i.e. the contour direction). Us-
ing equation 3 to estimate the curvature is in-
appropriate for images consisting of the type of
patterns shown in figure 2, due to the fact that
the gradient vanishes on ridges and in valleys [10].
The isophote curvature also changes sign at these
locations, thus giving information on which side
of the ridge (closer to or farther away from the
centre) we are located. The estimator introduced
below uses the sign to give more useful informa-
tion. Finally, isophote curvature is susceptible to
noise and there is no easy way to regularise equa-
tion 3.

c

Figure 3: The estimator computes the derivative
of the orientation field along the dotted lines.

Since isophote curvature is an inappropriate tool
for our type of images, we use the following defini-
tion of curvature instead: curvature is the change
in orientation in the direction along the strokes,
perpendicular to the orientation, as indicated by
the dotted lines in figure 3. Our curvature defini-
tion is given by:

κ(x, y) = −∂φ(x, y)
∂c

=

− sinφ(x, y)
∂φ(x, y)

∂x
+ cos φ(x, y)

∂φ(x, y)
∂y

(4)

where c is the direction perpendicular to the lo-
cal orientation. It is apparent from figure 3 that
in the right half of the picture the orientation in-
creases along the c axis, while it decreases in the
left half. The sign of the curvature will therefore
be positive for the pattern in the right half and
negative for the pattern in the left half. It shows
in which direction to look along the orientation
axis in order to find the origin of the pattern.

Equation 4 cannot be implemented directly
due to the fact that φ(x, y) contains jumps, be-
cause φ lies in the interval [−π/2, π/2〉. This and
other problems are discussed in the following sec-
tions.

3.2 Phase jumps

There are two possible ways to deal with the
jumps in the φ image: either remove the jumps or
make the computation of κ insensitive to them.
Getting rid of such jumps is called phase unwrap-
ping and can be easily done for one-dimensional

signals. In two dimensions this process is non-
trivial [12] and we do not pursue this approach in
this paper.

Instead we will make equation 4 insensi-
tive to jumps in φ. We start by noting that
exp(2iφ(x, y)) is a continuous function of x and
y. Taking the derivative with respect to x yields:

∂ exp(2iφ(x, y))
∂x

= 2iφx(x, y) exp(2iφ(x, y)) (5)

Reordering yields an equation that allows us to
compute φx even though φ contains jumps:

φx(x, y) = −1
2
i exp(−2iφ(x, y))

∂ exp(2iφ(x, y))
∂x

(6)

In this way φx and φy can be computed despite
the jumps in φ. Equation 4 can subsequently be
used to estimate the curvature. The method is
strongly related to the work on phase analysis by
Jepson and Fleet [5].

It is possible to establish an upper limit on
the curvature that can be estimated using this
method. Consider the one-dimensional signal
φ(x) = κx. If κ is larger than or equal to
π/2, then exp(2iφ(x)) will be undersampled. The
largest curvature allowed is therefore π/2, corre-
sponding to a radius (1/κ) of approximately 0.64.
From here on, we will use the convention that the
value between brackets behind a curvature value
indicates the corresponding radius, for instance
0.2(5).

Implementation of equation 6 for sampled im-
ages results in some subtle problems. These will
be addressed in the next section and alternative
versions of equation 6 will be given.

3.3 Implementation

The derivations in the previous section assume
a continuous image. The curvature estimator
that was developed involves derivative operations.
Great care should be taken whenever an operator
involving derivative operators is carried over to
the discrete domain.

Equation 6 is potentially sensitive to improper
implementation of the derivative operators. It
is not possible to create a true discrete deriva-
tive. Instead we have to resort to sampled ver-
sions of regularised derivative operators. It is in-
deed the regularisation rather than the dicreti-
sation itself, that causes the problems. Con-
sider an arbitrary regularised derivative operator
D(xx, y) = (∂/∂x)S(x, y), where S is the regular-
isation filter. Applying D to exp(2iφ) yields:
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Dx(x, y) ∗ exp(2iφ(x, y)) =

=
∂

∂x
(exp(2iφ(x, y)) ∗ S(x, y))

= (
∂

∂x
exp(2iφ(x, y)) ∗ S(x, y)

= (2i
∂φ(x, y)

∂x
exp(2iφ(x, y)) ∗ S(x, y)

6= 2i exp(2iφ(x, y))(
∂φ(x, y)

∂x
∗ S(x, y))

(7)

The last inequality shows that we cannot simply
assume the complex exponential above to can-
cel with the complex exponential exp(−2iφ(x, y)
in equation 6, when we replace the derivative in
equation 6 by Dx(x, y). In fact, φx will generally
be complex valued.

