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Fast Anisotropic Gauss Filtering
Jan-Mark Geusebroek, Arnold W. M. Smeulders, Member, IEEE, and Joost van de Weijer

Abstract—We derive the decomposition of the anisotropic
Gaussian in a one-dimensional (1-D) Gauss filter in the -direc-
tion followed by a 1-D filter in a nonorthogonal direction . So
also the anisotropic Gaussian can be decomposed by dimension.
This appears to be extremely efficient from a computing perspec-
tive. An implementation scheme for normal convolution and for
recursive filtering is proposed. Also directed derivative filters are
demonstrated.

For the recursive implementation, filtering an 512 512
image is performed within 40 msec on a current state of the
art PC, gaining over 3 times in performance for a typical filter,
independent of the standard deviations and orientation of the
filter. Accuracy of the filters is still reasonable when compared to
truncation error or recursive approximation error.

The anisotropic Gaussian filtering method allows fast calculation
of edge and ridge maps, with high spatial and angular accuracy. For
tracking applications, the normal anisotropic convolution scheme
is more advantageous, with applications in the detection of dashed
lines in engineering drawings. The recursive implementation is
more attractive in feature detection applications, for instance in
affine invariant edge and ridge detection in computer vision. The
proposed computational filtering method enables the practical
applicability of orientation scale-space analysis.

Index Terms—Directional filter, feature detection, Gauss filter,
Gaussian derivatives, orientation scale-space, tracking.

I. INTRODUCTION

ONE OF THE most fundamental tasks in computer vision
is the detection of edges and lines in images. The detec-

tion of these directional structures is often based on the local
differential structure of the image. Canny’s edge detector ex-
amines the magnitude of the first order image derivatives [1]. A
well-founded approach for line detection is given by Steger [2],
where line structures are detected by examining the eigenvec-
tors of the Hessian matrix, the Hessian being given by the local
second order derivatives. Robust measurement of image deriva-
tives is obtained by convolution with Gaussian derivative filters,
a well known result from scale-space theory [3], [4].

The difficulty of edge and line detection is emphasized when
the structures run close together or cross each other, as is the
case in engineering drawings or two-dimensional (2-D) projec-
tions of complex three-dimensional (3-D) scenes. In these cases,
isotropic filtering strategies as used in e.g., [5], [1], [6], [2] are
not sufficient. Isotropic smoothing causes parallel lines to be
blurred into one single line. Crossing lines are not well detected
by isotropic filters [7], due to the marginal orientation selec-
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tivity of the Gaussian filter. In these cases, one would often like
to have a detection method which ignores the distorting data
aside the edge or line, while accumulating evidence of the edge
or line data along its orientation. Hence, taking advantage of the
anisotropic nature of lines and edges. This implies a sampling
of orientations by anisotropic filtering. For a linear orientation
scale-space, the anisotropic Gaussian is the best suited causal
filter [8].

Orientation analysis is often approached by steerable filters.
Freeman and Adelson [9] put forward the conditions under
which a filter can be tuned to a specific orientation by making
a linear combination of basis filters. Their analysis included
orientation tuning of the -separable first order isotropic
Gaussian derivative filter. According to their framework, no
exact basis exists for rotating an anisotropic Gaussian. Van
Ginkel et al. proposed a deconvolution scheme for improving
the angular resolution of the Gaussian isotropic filter. Under
a linearity assumption on the input image, a steerable filter
with good angular resolution is obtained. The method involves
a Fourier based deconvolution technique, which is of high
computational complexity. Perona [7] derived a scheme for
generating a finite basis which approximates an anisotropic
Gaussian. The scheme allowed both steering and scaling of
the anisotropic Gaussian. However, the number of basis filters
is large, and the basis filters are nonseparable, requiring high
computational performance.

In this paper, we show the decomposition of the anisotropic
Gaussian in two Gaussian line filters in non orthogonal direc-
tions (Section II). Choosing the-axis to decompose the filter
along turns out to be extremely efficient from a computing per-
spective. Hence, fast algorithms [10]–[13] can be used to cal-
culate the orientation smoothed image and its derivatives. We
combine the decomposition with the recursive algorithms pro-
posed in [12], [13], yielding a constant calculation time with
respect to the Gaussian scales and orientation (Section III). We
give timing results and compare accuracy with 2-D convolution
in Section IV.

