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Fast Anisotropic Gauss Filtering

Jan-Mark Geusebroek, Arnold W. M. Smeulddviember, IEEEand Joost van de Weijer

Abstract—We derive the decomposition of the anisotropic tivity of the Gaussian filter. In these cases, one would often like
Gaussian in a one-dimensional (1-D) Gauss filter in thec-direc-  to have a detection method which ignores the distorting data

tion followed by a 1-D filter in a nonorthogonal direction ¢. S0 4gide the edge or line, while accumulating evidence of the edge
also the anisotropic Gaussian can be decomposed by dimension.

This appears to be extremely efficient from a computing perspec- OF line data along its orientation. Hence, taking advantage of the

tive. An implementation scheme for normal convolution and for aniS(_)tropic_; nature Of_ lines Qnd_ edges. This implies a sampling
recursive filtering is proposed. Also directed derivative filters are  of orientations by anisotropic filtering. For a linear orientation

demonstrated. ) o scale-space, the anisotropic Gaussian is the best suited causal
For the recursive implementation, filtering an 512 x 512 filter [8]

image is performed within 40 msec on a current state of the Orientati vsis is oft hed by st ble filt
art PC, gaining over 3 times in performance for a typical filter, rientation analysis IS often approached by steerabie hiters.

independent of the standard deviations and orientation of the Freeman and Adelson [9] put forward the conditions under

filter. Accuracy of the filters is still reasonable when compared to which a filter can be tuned to a specific orientation by making

truncation error or recursive approximation error. ~a linear combination of basis filters. Their analysis included
The anisotropic Gaussian filtering method allows fast calculation orientation tuning of thery-separable first order isotropic

of edge and ridge maps, with high spatial and angular accuracy. For . A . . .
tracking applications, the normal anisotropic convolution scheme Gaussian derivative filter. According to their framework, no

is more advantageous, with applications in the detection of dashed €xact basis exists for rotating an anisotropic Gaussian. Van
lines in engineering drawings. The recursive implementation is Ginkel et al. proposed a deconvolution scheme for improving
more attractive in feature detection applications, for instance in  the angular resolution of the Gaussian isotropic filter. Under
affine invariant edge and ridge detection in computer vision. The 5 |inearity assumption on the input image, a steerable filter
proposed computational filtering method enables the practical . Lo . -
applicability of orientation scale-space analysis. with gopd angular resolution is obtalneq. The mgthqd mvolyes
a Fourier based deconvolution technique, which is of high
computational complexity. Perona [7] derived a scheme for
generating a finite basis which approximates an anisotropic
Gaussian. The scheme allowed both steering and scaling of
I. INTRODUCTION the anisotropic Gaussian. However, the number of basis filters

NE OF THE most fundamental tasks in computer visiol$ large, qnd the basis filters are nonseparable, requiring high

O is the detection of edges and lines in images. The det&@mputational performance. 3 _ _

tion of these directional structures is often based on the locall this paper, we show the decomposition of the anisotropic

differential structure of the image. Canny’s edge detector eg_@_ausman in two Gaussu’_;m line flltgrs in non orthogonal _dlrec-

amines the magnitude of the first order image derivatives [1]. #onS (Section II). Choosing the-axis to decompose the filter

well-founded approach for line detection is given by Steger [22/0ng turns out to be extremely efficient from a computing per-

where line structures are detected by examining the eigenveBgective. Hence, fast algorithms [10]-[13] can be used to cal-

tors of the Hessian matrix, the Hessian being given by the lo&late the orientation smoothed image and its derivatives. We

second order derivatives. Robust measurement of image derf@Mbine the decomposition with the recursive algorithms pro-

tives is obtained by convolution with Gaussian derivative filter80S€d in [12], [13], yielding a constant calculation time with

a well known result from scale-space theory [3], [4]. respect to the Gaussian scales and orientation (Section III): We
The difficulty of edge and line detection is emphasized whéHve timing results and compare accuracy with 2-D convolution

the structures run close together or cross each other, as is/theection IV.

case in engineering drawings or two-dimensional (2-D) projec-

tions of complex three-dimensional (3-D) scenes. In these cases, Il. SEPARATION OF ANISOTROPICGAUSSIAN

isotropic filtering strategies as used in e.g., [3], [1], [6], [2] aré The general case of an oriented anisotropic Gaussian filter in

not sufficient. Isotropic smoothing causes parallel lines to B&q dimensions is given by (Fig. 1)

blurred into one single line. Crossing lines are not well detected

by isotropic filters [7], due to the marginal orientation selecy, (y, v; 4., o, 6)