3.3.1 Modifying the estimator

Despite the arguments above we still expect equa-
tion 6 to be approximately correct for discrete
images. Two modified versions of equation 6 are
introduced below and will be evaluated by the
experiments in section 4.

The simplest way of dealing with the complex
valued φx is to simply disregard the imaginary
part (since we expect it to be small). The esti-
mate φ̃x for φx becomes:

φ̃x(x, y) = Re
{
−1

2
i exp(−2iφ(x, y))

Dx ∗ exp(2iφ(x, y))
} (8)

Instead of trying to cancel the phase, it is also
possible to directly ignore the phase by only con-
sidering the magnitude. The approximation for
equation 6 becomes:

φ̃x(x, y) = sign(φx(x, y))
1
2

∣∣∣Dx ∗ exp(2iφ(x, y))
∣∣∣

(9)

The sign of φx is taken from equation 8.
The last variant is based on the idea that it

may be possible to compensate for the regulari-
sation by also smoothing the cancelation factor:

φ̃x(x, y) = Re
{
−1

2
i
[
S(x, y) ∗ exp(−2iφ(x, y))

]
Dx ∗ exp(2iφ(x, y))

}
(10)

3.3.2 Discrete derivative operators

Discrete derivative operators are always approx-
imations to the true derivative operators in the
continuous domain. A popular class of deriva-
tive operators is the family of Gaussian deriva-
tive filters. These have a very good localisation
in both the spatial and the Fourier domain. Fur-
thermore they are relatively insensitive to noise
because of the Gaussian regularisation filter. Ex-
amination of the frequency characteristic of the
Gaussian and the first derivative of Gaussian fil-
ters in figure 4a shows that for low frequency sig-
nals a Gaussian derivative filter is nearly identical
to a ”true” derivative operator (it shows ”jω” be-
haviour).
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Figure 4: Fourier transforms of a) the Gaussian
regularisation filter and its derivative. b) The
non-distorting regularisation filter and its deriva-
tive.

For many applications the Gaussian derivative
family is the ideal set of derivative operators. De-
spite this, given equation 6’s potential sensitivity
to the choice of derivative operator, the distortion
by the Gaussian regularisation filter may already
be too severe. To investigate the influence of the
derivative operator, we have also considered an-
other regularisation filter. It has a flat response
in the pass band and a smooth transition to the
stop band. Its frequency response is shown in fig-
ure 4b along with the response of the derivative
operator based on it. This non-distorting regu-
larisation filter N is given by:

N(ω, r, σ) =
1
2
(1− erf(σ(ω − r))) (11)

The position of the transition band is controlled
by r and its width by σ. To prevent spatial alias-
ing the width of the transition band should not
be too small.
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4 Experiments

4.1 One-dimensional experiments

In this section we examine how φx is influenced by
the choice of derivative operator and the equation
used to implement the estimator. Our first test
signal is φ(x) = κx. For this simple signal it is
possible to predict the distortion by the derivative
filters. Consider κ = π/4; the derivative operator
is applied to exp(2iφ(x)) = exp(i(π/2)x). The
effect of the regularisation filter on this signal is
a simple scaling, because the signal has only one
frequency component (at ω = π/2). In the Gaus-
sian case with σ = 1 the scaling factor will be
exp(−(π/2)2/2) ≈ 0.291 resulting in a estimate
of 0.229 instead of π/4 ≈ 0.785. Equation 10’s
smoothing of the cancelation factor will intro-
duce a second scaling and make the results twice
as bad. We have therefore not further consid-
ered this variant. The non-distorting filter with
r = π/2 and σ = 0.1 results in a scaling by 0.5,
yielding an estimate of 0.393. This can be verified
by the results in the following table:

