
Color Edge Detection by Photometric Quasi-Invariants

J. van de Weijer Th. Gevers J.M. Geusebroek

Intelligent Sensory Information Systems
Faculty of Science, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
�joostw, gevers, mark �@science.uva.nl

Abstract

Photometric invariance is used in many computer vision ap-
plications. The advantage of photometric invariance is the
robustness against shadows, shading, and illumination con-
ditions. However, the drawbacks of photometric invariance
is the loss of discriminative power and the inherent instabil-
ities caused by the non-linear transformations to compute
the invariants.

In this paper, we propose a new class of derivatives
which we refer to as photometric quasi-invariants. These
quasi-invariants share with full invariants the nice prop-
erty that they are robust against photometric edges, such as
shadows or specular edges. Further, these quasi-invariants
do not have the inherent instabilities of full photometric in-
variants. We will apply these quasi-invariant derivatives
in the context of photometric invariant edge detection and
classification. Experiments show that the quasi-invariant
derivatives are stable and they significantly outperform the
full invariant derivatives in discriminative power.

1. Introduction
Photometric invariance is important for many computer vi-
sion applications to obtain robustness against shading and
illumination conditions. The reflection model by Shafer [7]
provides a physical model which allows for the classifica-
tion of different physical evens, such as shadows and high-
lights (see e.g. [3]). From this model, several computational
methods have been proposed to obtain photometric invari-
ance such as object geometry, camera viewpoint, shadow,
shading and specularity invariance [1] [2] [6]. However,
the non-linear transformations, often used to compute the
photometric invariants, introduce several drawbacks, such
as instabilities and loss of discriminative power.

Traditionally, this effect of instabilities is suppressed by
ad hoc thresholding of the transformed values. Ohta [5]
considers only ���-values if the intensity is larger than 30
(on a range of 256 values), and rejects hue values if the sat-
uration times the intensity is less than 9. Healey [4] rejects

���-values when the ���-values fall within the sphere of
radius �� centered at the origin of the ��� space. A more
elaborated approach is given by Stokman [8] applying error
propagation through the various color spaces to compensate
for the undesired effects of the instabilities and nonlineari-
ties of the different photometric invariant spaces. However,
the reduced discriminative power due to photometric invari-
ants remains unsolved.

Therefore, in this paper, we propose a new class
of derivatives which we refer to as photometric quasi-
invariants. This new set is designed according to the fol-
lowing criteria 1. insensitiveness to photometric varia-
tion 2. robustness against instabilities, 3. discriminative
power. These quasi-invariants are like the full photomet-
ric invariants insensitive to shadow/shading/specular edges.
However, these quasi-invariants have better discriminative
power than the full invariants. Furthermore, they do not
have the inherent instabilities of full photometric invari-
ants. Due to the lack of full photometric invariance, the
quasi-invariants are unsuited to applications based on com-
parison of edge responses, such as invariant object recog-
nition. However for a broad domain of applications, such
as shadow/shading/specular invariant edge detection, edge
classification, and shadow edge insensitive snakes, they
are well suited. In this paper, we will apply these quasi-
invariant derivatives in the context of photometric invariant
edge detection and classification.

This paper is organized as follows. In section 2, the
dichromatic reflection model and its first-order derivative
are analyzed. A set of photometric variants and quasi-
invariants is proposed in section 3. In section 4, experiments
are given. Section 5 finishes with concluding remarks.

2. The Dichromatic Reflection Model
In this section the dichromatic reflection model introduced
by Shafer [7] is discussed first. From this model, the new set
of photometric variants and quasi-invariants is constructed.

The dichromatic model divides the reflection in the in-
terface (specular) and body (diffuse) reflection component
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for optically inhomogeneous materials. Assuming white il-
lumination (i.e. smooth spectrum of nearly equal energy
at all wavelengths) and neutral interface reflection (i.e. the
color of the highlight is independent of the wavelength), the
RGB vector, � � �������� , can be seen as a weighted
summation of two vectors,

� � ��	� ��
� �	� ��

�� (1)

in which ��
� is the color of the body reflectance, ��� the

color of the interface reflectance (i.e. specularities or high-
lights), 	� and 	� are scalars representing the correspond-
ing magnitudes of reflection and � is the intensity of the
light source. Note that vectors are indicated in bold and the
hat is used to denote the unit vector. For matte surfaces there
is no interface reflection and the model further simplifies to

� � �	���
� (2)

which is the well-known Lambertian reflection. For more
on the validity of the photometric assumptions see [1] [7].

