
Real-Time Imaging 9 (2003) 99–112

A modular and scalable architecture for PC-based real-time
vision systems

Judit Mart!ınez*, Eva Costa, Paco Herreros, Xavi S!anchez, Ramon Baldrich

Centre de Visi !o per Computador, Edifici O, Campus UAB, 08193 Bellaterra, Spain

Received 26 July 2002; received in revised form 11 December 2002; accepted 6 January 2003

Abstract

PC-based real-time vision systems are becoming a de facto standard in industrial applications. They are composed of an

illumination system, an image acquisition system and a processing system. In this article, a modular and scalable architecture for

real-time vision systems is proposed. On the one hand, we define an acquisition module that allows simultaneous acquisition of up to

three monochrome cameras. The acquisition system can be scaled by adding more acquisition modules. The architecture allows

simultaneous acquisition of all the modules. On the other hand, we define a processing system composed of different modules and

sub-modules which specialize in a particular task: the master module interacts with the external systems; the slave module interacts

with the acquisition system and manages the results of its processing sub-modules; each processing sub-module processes the

information provided by one single camera. Scalability is provided by increasing the number of slave modules and processing sub-

modules that compose the complete vision system. Fast real-time applications can be achieved by assigning one processor per

processing sub-module. In this case, multiple PC can be used. Inter-computer communication among modules is carried out by

means of sockets (following a master–slave design pattern); intra-computer communication is carried out by means of pipes, shared

memory and events. We emphasize herein some real-time considerations related to the multi-processor architecture and the

multitasking operating system that allow the implementation of the proposed architecture for real-time vision systems applications.

An implementation of this architecture is exemplified with an application successfully installed in a manufacturing company.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

A computer vision system is composed of an
illumination system, an acquisition system and a
processing system. The illumination system allows
setting the best lighting conditions over the objects to
be acquired. The acquisition system obtains images from
the objects and transfers them to the processing system.
The processing system analyzes these images and
transfers the results to some external systems; it can
also collect information from external systems such as
sensors or databases. The particular implementation of
each one of these systems depends on the application, so
that, a generalization is not possible. However, there
exist common characteristics of the real-time computer
vision applications that allow defining a general

modular architecture for the acquisition and processing
systems. A modular scalable architecture simplifies the
design and the implementation of the whole system.
Modularity allows splitting a complex problem into simpler
ones and using only those modules that are required for
a particular application. Scalability of the architecture
involves that, if the system becomes more demanding (in
speed, image resolution or processing), it is possible to
upgrade its performance by adding the proper modules.
The design of the architecture cannot be independent of the
platform. We center herein in an Intel platform that uses
commonly available PC components. PC-based computer
vision applications running under Windows operating
systems are becoming de facto standard in industrial
applications. This is the reason why we deep into the design
of a PC-based modular scalable architecture for computer
vision applications. A different approach is taken by some
other authors that center on the design of specific boards
for image processing [1–3].
Real-time computer vision applications are, for

example, those that provide a classification of an object

*Corresponding author.

E-mail addresses: judit@cvc.uab.es (J. Mart!ınez), evac@cvc.uab.es

(E. Costa), paco@cvc.uab.es (P. Herreros), javier@cvc.uab.es

(X. S!anchez), ramon@cvc.uab.es (R. Baldrich).

1077-2014/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S1077-2014(03)00002-0



moving on a conveyor belt before the next object on the
conveyor belt is ready for acquisition. Another real-time
vision application is the one that provides the 3D
displacement coordinates of a vision-guided robot
system when the robot requires them. The particular
time involved in these systems depends on the particular
application (from milliseconds to many seconds or
minutes). The relevant characteristic of real-time sys-
tems is not the whole time required but the variation of
this time due to uncertainties. These uncertainties can
cause the system to fail if not taken into account.
Therefore, real-time applications add special require-
ments that need to be taken into account when defining
a PC-based architecture under a Windows operating
system. There exist other operating systems or even
extensions of the Windows operating system that are
specifically designed for real-time operations [4,5].
However, we center on commonly used operating
systems, such as, Windows NT 4.0 (or its successors
Windows 2000 and Windows XP, which basically
preserve the same kernel) because of the availability of
code, libraries and drivers that facilitate the integration
of common off-the-shelf hardware and software com-
ponents.
We describe in this article a modular and scalable

architecture for general PC-based real-time vision
applications. Sections 2 and 3 are devoted to describe
it and to analyze some real-time considerations,
respectively. The implementation of this architecture is
exemplified in Section 4, where the details of a real-time
application that has already been installed in a

manufacturing company are shown. Finally, Section 5
summarizes the main conclusions.

2. Modular architecture

Computer vision systems can be divided into three
main systems: an illumination system, an image
acquisition system and a processing system. As for the
acquisition and processing system, we define a modular
architecture that facilitates scalability and interaction
between them. The architecture is shown in Fig. 1.