Index Terms—Directional filter, feature detection, Gauss filter,
Gaussian derivatives, orientation scale-space, tracking.
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. ¥ Solving the equations yields the decomposition of the
‘ anisotropic Gaussian into a Gaussian along dkaxis, with
standard deviation

0p = Ty ©)
- ~ \/03 cos? f + o2 sin® 0
and a Gaussian along the littey — x tan ¢ = 0, with standard
deviation
1 \/ 2 2 in2
o= , 0 2 0 10
T = o " 02 cos? 0 + o2 sin (20)

and intercept
(a) (b) )
02cos?f + o2 sin” f
(02 —02)cosfsing’

u

tanp = (12)

Fig. 1. Ellipse and its axes systems. An example of an anisotropic Gaussian
with aspect ratio 1:2 and orientatien= = /4. (a) Principal axesv-aligned
Gaussian. (b}v-aligned Gaussian in a nonorthogonataxes system. Axis  Note that thel/ sin ¢ term in (10) vanishes in (4)

is rotated overy & /3 with respect (o the-axis. So we have achieved our goal namely that a Gauss filter at
arbitrary orientation is decomposed into a 1-D Gauss filter with

the u-axis being in the direction of, and thev-axis being or- standard deviation, and another 1-D Gauss filter at orientation
thogonal tod. ¢ and standard deviatian,. For the isotropic case, = o, =

As we are interested in a convenient basis from a computa-it is verified easily that, = o, o, = o. Further, ford = 0,
tional perspective, separationinanduv is uninteresting. What trivially o, = o,, 0, = 0,, andtan ¢ = 0, and ford = /2,
is needed is the decomposition into afilter in thdirectionand o+, = ¢,, 6, = o,, andtany = 0. An arbitrary example
afilter along another direction. Hence, we aim at separating tbegentation of¢ = /4 ando, = o, 0, = 20, results ino, =

anisotropic Gaussian filter into (2/5)V100, 0, = V/3.40, andtan p = (5/3) (¢ ~ 7/3), see
Fig. 1(b).

!]9(1177 Y04, Oy, 9)

1 1 22 1 1 2 lll. | MPLEMENTATION
= ———CXpP{— = 5 ¥ —V——CXP{— = —& 3) . . . .
V2m oy 2 o2 V2r oy, 2 o2 Implementation of (3) boils down to first applying a 1-D

’ Gaussian convolution in the-direction. The resulting image is
representing the Gaussian filter along theirection, followed  then convolved with a 1-D Gaussian in thedirection yielding
by filtering along a linet = zcosy + ysinp. The impulse the anisotropic smoothed image. The latter step implies interpo-
response of Eq. (3) is given by lation, which can be achieved by linear interpolation between
1 two neighboringz-pixels on the crossing between the image
=5 z-line of_interest gnd thé-axis _[see Fig. 1(b)]. In thi_s section_,
e we consider two implementations of the anisotropic Gaussian,

exp { 1 <(m — y/tan p)’ . (y/ sin @2) } @ based on a common convolution operation, and based on a re-

!]9(1177 Y0y, Oy, 9)

3 3 cursive filter [12], respectively.
(o 05
which should be equal to the impulse response of (1) to yie%onvolutmn Filter

the proposed decomposition Due to the filter symmetry, the-filter can be applied by
adding pixel: left from the filter center with pixel right from
1 1 the filter center, and multiplying the summed pixels with filter
9o(u, v;0y, 04, 0) = rouo, P {—— weighti, or
. 2 . 2 LN/2]
_<(3:cos€+2ysm0) +(—J:Sln0—|;yc059) )} ) gzlz, y] = woflz, y] + Z w; (flz —14, y] + flz + 14, y]) .
oy (o i=1

(12)