Then the spatial derivative of the dichromatic reflection
model of eq. 1 is as follows:

�� � �	� ��
�
� �

�
��	

� � �	�
�

�
��
� �

�
�	�

� � ��	
�
�
��
�


(3)
As we assume white illumination and neutral interface re-
flection, ��� is independent of �. The subscript is used to
indicate the spatial derivative. The spatial derivative in eq.
3 is a summation of three weighted vectors, successively
caused by object reflectance, shading-shadow and specular
change. In this paper, we assume that a shadow is not col-
ored (i.e. assuming that the light in the shadow has the same
spectral characteristics as the light in the non-shadow area).

In fact, the direction of the shadow-shading changes
(fig.1a) follows from eq. 2. In the absence of interface re-
flection, the direction of ��� coincides with the direction of
�� � ��

��������
�������

� . The shadow-shading direc-
tion is the multiplication of two scalars denoting two differ-
ent physical phenomena. ��	� indicates a change in inten-
sity which is a shadow edge. And �	�

� is a change in the
geometry coefficient which is a shading edge.

The second direction is the specular direction ��
� in

which changes of the specular geometry coefficient 	�
� oc-

cur. It is equal to ��
�
��� �� ��� since we assume a white

light source and neutral interface reflection (fig.1b). The
specular direction is multiplied by two factors. Firstly, �	�

�

is a change of geometric coefficient caused by changes in
the angles between viewpoint, object and light source. Sec-
ondly, the term ��	

� representing a shadow edge on top of
a specular reflection.

Having the direction of two of the causes of an edge, we
are able to construct a third direction which is perpendicular
to these two vectors (fig.1c). This direction, named body

edge �� �
�
� �� �

�
� �� �

�
�

object x x x x x x
shading x - x x x -
specular x x x - x -

Table 1: The response of the photometric variants and the
quasi-invariants to different photometric edges. ’+’ indi-
cates a response, ’-’ indicates no response.

direction ��, is computed by the outer product:

�� �
��� ��

�

������ ���

���

 (4)

In the special case of a shadow-shading direction coincid-
ing with the light source direction (i.e. black-white axis),
the outer product is undefined. For these points we consider
the body direction to be the zero vector �� � �. Note that
the object direction is not equal to the direction in which
changes of the object reflectance occur, ���

�. It is perpen-
dicular to the two other causes of an edge. Hence changes
in the body direction can only be attributed to an object re-
flectance change.

In conclusion, changes in the reflection manifest them-
selves as edges in the image. There are three causes for
an edge in an image: an object change, a shadow-shading
edge or a specular change. We indicated three directions:
the shadow-shading direction, the specular direction and the
body direction. This information is used in the next sec-
tion to construct a set of photometric variants and quasi-
invariants.

3. Photometric Variants and Quasi-
Invariants

In this section, the goal is to propose a new set of photomet-
ric variants and quasi-invariants. To this end, the derivative
of an image, �� � ���� ��� ���

� , is projected on three
directions found in the previous section. We will call these
projections variants. E.g. the projection of the derivative on
the shadow-shading direction results in the shadow-shading
variant. By removing the variance from the derivative of
the image, we construct a complementary set of derivatives
which we will call quasi-invariants. These quasi-invariants
are not invariant with respect to a photometric variable.
However, they share the nice property with normal invari-
ants that they are insensitive for certain edges, e.g. shadow
or specular edges.

The projection of the derivative on the shadow-shading
direction is called the shadow-shading variant and is defined
as

�� � �� � �� ��
 (5)
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(a) (b) (c)

Figure 1: a) The shadow-shading direction. b) The specular direction c) The body direction. For a), and b) the arrows are
perpendicular to the depicted planes. For c) the arrows are tangent to the depicted plane.

The dot indicates the vector inner product. The second ��
gives the direction of the variant. The shadow-shading vari-
ant can be interpreted as the part of the derivative which
could be explained by a change in the shadow or shading
component of the reflectance. Due to correlation of the ob-
ject and specular direction with the shadow-shading direc-
tion, part of �� might be caused by changes in object or
specular reflection.

Now that we know what the derivative energy in the
shadow-shading direction is, we may derive the derivative
which remains after substraction of the variant. We call this
the shadow-shading quasi-invariant, and indicate it by a su-
perscript �.

�
�
� � �� � �� (6)

The quasi-invariant has a stronger meaning than the variant.
It consists of that part of the derivative which is not caused
by shadow-shading edges (fig.2b). Hence, ��� does only
contain specular, or body edges.

The same reasoning can be applied to the specular di-
rection and results in the specular variant and the specular
quasi-invariant

�� � �� � ��� ��
� �

�
�
� � �� ���


(7)

The specular quasi-invariant is insensitive to highlight
edges (fig.2c).

In some cases one might be interested in the part of
the derivative which can be explained by either a shadow-
shading or a specular change. For this purpose the shadow-
shading-specular variant and quasi-invariant are proposed.