2.1. Image acquisition system

The image acquisition system provides the informa-
tion that will be analyzed in the processing system. This
information is collected from the scene by means of
cameras and transferred to the PC-based processing
system by means of frame-grabbers (FG). There exist
different types of frame-grabbers that differ on their
capability to interface particular types of cameras, their
storage and transfer features, their synchronization
signals and the availability of input/output signals. See
[6,7] for a general background on image acquisition.
Given a particular computer vision application, the

set-up of a camera configuration depends on a priori
knowledge of the requirements of the application. One
of the features that influences this configuration is the
image resolution, that is, the pixels per millimeter of the

Fig. 1. Modular architecture of a PC-based vision system.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112100



image. It depends on the dimensions of the smallest
particle of the object to be detected in the image. For
example, if the vision system has to detect object’s
defects smaller than 1 mm; it is a good practice to fix the
resolution to be more than 2 pixel=mm so as to avoid
dividing the smallest defect partially into two adjacent
pixels (although subpixel processing algorithms could be
used). If the vision system covers a large area, it is likely
that more than one camera will be necessary. This is also
the case when different views of the object are needed
(although a mobile camera could also be used at the
expenses of increasing the complexity of the complete
system).
Therefore, assuming static camera machine vision

applications, the number of required cameras depends
on:

* the image resolution,
* the area of the object,
* the number of views of the object.

Increasing the resolution, the area, or the number of
views involves either increasing the number of cameras
or choosing a higher resolution camera, that is, a camera
with a larger number of cells in the sensor (CCD/
CMOS).
Every camera needs to be connected to a frame-

grabber. There exist many frame-grabbers that accept
more than one camera. In this case, the acquisition of
the image from the cameras can be simultaneous or
sequential (multiplexed). The maximum number of
simultaneous monochrome images that the common
off-the-shelf frame-grabbers can acquire is three. This is
due to the fact that these frame-grabbers accept color
cameras and they assume that each one of the
monochrome images corresponds to one of the color
bands (R, G, and B, respectively) of a hypothetic color
camera. In this case, all the cameras have to be
synchronized, that is, they need to share common
sampling signals such as pixel clock, horizontal and
vertical clock, and trigger. There exist a few frame-
grabbers that can simultaneously acquire more images,
not necessarily synchronized, at the expenses of a higher
cost. Therefore, assuming simultaneous acquisition, the
number of frame-grabbers required for a machine vision
application depends on the number of cameras. It will
be considered that one frame-grabber is needed for
every three cameras.
We define a modular and scalable acquisition system

based on the previous description. Each module is
composed of a group of up to three monochrome
cameras and one frame-grabber. Fig. 2 shows one of
such modular acquisition systems. The number of
modules that are needed for a particular machine vision
system depends on the particular requirements of the
application.

2.2. PC-based processing system

The processing system collects the information
provided by the image acquisition system as well as
other external systems (a barcode reader, an external
database, etc.); it manages and analyzes this information
and communicates the results to some other external
systems (a programmable logic controller, a robot,
another PC or a human operator).
Each modular acquisition system provides up to three

simultaneous monochrome images that can be processed
sequentially or simultaneously. Since we focus on real-
time applications, simultaneous processing is of major
interest. To define a modular and scalable processing
architecture coherent with the modular acquisition
system described in Section 2.1, each software module
has to be independent from the number of cameras per
frame-grabber and the number of frame-grabber per
PC. In particular, the input data of each processing sub-
module will be one image and its processing will be
carried out by specific functions that depends on the
application. The execution of simultaneous processing
sub-modules can be implemented using either threads or
processes. Due to possible memory access bottleneck,
processes are preferred as will be explained next.

2.2.1. Access to the image

Frame-grabbers have to acquire image data from the
camera and make it available to the processor. The
simplest frame-grabbers cannot acquire and transfer
data at the same time; improved ones allow simulta-
neous acquisition and transfer by means of ping-pong
memories. The transfer rate depends on the bus. Most
common frame-grabbers reside on the PCI bus and the
most efficient ones operate as PCI bus masters and
manage the transfer themselves. High-speed systems
usually transfer the image data out of the frame-grabber
into the PC main memory because the processor access
speed to this memory is much faster than the access to
the frame-grabber’s memory over the PCI bus.
The acquisition module described in Section 2.1

simultaneously acquires up to three monochrome
images as if they were the three color bands (RGB) of
a color camera. Each processing sub-module will be able

Fig. 2. Modular acquisition system.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112 101



to access a particular image if advanced frame-grabbers
are used that allow: (a) physically contiguous allocation
of this data and (b) the possibility to specify the
allocation address. These requirements will become
clear in the next sections in which the correspondence
between a process and a software processing sub-module
will be defined.

2.2.2. Process versus thread

Scalable processing can be accomplished using multi-
ple processors and multitasking operating systems.
Windows NT 4.0, for example, is a multitasking
operating system whose basic unit of execution is the
thread. A process contains one or more threads. A
multi-processor computer allows for one running thread
per processor. Multithreaded applications and multi-
processor systems require special considerations for
memory allocation since it can have a great effect on the
performance depending on the type of application and
the memory allocation strategy. Contention on critical
sections is a major problem. Additionally, the existence
of one memory cache per processor needs to be taken
into consideration.
The feasibility of using a thread as the modular

processing software component is first analyzed. This is
supported by the fact that the thread is the basic unit of
execution.
A thread state can be either waiting (cannot run until

a specified event occurs), ready (ready to run, but no
processor is currently available) or running (currently
running on a processor). Windows NT 4.0 uses a
priority-based round-robin algorithm to manage the
available CPU among the runnable threads. When a
CPU becomes available a context switch takes place,
that is, the kernel system finds the highest priority queue
with ready threads on it, removes the thread at the head
of the queue, and runs it. The most common reason for
a context switch is when a running thread has to wait,
either because it touches a page that is not in its working
set and the memory manager has to resolve the page
fault or because it executes some of the functions that
explicitly block the execution until a specified event
occurs. To prevent CPU-bound threads from mono-
polizing the processor, the kernel imposes a time limit,
called the thread quantum. Unless there is a higher-
priority thread ready, the current thread runs for one
quantum and then the kernel preempts it and moves it to
the end of its ready priority queue. For a single
processor system, it is very rare to find contention on
critical sections since the thread that owns the critical
section is unlikely to be preempted. In a multi-processor
system, such contention is much more likely since more
than one thread is running simultaneously. When there
is contention (one thread tries to acquire the critical
section while another thread holds it) additional system
calls and context switches are required in order for the