Expanding the quadratic terms yields the system of equationgere.f[z, y]is theinputimagey; is the filter kernel for half the
sampled Gaussian from 0{&V/2|, andg..[z, y] is the filtered

a?  yco8?f ,sin? 4 " result image.
02 = v o2 T o2 6 Filtering along the ling with intercept: = tan ¢ is achieved
) by a sheared filter
y? y? ,co820  ,sin”f
2.t 5.3 =Y 5~ Ty 5 (7) [M/2]
oz tan® ¢ o sin” ¢ oy o; _ . y
gole, yl = wogalz, vl + D w; (gale —5/p, y — ]
2xy 1 1 j=1
- =2 fsinf | ———= ). (8 . .
oZtang 0TI <02 U%) ®) + gzlz+ 35/ y+3]). (13)
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Notice that they 4 j coordinate falls exactly on an image lineyecursive filter values is not possible, the filter hist_@g){t] and
whereas the: + j/u coordinate may fall between two pixels.g}[t] has to be buffered, such that alvalues are at the buffer
Hence, the value of the source pixel may be obtained by intégrid.” The input valuesgt [z + y/u, y] for the forward filter
polating between the two pixels at the line of interest. To achieaedgg [z + y/u, y] for the backward filter, are linearly inter-
our goal of fast anisotropic filtering, we consider linear interpgpolated from the two input pixels on the left and right of the
lation between the neighboring pixelszatt j/u with interpo-  exact location. The resulggf [, y] andge [z, y] are interpolated
lation coefficienta. The filter equation then becomes to the output pixel grid by combining with the previous result.
Since all pixels are at the exact line position, interpolation can be

LM/2] ) )
. . performed linearly between the current value and the previous
golr, yl =wogulz, yl+ Y wilalglle =i/l y =71 {que.

=t Computational complexity of the proposed implementations
+ gz[lz +3/1), v+ 4]) and a few common methods for Gaussian convolution is shown
(=) (gullz—j/u) =1,y — il in Table I..Thetable.indicat.es compL.Jtatic')naI.complexityforsey—
I : T eral solutions of anisotropic Gaussian filtering. For anisotropic
+ ge[lz+3/u) +1,y+ 4]} (14) Gaussian filtering oriented along theg/-axes, resulting in a
fixed orientation. In this case, no interpolation is necessary.
The multiplication ofw;a andw;(1 — a) can be taken out of For filtering along auv-axes system, bilinear interpolation
the loop to reduce the computational complexity of the filtefesults in a 4 times higher complexity than theg-aligned
Hence, before filtering of the image, two tables of pre-calculatgiftering. Improvement is obtained when using the proposed
filter coefficients are combined with the interpolation factors decomposition along at-axes system. In the latter case, no
and1 — a, respectively. During filtering, pixels are weightednterpolation is needed for the-filter step, resulting inv/2
with these values, and accumulated to result in the filtered agflitiplications, whereas linear interpolation is necessary for

interpolated output value. thet-filter step (unit steps alongraxis, interpolation at-axis),
S resulting in M multiplications. Hence, improvement due to
Recursive Filter interpolation is over 50% compared to the-separated filter,

Rather than applying convolution operators, (3) may be invith identical outcome.
plemented by recursive filters. Van Vliet al.[12], [13] define
a scheme for 1-D Gaussian filtering with infinite support. The
recursive filter requires only seven multiplications per pixel, an
improvement over [11]. The complexity is independent of the Performance of the filter with respect to computation speed
Gaussian standard deviatienin [13] itis shown that the recur- is shown in Table Il. The analysis was carried out on a Pen-
sive filter is faster than its normal counterpart éor> 1. When tium 1l at 800 MHz for a 512x 512 image. The maximum
using the recursive filter, filtering along theline is given by calculation time for the proposed-separable recursive imple-

IV. RESULTS

the forward and backward filter pair mentation was 40 msec. Small variations in the computation
Foooa f fr time for thexzt-separable recursive implementation is due to the
grlz, yl = flz, yl —argz [z — 1, y] — azgy [z — 2, y] varying direction of the-axis as function o#,, o,. The varia-
—asgllz — 3, 1] t?on causes the procesging of different pixels with respect to the
, ) \ ) filter origin, hence are mfluer_med_ by the processor cac_:h_e per-
golz, y] = aggllz, y] — argble + 1, y] — asgllz + 2, 4] formance. The use of recursive filters is already beneficial for
B a392 [ + 3, y]. (15) ou. > 1 oro, > 1. The results correspond to the predictions in