�
�
� � �� � �� �� �

�� � �� ���
�


(8)

This quasi-invariant represents the derivative energy in the
body direction (see section 2) which is perpendicular to the

shadow-shading and the specular direction. Therefor, ��

�

does not contain specular or shadow-shading edges (fig.2d).
A overview of the photometric variants and quasi-invariants
is given in table 1.

3.1. Limitations of Photometric Quasi-
Invariants with respect to Classical Pho-
tometric Invariants

We introduced a new set of edge detectors, namely the pho-
tometric variants and quasi-invariants. Here the difference
between the classical photometric invariants (e.g. normal-
ized ���, ��) and the quasi-invariants is discussed.

The classical invariants are invariant with respect to a
photometric parameter like for instance the geometric co-
efficient 	� in the case of normalized ���. Hence, the
first order derivative response of such invariants does not
contain any shadow-shading variation. Our approach de-
termines the direction in the RGB-cube in which shadow-
shading edges exhibit themselves. The derivative caused
by other than shadow-shading edges can than be computed.
Hereby sharing with classical invariants the property that
shadow-shading edges are ignored. However, this quasi-
invariant is not invariant with respect to 	�.

In the case of the shadow-shading quasi-invariant sub-
traction from eq. 3 of the part in the shadow-shading direc-
tion�� results in

�� � �	�
�
�
�
� ���

� � ���
�

(9)

which is clearly not invariant for 	� and �. In a similar
way also the specular-shadow-shading quasi-invariant can
be proven to be dependent on 	� and �.

This dependency of the quasi-invariants on	� and � lim-
its the applicability of the filters. The filter can be used to
remove the undesired photometric edges. Possible applica-
tions are: shadow-edge insensitive snakes, shadow-shading-
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(a) (b) (c) (d)

Figure 2: Derivatives applied to fig.4a; a) color gradient ��. b) shadow-shading quasi-invariant, ���. c) the specular quasi-
invariant��

�. d) the specular-shadow-shading quasi-invariant��
�.

specular edge independent corner detection and edge clas-
sification. However they cannot be used for applications
where edge responses are compared under different circum-
stances, such as invariant image retrieval.

The specular quasi-invariant is actually the derivative of
the well-known opponent color space [8]. After subtraction
of the variant direction, the derivative in the plane perpen-
dicular to the �� remains. This is equal to the derivative
which is acquired in the opponent color space model. It
can easily be checked that after substraction of the specular
variant from eq. 3 the result is independent of 	�. how-
ever, 	� itself is not a physical parameter, it is composed
of several physical variables, such as surface patch normal
and direction of illumination, which are also represented in
	�. None of the physical parameters disappears from the
equation and hence��

� is a quasi-invariant.

4. Experiments

In the introduction we indicated that the classical photo-
metric invariants have limited applicability due to loss of
discriminative power and instabilities. Here we will inves-
tigate the performance of the quasi-invariants on these two
points; 1. stability, 2. discriminative power.

Since the specular quasi-invariant is well-known, its per-
formance is not investigated here (see section 3.1). Both for
instability and discriminative power results are compared
with photometric invariants. The experiments were per-
formed with ���, ������, ������, ���, ��, �� [1] [2]. Be-
cause the results for these invariants were similar, we cho-
sen normalized ��� and �� as exemplary for the set of
invariants, and compared them with the quasi-invariants.

4.1. The Applied Derivatives

The computation of the variants and quasi-invariants is
achieved by applying Gaussian kernels. The normalized

��� is computed with

� �
�

�����

 (10)

For �� � similar equation hold. The edges are computed with

�� �
�� �� ����� ��� ����

��� ��� ����
(11)

The �� and its derivative are given by

�� � ���	�

��

������
������

�
�

��� �
�
��������������������������
�������������������� 


(12)

The derivatives ���� and ���

�
� follow from eq.5 and eq .8

���� � ������������
��������

�

���
�� � ������������������������

��������������������



(13)

The quasi-invariant ����� follows from the fact that the quasi-
invariant and the variant energy sum up to the total deriva-
tive energy, ����� � ����� � ������.

4.2. Instabilities
Photometric invariants inherently have instable points in the
RGB-cube. The shadow-shading invariants are unstable for
low intensities. Thus little changes around the black-point
result in large changes in the invariant plane. This is par-
ticularly inconvenient because shadow-shading edges tent
to produce low-intensity areas. For the specular-shadow-
shading invariants the instability is situated on the black-
white axis in the RGB-cube. On this axis the hue is un-
defined and hence little changes result in large differences
between the color-angles.