requesting thread to wait until the owning thread has
released the critical section. This is a common situation
when more than one thread tries to allocate memory
simultaneously. One thread will block on the critical
section guarding the heap. The other thread must then
signal the critical section when it is finished to release the
waiting thread. This adds significant overhead. It is
possible to minimize this effect by implementing multi-
ple heaps and serializing the access to the heaps, but
libraries do not support it. The additional overhead in
this implementation is offset by greatly reducing the
number of times a thread must wait for heap access.
Critical resources management in multi-processor

applications needs special considerations due to the
existence of cache memories. Computers generally have
a fast memory cache between the CPU and the main
memory. Each processor’s memory cache must maintain
a consistent view of the main memory. This is
accomplished by dividing memory into small chunks
(that make up a cache line). To update a cache line, a
processor must first gain exclusive access to it by
invalidating all other copies in other processor’s caches.
When the processor has exclusive access to the cache
line, it may safely update it. If the same cache line is
continuously updated from many different processors,
that cache line will bounce from one processor’s cache to
another. A more stunning problem occurs when two or
more variables occupy the same cache line. Updating
any of the variables requires exclusive ownership of the
cache line. Two processors updating different variables
will access the cache line as much as if they were
updating the same variable. Any function that takes
proportionally more time as the number of processors
increases are likely victims of cache blockade.
Therefore, the threads must be able to work

independently of each other to scale effectively. This
can only be guaranteed if the data structures are padded
to ensure that frequently accessed variables do not share
a cache line with anything else (see [8] for deeper
information).
A different approach consists of using a process as the

modular processing software component. Since Windows
NT 4.0 offers virtual memory to its processes, each
process has its own private address space. It is
constructed on a page-based memory management
scheme that divides all the memory into equal chunks
called pages. Each page is 4096 bytes (4k) in size. Every
process has its own page directory. Therefore, it is
guaranteed that the cache line of two processes will
never share the same memory page. No cache blockade
between processes is possible.
Because two processes can use the same virtual

address to refer to different locations in memory,
processes are not able to communicate addresses one
to another. Specific mechanisms are required to share
memory among processes. Memory-mapping files are

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112102



one example of reserving a range of addresses that are
contiguously by default, and can be used to share
memory among processes.
As a result, we conclude that using a process as the

modular processing software component is better than
using a thread since no special considerations have to
be taken into account with respect to memory data
structures of the application’s variables in order to avoid
contention on memory access due to the existence of
multiple memory caches.

2.2.3. Sharing information among processes

File mapping enables a process to treat the contents of
a file as if they were a block of memory in their process’s
virtual address space. A file view is the portion of the
virtual address space that the process uses to access the
file’s contents. The process can use simple pointers to
examine and modify the contents of the file. When two
or more processes access the same file mapping, each
process receives a pointer to memory in its own address
space that can use to read and modify the contents of
the file. Related to the modular architecture presented
up to this point, each file will contain the images
acquired by one of the modular acquisition systems
(that is the set of three monochrome images) and every
file view refers to one of these images. Therefore,
processes running in the same computer that share
information can obtain it through file mapping.
A pipe is a shared stream that processes use for

communication. The communication can be either one-
way or duplex. In the first case, one process writes
information to the pipe, and then the other process

reads the information from this pipe. In the second case
the two processes write and read to and from the pipe.
The proposed modular architecture uses pipes to
communicate processes in the same computer.
A socket is one endpoint of a two-way communica-

tion link between two processes running on a network.
Sockets are created and used in a different way to pipes
because they make a clear distinction between client and
server. The socket mechanism naturally lends itself to
the implementation of multiple clients attached to a
single server. One of the processes, the client, connects
to the other process, the server, typically to make a
request for information or and interchange. The
proposed modular architecture uses sockets to commu-
nicate processes in different computers.
An event is a synchronization object that allows one

process to notify another that an action has occurred.
The events have two states: signaled or non-signaled.
A process can be blocked waiting for an event to
be signaled. In fact, the calling process could enter
an efficient wait state, consuming very little processor
time, while waiting for the event to be signaled. The
proposed modular architecture uses events to signal
each processing sub-module that their images are
available.
Fig. 3 summarizes the communications involved in

the proposed modular architecture.

2.2.4. Modular processing architecture

Based on the previous analysis we define a scalable
processing system divided into a set of modules and

Fig. 3. Communication involved in the PC-based modular architecture.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112 103



sub-modules:

* a slave module, which contains processing sub-

modules;
* a master module, which contains additional sub-

modules.

Each module and sub-module is implemented as a
process. The slave module and its sub-modules run in
a slave computer. Each slave computer also contains
its acquisition modules. The master module and its
sub-modules run in a master computer. Inter-computer
communication is carried out between modules by
means of sockets. Intra-computer communication is
carried out among a module and its sub-modules by
means of pipes. The slave module and the processing
sub-modules share the information by means of a file
mapping. Whenever a new image is available, the
corresponding processing sub-module is signaled by
means of an event (see Fig. 3).
These are the tasks associated to each module and

sub-module:

* The slave module: manages the acquisition module,
gathers the results of the processing sub-modules and
communicates with the master module.