II. SEPARATION OFANISOTROPICGAUSSIAN

The general case of an oriented anisotropic Gaussian filter in
two dimensions is given by (Fig. 1)

(1)

where “ ” denotes convolution, and where

(2)
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Fig. 1. Ellipse and its axes systems. An example of an anisotropic Gaussian
with aspect ratio 1 : 2 and orientation� = �=4. (a) Principal axesuv-aligned
Gaussian. (b)uv-aligned Gaussian in a nonorthogonalxt-axes system. Axist
is rotated over' � �=3 with respect to thex-axis.

the -axis being in the direction of, and the -axis being or-
thogonal to .

As we are interested in a convenient basis from a computa-
tional perspective, separation inand is uninteresting. What
is needed is the decomposition into a filter in the-direction and
a filter along another direction. Hence, we aim at separating the
anisotropic Gaussian filter into

(3)

representing the Gaussian filter along the-direction, followed
by filtering along a line . The impulse
response of Eq. (3) is given by

(4)

which should be equal to the impulse response of (1) to yield
the proposed decomposition

(5)

Expanding the quadratic terms yields the system of equations

(6)

(7)

(8)

Solving the equations yields the decomposition of the
anisotropic Gaussian into a Gaussian along the-axis, with
standard deviation

(9)

and a Gaussian along the line , with standard
deviation

(10)

and intercept

(11)

Note that the term in (10) vanishes in (4).
So we have achieved our goal namely that a Gauss filter at

arbitrary orientation is decomposed into a 1-D Gauss filter with
standard deviation and another 1-D Gauss filter at orientation

and standard deviation . For the isotropic case
, it is verified easily that , . Further, for ,

trivially , , and , and for ,
, , and . An arbitrary example

orientation of and , results in
, , and ( ), see

Fig. 1(b).

III. I MPLEMENTATION

Implementation of (3) boils down to first applying a 1-D
Gaussian convolution in the-direction. The resulting image is
then convolved with a 1-D Gaussian in the-direction yielding
the anisotropic smoothed image. The latter step implies interpo-
lation, which can be achieved by linear interpolation between
two neighboring -pixels on the crossing between the image

-line of interest and the-axis [see Fig. 1(b)]. In this section,
we consider two implementations of the anisotropic Gaussian,
based on a common convolution operation, and based on a re-
cursive filter [12], respectively.

Convolution Filter

Due to the filter symmetry, the -filter can be applied by
adding pixel left from the filter center with pixel right from
the filter center, and multiplying the summed pixels with filter
weight , or

(12)
Here, is the input image, is the filter kernel for half the
sampled Gaussian from 0 to , and is the filtered
result image.

Filtering along the line with intercept is achieved
by a sheared filter

(13)
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Notice that the coordinate falls exactly on an image line,
whereas the coordinate may fall between two pixels.
Hence, the value of the source pixel may be obtained by inter-
polating between the two pixels at the line of interest. To achieve
our goal of fast anisotropic filtering, we consider linear interpo-
lation between the neighboring pixels at with interpo-
lation coefficient . The filter equation then becomes

(14)

The multiplication of and can be taken out of
the loop to reduce the computational complexity of the filter.
Hence, before filtering of the image, two tables of pre-calculated
filter coefficients are combined with the interpolation factors
and , respectively. During filtering, pixels are weighted
with these values, and accumulated to result in the filtered and
interpolated output value.

Recursive Filter

Rather than applying convolution operators, (3) may be im-
plemented by recursive filters. Van Vlietet al. [12], [13] define
a scheme for 1-D Gaussian filtering with infinite support. The
recursive filter requires only seven multiplications per pixel, an
improvement over [11]. The complexity is independent of the
Gaussian standard deviation. In [13] it is shown that the recur-
sive filter is faster than its normal counterpart for . When
using the recursive filter, filtering along the-line is given by
the forward and backward filter pair

(15)

Here, represent the filter coefficients as given by [12], [13],
and is the -filtered result image. The computational
complexity of the recursive filter is 7 multiplications per pixel.