Table I. Thext-recursive filter is almost two times faster than
Here,a; represent the filter coefficients as given by [12], [13]theuv separable recursive filter. For a common value ot= 5
and g [z, y] is the z-filtered result image. The computationa@nds, = 1, thezt-recursive implementation is 3.25 times faster
complexity of the recursive filter is 7 multiplications per pixel.than the standard method@f-separable convolution filtering.
Filtering along the line with intercepty, = tan ¢ is achieved Even for thert-separable convolution filter, calculation is up to

by a sheared recursive filter two times faster thamwv-separable filtering. Normal convolu-
tion filtering is advantageous when considering locally steered
galz +y/um yl =gl filtering, as in tracking applications, for example Fig. 2. The re-
=g’z +y/u, y] — algg [t —1] cursive filtering is, giv_en its c_omputation spee_d, more attracti\(e
when smoothing or differentiating the whole image array, as in
— agg) [t — 2] — asg] [t — 3] feature detection, shown in Fig. 3.

gelz +y/u, 9] —gb 1] The approximation of the 2-D Gaussian kernel of (1) by sep-
’ 0 arable filters is not perfect due to interpolation of source values
=adgllz+y/u y] — arght + 1] :
= GoYp Yresy 196 along the linet = y + tan x. We evaluated the error for
—argb[t+2] —asgh[t+3]. (16) thewt-separable convolution filterin comparison to the full 2-D
spatial convolution. The results are given in Table IlI. Interpo-
Note that(z, y) are constraint to lie on the ling hence may lation can be considered as a smoothing step with a small rect-
point to positions “between” pixels. Since interpolation of thangular kernel. Hence, the effective filter is slightly larger than
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TABLE |
COMPLEXITY PER PIXEL OF VARIOUS ALGORITHMS FOR GAUSSIAN SMOOTHING. FILTER SIZE IS DENOTED BY N X M, DEPENDING ON THE
GAUSSIAN STANDARD DEVIATION o

Filter Separability Complezity
type Multiplications Additions
convolution zyt IN/2] + | M/2]+2 N+M-2
uv? 2(N+M-1) 2(N + M —2)
xt? IN/2]+M+1 N+2M -3
recursive xy! 14 6
uv? 44 36
ot 21 16
2D convolution n.a. NM NM -1
FFT convolution® n.a. logWH logWH

IRestricted to Gaussian filters oriented along the 2- and y-axis only, thus 8 = 0° or § = 90°.

2Unrestricted 6.

3The complexity of a FFT based convolution depends on the image size W x H.

Fig. 2. Example of line detection by local anisotropic Gaussian filtering.
Lines are tracked by steering the filter in the line direction. Hence, line evidence
will be integrated by the large Gaussian standard deviation along the line,
while maintaining spatial acuity perpendicular to the line. Original from an
engineering drawing, courtesy of PNEM, The Netherlands.

the theoretical size of the anisotropic Gaussian filter. As a reig. 3. Example of the detection @. Elegansvorms by applying recursive
sult. the error is |arge for smatt,, o,, as can be concluded anisotropic Gauss filters. The original image is filtered at different orientations
il b y

. . and scales, and the maximum response per pixel over all filters is accumulated.
from the table. For the convolution filters ang, o, > 3,the  a; aacn pixel, the local orientation and best fitting ellipse is available to be

interpolation error is of the same magnitude as the truncatitifther processed for worm segmentation. Computation time was within 10 s
error for a3a sized filter (Iast four rows in the table). The interJor 5°_ angular 're'solution and three different aspect rgtios (image size<512

. . . . 512 pixels). Original courtesy of Janssen Pharmaceuticals, Beerse, Belgium.
polation error is smaller for thet-filter than for theuw-filter.
For the latter, bilinear interpolation have to be performed, cor-
responding to a larger interpolation filter than the linear intete interpolation is negligible compared to the error made by the
polation for thext-separable filter. For the recursive filter, therecursive approximation of the Gaussian filter. Fordhesepa-
interpolation error of the forward filter accumulates in the backated recursive filter, the bilinear interpolation caused the error
ward filter, causing a larger error. Especially the small filters agecumulation to have such a drastic effect that the result was
less accurate, as pointed outin [12], [13]. Note that the error dfze from Gaussian (data not shown). In conclusion, accuracy for
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PERFORMANCE OFVARIOUS Alegﬁ:E)chLLUSSMN FILTER IMPLEMENTATIONS
Standard “ This paper

Oy T, 2D FFT 1D convolution® 1D recursive®
convolution!  convolution | uv? at uv xt

2.0 1.0 || 310 760 72 57 (1.3) | 76 (0.9) 40 (1.8)