* The processing sub-module: analyzes the images
provided by one camera and transfers the results to
the slave module.

* The master module: communicates with the external
systems (user, external computer or PLC), gathers the
result from the slave modules and provides the
control signals to the acquisition system.

* The additional sub-module: provides utilities which
are related to the particular application (for instance,
a statistical sub-module).

Notice that a maximum of three processing sub-
modules are needed for a particular acquisition module.
However, the maximum number of simultaneous
processing sub-modules executed on a PC depends on
the number of processors, which is up to two in common
off-the-shelf computers. If concurrent execution of more
than two processing sub-modules is required to achieve
a real-time application, an increasing number of
computers will be necessary.

3. Real-time considerations

A real-time vision system involves both real-time
acquisition and real-time processing. Real-time acquisi-
tion means that the camera has to acquire the image of
an object or a particular part of this object whenever it is
in the camera’s field of view. Real-time processing
means that the result of the computations must be

provided before another acquisition occurs. The correct-
ness of the results not only depends on the logical
correctness of the computations, but also on the time at
which both the acquisition and the end of processing
take place. Therefore, the relevant aspect of real-time
systems is not the whole time required to finish but the
variation of this time due to uncertainties. Each
component or process involved in a computer vision
system adds uncertainties that can be either relevant or
meaningless depending on their implication in the whole
system or their relative value with respect to that of other
components or processes of the system. Let us analyze
these uncertainties in each one of the components.

3.1. Real-time acquisition

Triggering the cameras, that is, forcing them to
immediately acquire an image, must be a real-time
operation. It may depend on the response of an external
sensor that signals the presence of the object in front of
the camera. If more than one image of the same object
has to be acquired, the cadence of acquisition may rely
on the conveyor’s encoder that signals the conveyor
belt’s speed. It is quite common that both the sensor and
the encoder signals be manipulated or combined to
generate the trigger signal to the cameras.
The manipulation of external signals in order to

obtain the trigger signal can be done either using an
input/output board or an advanced frame-grabber. The
later will be preferred, if possible, because the response
only depends on the board circuitry. On the other hand,
input/output boards rely on how the operating system
manages the execution of the instructions addressed
to this board.

3.1.1. I/O boards

An I/O board has several software components: an
initialization routine (that sets up data structures to the
main memory of the PC), an interrupt service routine
[ISR] (that executes time-critical processing: handle the
interrupt, save the state necessary for processing the
interrupt and queue a DPC), a deferred processing call
[DPC] (that executes non-time-critical processing ex-
cluding all other processing except for ISRs) and system
processes (that executes low-priority jobs).
Windows NT 4.0 handles interrupts on a preemptive

basis: when an interrupt occurs, all executions at lower
interruption levels are suspended and execution begins
immediately on the highest level request. The interrupt
service routine continues until the highest level process
has been completed. On the other hand, DPCs are
placed in a FIFO queue. There is no notion of priority in
a DPC queue, so that DPCs of lower priority can be
handled before DPCs of higher priority if they have
entered the queue later. Therefore, the execution of a
particular I/O DPC depends on the DPCs of other

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112104



devices. Moreover, since device drivers in Windows NT
4.0 are kernel-level code that extend the capabilities of
the kernel, processes executing in kernel mode can mask
some or all interrupts by raising the CPU’s current
Interrupt request levels (IRQL), thought it is considered
a violation of the NT device driver rules. Therefore, it is
possible that an unimportant interrupt can block a real-
time priority user-level process since the execution time
of some device drivers can be quite large. See [9] for a
review on the subject.
Triggering a camera has to be a deterministic action.

If the I/O board manages the triggering signals (input
signals: external sensor and/or encoder; output signal:
trigger to the camera), it must run in a deterministic
way. This cannot be guaranteed in a user-level manage-
ment of the I/O board since the user is only available to
use high-priority processes but not the highest priority
tasks deferred to interrupt routines. All user-defined
tasks can be preempted by this higher priority task, so
their determinism depends on both the operating system
and the highest priority task’s worst-case code path
length.
Real-time developers in different areas are conscious

of these limitations and there exist some interesting
articles [10–14] that analyze and test standard PC
configurations using Windows NT for real-time opera-
tions. Real-time vision system developers can minimize
the effect of uncertainty by means of increasing the field
of view of the camera, to guarantee that the object is still
in the image although the acquisition instant has been
modified, or increasing the overlapped areas in contin-
uous acquisition. The increment of field of view or
overlapped area depends on the maximum uncertainty
in the system. Notice that augmenting the field of view
involves reducing the image resolution and augmenting
the overlapped areas involves increasing the number of
images required to cover the same object. Therefore,
accounting for uncertainties cannot be compatible with
the requirements of the applications [15]. In this case,
more deterministic solutions need to be taken into
account for image acquisition.

3.1.2. Frame-grabber

Advanced frame-grabbers have specific circuitry to
manage trigger signals. In this case, the triggering does
not depend on the operating system but the frame-
grabber’s hardware. Although hardware circuitry re-
sponse also has uncertainties, their value (in time units)
are much smaller than those associated to software
responses (at least three orders of magnitude). There-
fore, using the frame-grabber as the triggering device
can be a solution for many computer vision applications
since the modification of the field of view or the
overlapped area will be much smaller than in the
previous case (Section 3.1.1).