Filtering along the line with intercept is achieved
by a sheared recursive filter

(16)

Note that are constraint to lie on the line, hence may
point to positions “between” pixels. Since interpolation of the

recursive filter values is not possible, the filter history and
has to be buffered, such that allvalues are at the buffer

“grid.” The input values, for the forward filter
and for the backward filter, are linearly inter-
polated from the two input pixels on the left and right of the
exact location. The results and are interpolated
to the output pixel grid by combining with the previous result.
Since all pixels are at the exact line position, interpolation can be
performed linearly between the current value and the previous
value.

Computational complexity of the proposed implementations
and a few common methods for Gaussian convolution is shown
in Table I. The table indicates computational complexity for sev-
eral solutions of anisotropic Gaussian filtering. For anisotropic
Gaussian filtering oriented along the -axes, resulting in a
fixed orientation. In this case, no interpolation is necessary.
For filtering along a -axes system, bilinear interpolation
results in a 4 times higher complexity than the-aligned
filtering. Improvement is obtained when using the proposed
decomposition along a -axes system. In the latter case, no
interpolation is needed for the-filter step, resulting in
multiplications, whereas linear interpolation is necessary for
the -filter step (unit steps along-axis, interpolation at -axis),
resulting in multiplications. Hence, improvement due to
interpolation is over 50% compared to the-separated filter,
with identical outcome.

IV. RESULTS

Performance of the filter with respect to computation speed
is shown in Table II. The analysis was carried out on a Pen-
tium III at 800 MHz for a 512 512 image. The maximum
calculation time for the proposed-separable recursive imple-
mentation was 40 msec. Small variations in the computation
time for the -separable recursive implementation is due to the
varying direction of the-axis as function of . The varia-
tion causes the processing of different pixels with respect to the
filter origin, hence are influenced by the processor cache per-
formance. The use of recursive filters is already beneficial for

or . The results correspond to the predictions in
Table I. The -recursive filter is almost two times faster than
the separable recursive filter. For a common value of
and , the -recursive implementation is 3.25 times faster
than the standard method of-separable convolution filtering.
Even for the -separable convolution filter, calculation is up to
two times faster than -separable filtering. Normal convolu-
tion filtering is advantageous when considering locally steered
filtering, as in tracking applications, for example Fig. 2. The re-
cursive filtering is, given its computation speed, more attractive
when smoothing or differentiating the whole image array, as in
feature detection, shown in Fig. 3.

The approximation of the 2-D Gaussian kernel of (1) by sep-
arable filters is not perfect due to interpolation of source values
along the line . We evaluated the error for
the -separable convolution filter in comparison to the full 2-D
spatial convolution. The results are given in Table III. Interpo-
lation can be considered as a smoothing step with a small rect-
angular kernel. Hence, the effective filter is slightly larger than
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TABLE I
COMPLEXITY PER PIXEL OF VARIOUS ALGORITHMS FORGAUSSIAN SMOOTHING. FILTER SIZE IS DENOTED BYN �M , DEPENDING ON THE

GAUSSIAN STANDARD DEVIATION �

Fig. 2. Example of line detection by local anisotropic Gaussian filtering.
Lines are tracked by steering the filter in the line direction. Hence, line evidence
will be integrated by the large Gaussian standard deviation along the line,
while maintaining spatial acuity perpendicular to the line. Original from an
engineering drawing, courtesy of PNEM, The Netherlands.

the theoretical size of the anisotropic Gaussian filter. As a re-
sult, the error is large for small , as can be concluded
from the table. For the convolution filters and , the
interpolation error is of the same magnitude as the truncation
error for a sized filter (last four rows in the table). The inter-
polation error is smaller for the -filter than for the -filter.
For the latter, bilinear interpolation have to be performed, cor-
responding to a larger interpolation filter than the linear inter-
polation for the -separable filter. For the recursive filter, the
interpolation error of the forward filter accumulates in the back-
ward filter, causing a larger error. Especially the small filters are
less accurate, as pointed out in [12], [13]. Note that the error due