Table 1: The estimated curvature κ for φ(x) =
κx. Both derivative operator types and equa-
tions 8 and 9 have been used. The values
have been obtained by averaging over 128 pix-
els. The corresponding standard deviations are
of the same order as the floating point precision
and are therefore not listed.

estimated κ
true Gaussian Non-distorted
κ σ = 1 r = π/2, σ = 0.1

eq. 8 eq. 9 eq. 8 eq. 9
π/4 0.2287 0.2287 0.3927 0.3927
0.5 0.3033 0.3033 0.4950 0.4950
0.2 0.1846 0.1846 0.2000 0.2000
0.1 0.0980 0.0980 0.1000 0.1000

The results are in complete agreement with the
theory. They show that as long as the signal
(the complex exponential) lies in the pass-band
of the non-distorting filter, the correct answer is
obtained. For curvatures smaller than 0.1(10) the
error is less than 2% when using Gaussian deriva-
tive filters.
The linear test signal used in the previous shows
that the error depends on the slope of the signal.
A second test signal, φ(x) = (24/π) sin(πx/64),
with a varying slope has been used to gain further
insight into the error. The slope varies between
0 and 0.375. Figure 5a shows the true derivative
and the estimate obtained by equation 8 using
Gaussian derivatives. The same experiment was
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Figure 5: a) The true derivative of φ(x, y)
(solid) and the estimate using Gaussian deriva-
tives (dashed). b) The difference between the true
derivative and the estimate using non-distorting
derivatives.

done using the non-distorting derivatives with
r = π/2 and σ = 0.1. The error of the estimated
derivative is too small to be visual in a graph
such a figure 5a. Instead the difference between
the true and the estimated curvature is given in
figure 5b. Note the difference in axis scaling be-
tween figure 5a and b.

We have also examined the difference in per-
formance between equation 8 and 9. For both the
Gaussian and the non-distorting filters the maxi-
mum deviation between the two estimates is very
small, 1.8 10−4 and 8.9 10−8 respectively.

4.2 Synthetic orientation data

In the previous section we investigated the be-
haviour of our derivative estimator on one-
dimensional signals. In this section we look at the
limitations of the curvature estimator by applying
it to noise free, generated, orientation data. The
test image is φ(x, y) = atan(y/x) and is shown in
figure 8a. The curvature of this image is given by
κ(x, y) = 1/

√
(x2 + y2).

(a)

0 50 100
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1e−15

1e−10

1e−05

1e+00

(b)

Figure 8: a) Synthetic orientation data. b)
The error in the curvature estimate using Gaus-
sian derivatives (dashed) and using non-distorting
derivatives (solid).
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Figure 6: Results of the curvature estimation on noisy data. For interpretation purposes we depict 1/|κ|
rather than κ itself. 1/|κ| was averaged over 25 noise realisations. The standard deviations are indicated.
The experiment was repeated for different SNR’s: a) SNR=4, b) SNR=2, c) SNR=1.

(a) (b) (c) (d)

Figure 7: a) A noisy pattern of concentric circles (SNR=4). b) and c) show cos(1/|κ|) for tensor smoothing
σt is 5 and 10 respectively. d) The same as c), only 1/|κ| was averaged over 25 noise realisations.

Figure 8b shows the absolute errors of the esti-
mated curvature along a horizontal line through
the middle of the test image starting from the cen-
tre. Although the errors made by the Gaussian
derivative filters are several orders of magnitude
larger than those made by the non-distorting fil-
ters, they are so small that for all practical pur-
poses both implementations perform without er-
ror, assuming that the curvature is not too large.
The large errors at the right end of the graph
should be ignored; they are caused by border ef-
fects.

4.3 Noise sensitivity

In this section we examine the effect of noise on
the curvature estimator. φ(x, y) is not directly
polluted by noise. The noise present in φ(x, y) is
non-additive and non-white, since φ(x, y) is ob-
tained from an input image using a non-linear
estimator, the Structure Tensor. Testing the per-
formance of the curvature estimator on artificial
φ(x, y) data is therefore useless.