These kinds of frame-grabbers allow configuring
trigger signal characteristics such as the time delayed
between input and output signals, to combine input
signals or to define the active duration of the output
signals. If further manipulation of the signal is required,
such as noise filtering or frequency modification, an
external circuitry has to be designed.

3.2. Real-time processing

Processing will be carried out using commercial off-
the-shelf computers running a multitasking operating
system. The speed of computation will mainly depend
on how efficiently the code is implemented and how
well-managed are the resources, specially the memory.
It will increase as the processor speed increases. This is
the main advantage of using commercial off-the-shelf
computers since it is likely that by simply changing the
processor the whole system increases performance.
Processing speed can also be increased by scaling the
number of processor. Commercially available multi-
processor systems are dual PC. If more processors are
required, additional PCs can be used. In this case they
should be interconnected using either ethernet or
fiberoptic, depending on the amount of information
that they have to exchange (the fiberoptic allows higher
transfer rates).
An important property associated with user-defined

processes is the priority of execution. The priority
model, in Windows NT 4.0, includes 32 priority levels
divided into real-time classes (labeled from 16 to 31) and
dynamic classes (labeled from 0 to 15). Only kernel
mode processes (related to IRQL) will have a higher
priority than real-time time-critical user-defined pro-
cesses. Therefore, the real-time processing is bounded by
these kernel mode processes [9]. It is recommended to
avoid installing unnecessary drivers to minimize their
influence.

4. Application

In this section, a real-time vision system for TV screen
quality inspection is introduced. The system, which is
already installed in a manufacturing company, has been
developed using the scalable off-the-shelf modular
architecture introduced in the previous sections.
The object to be inspected is the glass surface of TV

screens. The defects on this surface can be either due to
bubbles inside the glass or inhomogeneities in the
phosphor distribution. The phosphor coats the inside
surface of the TV screen in such a way that it forms
triads of vertical lines of three consecutive colors: red
(R), green (G) and blue (B). Whenever the line
continuity breaks or it becomes thinner or it overlaps
adjacent lines, a defect in phosphor distribution occurs.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112 105



There exist many variations of this simple classification
of defects that make the inspection process computa-
tionally intense. Fig. 4 shows some of the defects to be
inspected.
The size of the TV screen is 244� 314 mm: The

smallest defect is about 0:1 mm: Therefore, the mini-

mum required resolution is 2 pixels per 0:1 mm; that is
20 pixels/mm. Since the size of a standard CCIR
cameras is 762� 562 pixels, eight cameras are required
to cover the height of the TV screen and 14 images
must be acquired by each camera to cover its width as
it moves along the conveyor belt (see Fig. 5). The

Fig. 4. Some examples of defects to be detected: (a) bubbles, (b) landing, (c) line-out and (d) line reduction, respectively.

Fig. 5. A picture of the acquisition system.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112106



calculation of the required number of cameras and
images also takes into account: (a) an overlapped area
between adjacent images (about 1 mm in each direc-
tion), which is necessary to facilitate the installation
of all the cameras so that a complete coverage of
the TV screen could be guaranteed, and (b) the loose-
ness in the location of the TV screen on the conveyor
belt with respect to its width direction (about 73 mm).
See Fig. 6. Although cameras of larger CCD
format could be used, the barrel-like geometry of
the TV screen surface makes difficult to keep in
focus larger areas of the surface using standard optics.
This is the reason why this configuration has been
chosen.
The conveyor belt moves at 23 cm=s: The cadence of

TV screens is about one TV screen every 6 s: Since the
vision system has to perform real-time quality control,
the result of the inspection has to be known before the
next TV screen is ready for acquisition. Therefore, 112
images must be acquired and processed in 6 s: The
acquisition is triggered by means of an external signal
that combines the information of the conveyor belt’s
speed (encoder) and the presence of TV screen in front
of the cameras (laser-barrier sensor). Taking into
account the resolution of the image and the conveyor
belt’s speed, it ends up that, each camera acquires one
image nearly every 90 ms: Therefore, to acquire 14
images per camera, the system requires 1:17 s; and 4:86 s
remain for processing. It means that, 347 ms per image
are available if one processor could be devoted to
processing the set of images obtained by only one
camera. As the number of cameras associated to a
processor increases, the time available for processing
each image decreases in the same factor. Therefore,
the number of processors required by the whole
system depends on the amount of processing, the
efficiency of implementation and the processor speed.
This particular application, that uses PIII-600 MHz;
requires one processor per camera. A dual PC that
handles 1 acquisition module composed of two cameras
is used.
The system has been designed with the scalability

property in mind. Scalability allows for higher resolu-
tion, if required, or bigger TV screens. Next sections
describe particular considerations of this architecture
applied to the application.

4.1. Modular acquisition system

The whole acquisition system is composed of eight
cameras and four frame-grabbers. Each acquisition
module is defined by two cameras and one frame-
grabber. In particular, the cameras are JAI CV-M10BX
CCIR and the frame-grabber is MATROX METEOR-
II/MC.

The relevant characteristics of the camera for this
application are:

* progressive scan, since the images must be acquired
while the object keeps moving;

* asynchronous reset, since the initiation of exposure
must be synchronized to external signals;

* square pixels, since precise measurements of some of
the defects are required;

* availability of input and output synchronization
signals, which is important in order to synchronize
both cameras of the acquisition module;

* 762� 562 (CCIR) pixels, which allows obtaining the
required resolution while covering an area which is in
focus in spite of the barrel-like geometry of the TV
screen;

* high sensitivity and low S/N, which is always
desirable for accuracy in computations.