The photometric quasi-invariants are interpretable as
projections in the RGB-cube and remain stable throughout
the RGB-cube. In fig.3a a synthetic image of a red-blue
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(a) (b) (c) (d) (e) (f)

Figure 3: a) Red-blue edge, with a decreasing intensity of the blue patch going in the upward direction. b) the normalized
RGB derivative. c) The shadow-shading quasi-invariant. d) Red-blue edge, with increasing saturation going in the upward
direction. e). the classical hue derivative. f) The specular-shadow-shading quasi-invariant.

edge is depicted. The blue intensity decreases along the y-
axis. Gaussian uncorrelated noise has been added to the
channels. In fig.3b the normalized RGB response is de-
picted and the instability for low intensities is clearly vis-
ible. For the shadow-shading quasi-invariant (fig.3c) no in-
stability occurs and the response just diminishes for low in-
tensities.

For the hue a similar reasoning holds. In fig.3d a red-
blue edge is depicted. The blue patch becomes achromatic
with increasing �. The instability is clearly visible in fig.3e
whereas in fig.3f the response remains stable.

4.3. Discriminative Power
Here we compare the edge detection performance of the
quasi-invariants with the invariants from literature. These
results can also be seen as an indication of the loss of
discrimination due to invariance. Edge detection is per-
formed between the 1012 different colors from the PAN-
TONE [9] color system. The patches from PANTONE are
reduced to one RGB-value by a large Gaussian averaging
operation. Every one of the 1012 different RGB-values is
combined with all other RGB-values, resulting in a total of
� � ���� � ������ � ���� edges of � � � pix-
els length. The edge position is determined by computing
the maximum response path of the derivative energy in a
region of 20 pixels around the actual edge. This results in
an edge estimation which is compared with the actual edge.
We define two error measures. First, the average pixel dis-
placement �,

� �

�
����� ������������	��

���
� � ���

� �� (14)

in which ��
� is �-th edge pixel of the �-th edge. Because
the actual edge is located between two pixels displacements
equal to .5 pixels are considered as a perfect match. Sec-
ondly, the percentage of missed edges, �, is computed. An

std. noise � 5 20
detector � � � � �
��� �
��� �
��� �
�� ���
��� �
�� �
�� �
� ���
��
� �
� 
�� �
�� ���

�� �
� �
�� �
� ���
��� � �������� �
��� 
��� �
�� �
��

Table 2: The displacement,�, and the percentage of missed
edges, �, for five different edge detectors. The experiment
was conducted with additive Gaussian noise of standard de-
viation 5, and 20.

edge was classified missed as the variation over one edge,

������ �
�

�

��
�	�

�������
� �
�

�

�


��


����� (15)

is larger than 1 pixel. For the Gaussian scale � � � is cho-
sen. The experiments were performed on the edge dataset
after pollution with uncorrelated Gaussian noise of standard
deviation 5, and 20.

Uncorrelated Gaussian noise with a standard deviation
of 5 and 20 was added to the edges images.

The results are depicted in table 2. For both cases, the
shadow-shading and specular-shadow-shading edges, the
quasi-invariants substantially outperform the invariants. For
many applications for which invariance is desired but im-
practical due to the loss of discriminative power and inher-
ent instabilities, the quasi-invariants might be the solution.

4.4. Edge Classification
In this experiment edges are classified as being either
shadow-shading, specular, or object edge. The photomet-
ric variants and quasi-invariants form a good framework for
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(a)

(b)

(c)

(d)

Figure 4: a) input image with superimposed two dotted lines which are plotted in the images c and d. b) Edge classification
result, with white object edges, black shadow edges and light grey specular edges. c) The derivative strength of the gradient
the specular variant and the specular-shadow-shading quasi-invariant (object). d) Derivative strength along a line of the
gradient, the shadow-shading variant and the specular-shadow-shading quasi-invariant (object).

such a classification. Primarily because of the conserva-
tion of the RGB-cube metric which allows for a quantitative
comparison between the different responses. Note that this
is not possible for derivatives based on invariants. The nor-
malized RGB derivative can only be compared qualitatively
with the hue derivative.

In fig.4 the ’toys’ image is shown. Responses along two
lines in the image are enlarged in fig.4c and d. The line in
fig.4c crosses two object edges and several specular edges.
It nicely shows that the specular-variant almost perfectly
follows the total derivative energy for the specular edges
in the middle of the line. In fig.4d a line is depicted which
crosses two object edges and three shadow-shading edges.
Again the shadow-shading variant follows the gradient for
the three shading edges.

A simple classification scheme results in 4b, in which
white indicates object edges, black are shadow-shading
edges, and light-grey indicates the specular edges.

5. Conclusions

In this paper, we have proposed a set of quasi-
invariant derivatives. Like classical invariants, they
are insensitive to certain photometric variation, such as
shadow/shading/specular edges. Experiments show that
they significantly outperform the full invariants on both

stability and discriminative power. This makes the quasi-
invariants well suited especially for edge detection in im-
ages of low quality and with poor illumination often en-
countered in images of snap shot quality as it appears in
home video and consumer digital photography in general.
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