Fig. 3. Example of the detection ofC. Elegansworms by applying recursive
anisotropic Gauss filters. The original image is filtered at different orientations
and scales, and the maximum response per pixel over all filters is accumulated.
At each pixel, the local orientation and best fitting ellipse is available to be
further processed for worm segmentation. Computation time was within 10 s
for 5 angular resolution and three different aspect ratios (image size 512�

512 pixels). Original courtesy of Janssen Pharmaceuticals, Beerse, Belgium.

to interpolation is negligible compared to the error made by the
recursive approximation of the Gaussian filter. For the-sepa-
rated recursive filter, the bilinear interpolation caused the error
accumulation to have such a drastic effect that the result was
far from Gaussian (data not shown). In conclusion, accuracy for
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TABLE II
PERFORMANCE OFVARIOUS ANISOTROPICGAUSSIAN FILTER IMPLEMENTATIONS

the -separated convolution filter is better than bilinear inter-
polation combined with -separated filtering. For recursive fil-
tering, error is larger due to the recursive approximation of the
Gauss filter. For numerous applications the computation speed
is of more importance than the precision of the result.

V. CONCLUSION

We derived the decomposition of the anisotropic Gaussian
in a 1-D Gauss filter in the -direction followed by a 1-D
filter in a nonorthogonal direction . The decomposition is
shown to be extremely efficient from a computing perspective.
An implementation scheme for normal convolution and for
recursive filtering is proposed. Also directed derivative filters
are demonstrated.

We proposed a scheme for both anisotropic convolution
filtering and anisotropic recursive filtering. Convolution filtering
is advantageous when considering locally steered filtering, as is
the case in tracking applications [14], [15]. Recursive filtering
is more attractive when smoothing or differentiating the whole
image array, for example in feature detection [1], [2], [4]. Error
due to interpolation is negligible compared to the error made
by the recursive approximation of the Gaussian filter, and
compared to the truncation error for convolution filters. The
use of fast recursive filters [12], [13] result in an calculation
time of 40 ms for a 512 512 input image on a current
state-of-the-art PC.

Differentiation opposite to or along the filter direction is
achieved by convolution with a rotated sample difference filters.
For practical applicability of orientation scale-space analysis,
we believe the exact approximation of Gaussian derivatives is
of less importance than the ability to compute results in limited
time.

Although the decomposition of (1) is possible in higher di-
mensions, the method is less beneficial for 3-D filtering appli-
cations. Only one of the axes can be chosen to be aligned with

TABLE III
ACCURACY OFVARIOUS ANISOTROPICGAUSSIAN FILTER IMPLEMENTATIONS.
THE MAXIMUM ERROROVER ALL FILTER ORIENTATIONS IS SHOWN. ERROR

MEASURED ASROOT OF THESUM SQUARED DIFFERENCESWITH THE

TRUE GAUSSIAN KERNEL

the organization of the pixels in memory. For the other direc-
tions, traversing in arbitrary directions through the pixel data is
required. Hence, computational gain is only marginal for higher
dimensional smoothing.

The proposed anisotropic Gaussian filtering method allows
fast calculation of edge and ridge maps, with high spatial and
angular accuracy, improving computation speed typically by a
factor 3. The anisotropic filters can be applied in cases where
edge and ridge data is distorted. Invariant feature extraction
from a 2-D affine projection of a 3-D scene can be achieved
by tuning the anisotropic Gaussian filter, an important achieve-
ment for computer vision. When structures are inherently in-
terrupted, as is the case for dashed line detection, anisotropic
Gaussian filter may accumulate evidence along the line while
maintaining spatial acuity perpendicular to the line. Orientation
scale-space analysis can best be based on anisotropic Gaussian
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filters [16]. The proposed filtering method enables the practical
applicability of orientation scale-space analysis.
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