3.0 1.0 640 760 90 |62 (1.5) |75 (1.2) 40 (2.3)

5.0 1.0 1950 760 130 || 72 (1.8) |75 (1.7) 40 (3.3)

7.0 2.0 2390 760 190 91 (2.1) |75 (2.5) 40 (4.8)

7.0 4.0 || 3000 760 230 || 105 (2.2) |76 (3.0) 39 (5.9)

10.0 3.0 § 4880 760 265 || 115 (2.3) | 77 (34) 39 (6.8)

10.0 5.0 | 5650 760 302 || 128 (2.4) | 74 (4.1) 40 (7.6)

10.0 7.0 | 6570 760 346 || 147 (2.4) |73 (47) 40 (8.7)

All timings in [msec|, averaged over 100 trials, improvement factors given between brackets.
Image size 512 x 512 pixels. Filter direction § = 45°. Results for typical filter sizes in
bold.

IFilter sizes truncated at 3o.

2 Approximation to Gauss, see Table V.

3Considered as reference for speed improvement factors.

the xt-separated convolution filter is better than bilinear inter- TABLE Il

polation combined Withw-separated filtering. For recursive fil- ACCURACY OFVARIOUS ANISOTROPICGAUSSIAN FILTER IMPLEMENTATIONS.
. . . . . THE MAXIMUM ERROROVER ALL FILTER ORIENTATIONS IS SHOWN. ERROR

tering, error is larger due to the recursive approximation of the \gasurep ASROOT OF THESUM SQUARED DIFFERENCESWITH THE

Gauss filter. For numerous applications the computation speed TRUE GAUSSIAN KERNEL

is of more importance than the precision of the result.

Oy o, | convolution uwv  convolution xt recursive xt
V. CONCLUSION 2.0 1.0 | 0.0160 0.0131 0.0536
We derived the decomposition of the anisotropic Gaussia 55 1| 0.0126 0.0114 0.0324
in a 1-D Gauss filter in ther-direction followed by a 1-D
5.0 2.010.0018 0.0017 0.0062

filter in a nonorthogonal directiop. The decomposition is
shown to be extremely efficient from a computing perspective 7.0 2.0 | 0.0015 0.0014 0.0050
An implementation scheme for normal convolution and for

. S . L . 7.0 4. .00043 . .0012
recursive filtering is proposed. Also directed derivative filters 0| 0.0003 00003 0.00
are demonstrated. 10.0 3.0 | 0.0005 0.0004 0.0017

We proposed a scheme for both anisotropic convolutio 190 50 | 0.0001 0.0001 0.0008
filtering and anisotropic recursive filtering. Convolution filtering
7.0 | 0.0001 0.0001 0.0007

is advantageous when considering locally steered filtering, as
the case in tracking applications [14], [15]. Recursive filtering
is more attractive when smoothing or differentiating the whole
image array, for example in feature detection [1], [2], [4]. Errathe organization of the pixels in memory. For the other direc-
due to interpolation is negligible compared to the error madiens, traversing in arbitrary directions through the pixel data is
by the recursive approximation of the Gaussian filter, arreéquired. Hence, computational gain is only marginal for higher
compared to the truncation error for convolution filters. Thdimensional smoothing.
use of fast recursive filters [12], [13] result in an calculation The proposed anisotropic Gaussian filtering method allows
time of 40 ms for a 512x 512 input image on a currentfast calculation of edge and ridge maps, with high spatial and
state-of-the-art PC. angular accuracy, improving computation speed typically by a
Differentiation opposite to or along the filter direction isfactor 3. The anisotropic filters can be applied in cases where
achieved by convolution with a rotated sample difference filteredge and ridge data is distorted. Invariant feature extraction
For practical applicability of orientation scale-space analysipm a 2-D affine projection of a 3-D scene can be achieved
we believe the exact approximation of Gaussian derivativeshig tuning the anisotropic Gaussian filter, an important achieve-
of less importance than the ability to compute results in limitetent for computer vision. When structures are inherently in-
time. terrupted, as is the case for dashed line detection, anisotropic
Although the decomposition of (1) is possible in higher diGaussian filter may accumulate evidence along the line while
mensions, the method is less beneficial for 3-D filtering applinaintaining spatial acuity perpendicular to the line. Orientation
cations. Only one of the axes can be chosen to be aligned witlale-space analysis can best be based on anisotropic Gaussian
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