The relevant characteristics of the frame-grabber for
this application are that:

* it is a PCI bus master board, so, it supports real-time
image transfer to the memory of the PC;

* it has 4 Mbytes of SGRAM for temporary frame
storage, which is useful in long-bus access latencies;

* it captures progressive scan RGB color cameras,
so that the two identical monochrome cameras of
the acquisition module can be acquired simulta-
neously as if they were the R and G bands of a color
camera;

* it provides synchronization and trigger input/output
signals.

Acquisition is performed when an external signal
indicates it. This signal initiates the exposure of the
camera; when the image is available, the camera signals
the frame-grabber, which starts the capture. In fact, this
frame-grabber also allows delaying the capture a
specified time after the trigger signal occurs. This is
useful for the case in which the capture signal from the
camera is not available.

4.2. Real-time acquisition

The cameras are located above the conveyor belt,
looking down the TV screen surfaces that move along
with the conveyor belt (see Fig. 5). The eight cameras
cover the height of the screen (that is, the direction of
shorter dimensions of the surface). Their location
guarantees some overlap between the images acquired
by adjacent cameras. The minimum amount of over-
lapped area is chosen to be the same size as the
minimum defect to be detected, so that it is guaranteed
that the smallest detectable defects will not be parti-
tioned into different images. However, because of
camera dimensions and limited space, the cameras

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112 107



cannot be placed on a single line along the height of the
TV screen. They have to be distributed in two parallel
lines so that the images obtained from cameras in one
line intercalate the images obtained from the cameras in
the other line.
Acquisition is governed by external signals. One of

them is the signal provided by the encoder. This signal
generates a pulse every time the conveyor belt moves
133 mm: Since the field of view of the camera covers
about 20 mm in the direction of movement of the TV
screen, acquisition has to be triggered every 150 encoder
pulses, during the time that the TV screen is viewed by
the cameras. In order for the system to know when the
TV screen is under the cameras, a second signal is
required. This signal is provided by a laser-barrier

sensor located in the same line as the cameras. Since
there are two lines of cameras, there are also two
sensors, which trigger the cameras in each line,
respectively.
Therefore, the acquisition system needs a counter that

keeps track of the encoder pulses and generates a
triggering signal after 150 pulses have occurred. When-
ever the sensor signal of one of the line of cameras
is active and the triggering signal is generated, the set of
cameras in this line are triggered for acquisition.
The same occurs with the other line of cameras. Fig. 6
shows this configuration.
The combination of these signals cannot be managed

by the Matrox Meteor-II/MC board because it does not
include a counter. Therefore, either an I/O board or an
external circuitry is necessary to manage this signal.
Since the use of an I/O board does not guaranty real-
time responses, as already justified in Section 3.1.1, an
external circuit has been designed for this application.
The specific board designed for signal management
allows making the acquisition more robust by adding
digital filters that preserve the integrity of the signal.
This is a relevant benefit in industrial environments,
which use to be very noisy. Additionally, filtering proved
to be necessary in this particular application, because
the sensor signal generated glitches due to the presence
of water on the screens, which disturbed the laser-barrier
sensor. Fig. 7 summarizes the filtering and triggering
scheme designed for this application. It is implemented
using an ADuC812 microconverter. In this figure, signal
S refers to ðS1Þ OR ðS2Þ; where S1 and S2 are the two
laser-barrier sensor signals. The value of these signals is
high while the TV screen is located between the emitter
and the receiver. However, if a drop of water is situated
on the surface of the screen in front of the emitter, the

Fig. 6. Acquisition configuration: two lines of four cameras triggered

by signals T1 and T2 that depend on the sensor signals S1 and S2,

respectively.

Fig. 7. Digital filter implementation.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112108



signal can still reach the receiver (because of a gradation
in the refraction indexes due to the layer of water
followed by the layer of glass that reduces the amount of
reflected light and increases the transmitted one). The
reception of this signal interrupts for a while the high-
level of the sensor signal. We call this spurious low-level
signal a LowGlitch. It can also occur that the sensor
activates high although there is no TV screen in the
system due to some electronic noise. We call this
spurious high-level signal a HighGlitch. In order to
avoid it, a digital filter has been implemented . This filter
samples the sensor signal every time that a pulse of the
encoder occurs. If it detects that the level is high for a
period of time longer than what is considered to be
caused by an error, HighGlitchTime ¼ 75 encoder
signals, it is assumed that there is a TV screen. In this
case, a trigger signal is generated after PeriodTrigger ¼
150 encoder periods if the number of already generated
triggers, NumTriggers; is less than 14. In order to avoid
the influence of a drop of water, it is verified that the
time while the signal is low be longer than what is
considered to be caused by a drop of water,
LowGlitchTime ¼ 140 encoder signal, before it is
decided that the TV screen is no longer in the system.
The result of filtering can be seen in Fig. 8. In this figure,
the first and last signals are S1 and S2; respectively; and
the second and third are T1 and T2; respectively. It can
be seen that, although spurious have occurred, the
output signals have been correctly generated and their
periodicity has been preserved.

4.3. Modular processing system

The complete processing system is composed of five
computers: one of them is called the master and the

other ones are called slaves. The master is responsible
for the interactions among the system, the user and the
I/O board; it also administrates the communication
among the slaves. Slaves deal with acquisition and
processing tasks. Each slave acquires the images of two
cameras and processes the data. Therefore, three types
of processes are distinguished:

* a master process, which executes in the master
computer;

* a slave process, which executes in each slave
computer;

* a processing process, which executes in duplicate in
each slave (slaves computers are dual processor).