Instead we generate noisy images I(x, y) and
apply the complete scheme, including the ST
stage. The test image is I(x, y) = cos(

√
(x2 +

y2)). Gaussian distributed noise is added to
I(x, y) and the estimator is applied. For each
signal to noise ratio we have repeated the experi-
ment for 25 different noise realisations. The signal
to noise ratio is defined by:

SNR =
A

σN
(12)

A is the amplitude of the signal (in this case 1,
half the peak to peak value) and σN is the stan-
dard deviation of the noise. Figure 6 shows the
results for SNR’s of 4, 2 and 1. The ST stage
uses Gaussian derivatives with σ = 1 and the
tensor elements are smoothed using a Gaussian
with σt = 10.

In figure 7 we have attempted to visualise the
influence of noise. We have taken the same test
pattern as above with SNR=4. After computing
the curvature, we generate the following image:
I(x, y) = cos(1/κ(x, y)), which should yield an
image containing concentric circles. Figure 7b
shows the results for tensor smoothing σt = 5.
It is clear that the estimator is accurate for large
curvatures (except the very large near the centre
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(a) (b) (c)

Figure 9: a) A finger print image. b) The absolute
value of the estimated curvature. c) finger print
image overlayed with a Gaussian (σ = 5) filtered
logarithmic version of the absolute curvature.

of the pattern), but fails for smaller curvatures.
Note, however, that the cos mapping is very sen-
sitive; good results mean a good estimate, but
bad results do not imply a bad estimate. Small
curvatures correspond to patterns slowly varying
in orientation. To accurately describe the orien-
tation at such locations, we need to use a larger
analysis window. Indeed, figure 7c shows that
after doubling the tensor smoothing (σt = 10)
the results are accurate for small curvatures as
well. This indicates that the amount of tensor
smoothing should be adjusted to the local curva-
ture, suggesting a two stage estimation. The first
to get a rough estimate of the curvature, followed
by a more accurate estimation using a spatially
variant tensor smoothing.

Some artifacts can be observed in figure 7c.
To make sure that these aren’t systematic, we
have averaged κ(x, y) over 25 realisations. The
result in figure 7d show that the estimator has no
systematic deviations.

4.4 Real data

So far, the estimator has only been applied to
various kinds of artificial data to test its limita-
tions and accuracy. In this section we apply the
estimator to real data, in particular an image of
a fingerprint. There is no ground truth for verify-
ing the results. The evaluation will therefore be
strictly qualitative.

Figure 9a shows the finger print image. The
(absolute) curvature as estimated by our method
is shown next to it. Two hot spots are visible
that clearly correspond to topologically impor-
tant points characterised by a large curvature.

The last image is an attempt to visualise the
results using a fair amount of postprocessing. We
start by taking the natural logarithm of the im-
age. The resulting image has too many small
scale fluctuations that make interpretation diffi-
cult. The image is smoothed by a Gaussian filter

with σ = 5 and subsequently added to the finger
print image to create the final overlayed image.
The nearly horizontally oriented bright blob indi-
cates a region with relatively high curvature. The
two regions above and below the bright blob con-
tain relatively straight patterns with a low curva-
ture, which is evident from the dark blobs in the
results.

5 Discussion

We have introduced a new curvature estimator
which operates on the output of an arbitrary ori-
entation estimator. The implementation of the
estimator required careful consideration, because
it depends in a subtle way on the quality of the
derivative operators used. We have considered
three versions of the estimator (equations 8, 9
and 10), as well as two different sets of deriva-
tive operators (Gaussian and non-distorting).

The experiments in sections 4.1 and 4.2 show
that there is no difference in accuracy between
equations 8 and 9. Equation 10 was shown intro-
duce more errors than the other two.

These experiments also indicate that except
for large curvatures, the distortion caused by the
Gaussian regularisation is not significant. In fact,
experiments on noisy data show that this distor-
tion is insignificant even for large curvatures.

The experiments on noisy data show that the
estimator is unbiased, rotation invariant and per-
forms well even when a considerable amount of
noise is present.

The results can be summarised as follows:
equation 8 using Gaussian derivative filters im-
plements a robust curvature estimator. The cur-
vature that is to be measured should be smaller
than 0.2(5) or, even better, 0.1(10) for the best
results.

We have not compared the performance of the
estimator to other curvature estimators, both ex-
isting and under development. This issue will be
addressed in a separate paper evaluating several
curvature estimators.
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