Two types of communication have been defined to
exchange information among the processes:

* inter-computer communication;
* intra-computer communication.

Inter-computer communication is established between
the master and each one of the slaves to synchronize all
the computers and to exchange processing results. Its
implementation follows a master–slave real-time design
pattern, as defined in [16]. It is carried out via Ethernet,
so sockets are used. Intra-computer communication
allows that processes executing in the same computer
share information. In this case the information is the
images and the processing results. Shared memory and
pipes are used. Shared memory is the best option to
move a large sum of data between processes in the same
computer because it is fast if the access is not
concurrent, as it is in our case. The acquisition module
places the images in a shared memory and the two
processing sub-modules pick them up to start their

Fig. 8. Result of digital filtering.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112 109



processing. A pipe gives a duplex communication
between processes. When the process is finished the
processing sub-module sends the processing results via a
pipe.

4.4. Real-time processing

Processing is carried out under Windows NT 4.0
Workstation operating system plus Service Pack 6a.
This operating system cannot be considered as a real-
time one [8,17]. However, as far as it satisfies the timing
requirements of the application, it can be said to be a
soft real-time operating system. The relevant character-
istics of the operating system that make it suitable for
our real-time application are twofold: on one hand, it
is a multitasking operating system, on the other, it is
possible to assign priorities to the user-defined pro-
cesses.
The application benefits from this real-time charac-

teristics using a Dual processor and defining the
processing sub-modules as REALTIME-PRIORITY-
CLASS processes.
This configuration is able to provide a mean proces-

sing time around 2556 ms: This time includes the
complete processing of 14 images to detect the kinds
of defects shown in Fig. 4, that is 182 ms/image to detect
four types of defects with much variability. Processing
includes contour detection, morphological operations,
binarization, blob analysis, Fourier transformations and
filtering. The result is transferred to the slave process
which merges the results from both processing processes
and communicates them to the process in the master PC.
Additional time is required for merging the results and
for the communications. Fig. 9 shows the distribution of
time when the processes are executed 6850 times using
(a) processes and (b) threads, in the following system

(this is the configuration installed in the manufacturing
company):

* Motherboard: SuperMicro P6DGE/DBE (Dual

Motherboard),
* BIOS: AMIBIOS rev. 3.1,
* Processor: Intel PIII 600 MHz 512 Kb Cache x2,
* Memory: SDRAM 256 Mb PC-100 Viking,
* Hard Disk: 8,2Gb (ST38410A-Seagate),
* VGA Card: Matrox Millenium G400 16 Mb (AGP),
* Frame-grabber Card: Matrox Meteor II Mc/4 on PCI

Slot 1 (30 Mb memory allocation on Host System),
* Ethernet Card: 3Com 905B-TX FastEthernet 10/

100 Mb;
* Operating System: Windows NT 4.0 WorkStation +

Service Pack 6(A).

It can be seen that the execution time in both
processes is slightly different due to the operating
system tasks being carried out in one of the processors.
However, it compares favorably with respect to the
execution time required by the threads.
Fig. 10 shows the distribution of time required to

execute the same processes as the ones shown in Fig. 9a
when faster processors are used in a single processor PC.
Therefore, as the processor’s speed improves, additional
modules can be included in a single computer.

5. Conclusions

We have defined a modular and scalable architecture
for PC-based real-time vision system that has been
exemplified with a successful application already in-
stalled in a manufacturing company. This architecture
encompasses both the acquisition and the processing
system.

Fig. 9. Distribution of the execution time of (a) 2 processes and (b) 2 threads, using a dual processor PIII-600 MHz:

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112110



The acquisition system is composed of acquisition
modules. Each module is composed of a group of up to
three monochrome cameras and one frame-grabber. The
scalability applies to both the number of cameras that
compose the module and the number of modules that
compose the acquisition system. This system is designed
so that it may be possible to simultaneously acquire the
images from all the cameras and all the modules if they
reside in different slave computers. The acquisition is
triggered by an external signal when the object is located
in the camera’s field of view. Therefore, acquisition is a
hard real-time operation in the sense that unexpected
delays in the triggering instant can make the acquisition
system to fail (the object can be out of the field of view
of the camera). These delays can be caused by latencies,
that is, uncertainties in the response time of the system’s
components or processes. Since the response uncertain-
ties of hardware circuitry are much smaller than
software’s response uncertainties associated with the
operating system, the triggering signal is better gener-
ated by dedicated circuitry (either included in the frame-
grabber or specially designed for the application). An
I/O board residing on a PC that runs Windows NT 4.0
(or similar non-real-time multitasking operating sys-
tems) cannot guaranty a deterministic trigger because a
user-level management of the I/O board does not allow
using the highest priority tasks deferred to interrupt
routines. All user-defined tasks can be preempted by this
higher priority tasks. A specific circuitry that filters and
manages the signals involved in the acquisition system
for real-time applications has been designed.
The processing system is composed of a set of

modules and sub-modules: the master module, the slave
module and the processing sub-modules. Slave module
and processing sub-modules run in a slave computer.
The slave computer is a multi-processor PC (a dual
processor, in most cases) and contains the acquisition

module. Scalable processing can be accomplished using
multiple processors and a multitasking operating
system. The master module runs in a master computer.
Each module is implemented as a process. Processes are
preferred over threads because of memory considera-
tions. Contention on critical sections is a major problem
in a multi-processing system because of additional
system calls and context switches. Additionally, the
existence of one memory cache per processor needs to be
taken into account. Each processor’s memory cache
must maintain a consistent view of the main memory.
This is accomplished by dividing memory into cache
lines. If the same cache line is continuously updated
from many different processors, that cache line will
bounce from one processor’s cache to another. There-
fore, processes are preferred because they have their
private address space and no special consideration has
to be taken into account with respect to the memory
data structures of the application’s variables in order to
avoid contention on memory access due to existence of
multiple memory caches. Inter-computer communica-
tion is carried out between modules by means of sockets.
Intra-computer communication between each proces-
sing sub-module and the slave module is carried out by
means of pipes. The slave module and the processing
sub-modules share the information provided by the
acquisition module by means of a file mapping. Whenever
a new image is available, the corresponding processing
sub-module is signaled by means of an event. Processing
uncertainties are minimized as much as possible by means
of assigning real-time priority to the processes and
avoiding the installation of unnecessary drivers.
This architecture is generalizable to many applica-

tions since there exist common characteristics of the
real-time computer vision applications that allow defin-
ing a general modular architecture for the acquisition
and processing systems.

Fig. 10. Distribution of the execution time of two sequential processes using (a) a single processor PIII-800 MHz and (b) a single processor PIV-

1:8 GHz:

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112 111



References

[1] Meribout M, Nakanishi M, Ogura T. Accurate and real-time

image processing on a new PC-compatible board. Real-Time

Imaging 2002;8(1):35–51.

[2] Ranganathan N, Sastry R, Venkatesan R. Smac: a VLSI

architecture for scene matching. Journal of Real-Time Imaging

(Special Issue on VLSI for Image Processing) 1998;4(3):171–80.

[3] Wiatr W. Median and morphological specialized processors for

real-time image data processing. EURASIP Journal on Applied

Signal Processing 2002;2002(1):115–28.

[4] Timmerman M, Monfret J-C. Windows NT as real-time OS.

Real-Time Magazine 1997;2:6–14.

[5] Yasu Y, Carcassi G. Evaluation of a real-time extension (RTX)

on Windows/NT, Atlas DAQ. Available from http://citeseer.nj.

nec.com/171536.html (April 1999).

[6] Burke MW. Image acquisition. London: Chapman & Hall, 1996.

[7] Demant C, Streicher-Abel B, Waszkewitz P. Industrial image

processing. Berlin: Springer, 1999.

[8] Microsoft Corporation. MSDN home. http://msdn.microsoft.

com/.

[9] Regehr J, Stankovic JA. Augmented CPU reservations: towards

predictable execution on general-purpose operating systems.

In: Proceedings of the Seventh IEEE Real-Time Techno-

logy and Applications Symposium, Taipei, Taiwan, 2001.

p. 141–8.

[10] Baril A. Using Windows NT in real-time systems. In: Proceedings

of the Fifth IEEE Real-Time Technology and Applications

Symposium, Institute of Electrical and Electronics Engineers,

Inc., 1998. p. 132–41.

[11] Cota-Robles E. A comparison of Windows driver model latency

performance on Windows NT and Windows 98. In: Proceedings

of the Third Symposium on Operating Systems Design and

Implementation, New Orleans, LA, 1999. p. 159–72.

[12] Jones MB, Regehr J. The problems you’re having may not be the

problems you think you’re having: results from a latency study of

Windows NT. In: Proceedings of the Seventh Workshop on Hot

Topics in Operating Systems (HotOS VII), IEE Computer

Society, Rio Rico, AZ, 1999. p. 96–102.

[13] Malina R. Windows NT for soft real-time control. White Paper,

Rockwell Automation. Available form http://quite.teknowledge.

com/WorkingGroups/ (1997).

[14] Ramamritham K, Shen C, Gonzalez O, Sen S, Shirgurkar SB.

Using Windows NT for real-time applications: experimental

observations and recommendations. In: Proceedings of the

Fourth IEEE Real-Time Technology and Applications, Denver,

CO, 1998. p. 102–11.

[15] West P. High speed, real-time machine vision. Machine Vision

Online. Available from http://www.imagenation.com/ (2001).

[16] Douglass BP. Real-Time UML: developing efficient objects for

embedded systems, 2nd ed., The Addison-Wesley Object Tech-

nology Series. Reading, MA: Addison-Wesley Longman, 2000.

[17] Microsoft Corporation. Real-time systems and microsoft

Windows NT, MSDN Library. Available from http://msdn.

microsoft.com/library/default.asp?url=/library/en-us/dndllpro/html/

msdn realtime.asp.

J. Mart!ınez et al. / Real-Time Imaging 9 (2003) 99–112112

http://citeseer.nj.nec.com/171536.html
http://citeseer.nj.nec.com/171536.html
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://quite.teknowledge.com/WorkingGroups/
http://quite.teknowledge.com/WorkingGroups/
http://www.imagenation.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndllpro/html/msdn_realtime.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndllpro/html/msdn_realtime.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndllpro/html/msdn_realtime.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndllpro/html/msdn_realtime.asp

	A modular and scalable architecture for PC-based real-time vision systems
	Introduction
	Modular architecture
	Image acquisition system
	PC-based processing system
	Access to the image
	Process versus thread
	Sharing information among processes
	Modular processing architecture


	Real-time considerations
	Real-time acquisition
	I/O boards
	Frame-grabber

	Real-time processing

	Application
	Modular acquisition system
	Real-time acquisition
	Modular processing system
	Real-time processing

	Conclusions
	References


