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Abstract: Colour is an important visual cue for computer vision applications. However, up to the 
present, the automatic assignment of names to image regions has not been widely used due to the non- 
existence of a general computational model for colour categorization. In this paper we present a 
model for colour naming based on fuzzy set theory, in which each of the 11 basic colour terms defined 
by Berlin and Kay1 is modelled as a fuzzy set with a characteristic function which assigns a 
membership value to the category to any colour sample. The model is based on combining two well 
known functions, a sigmoid and a gaussian, to define a membership function for colour categories. It 
is denoted here as the sigmoid-gaussian function and it fulfils a set of properties which makes it 
adequate to this purpose. The characteristic functions for each colour category have been fitted to 
data obtained from a psycho-physical experiment and the model has been tested on the Munsell 
colour array to show its validity. The results obtained indicate that our approach can be very useful 
as a first step to expand the use of colour naming information in computer vision applications. 
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INTRODUCTION 
 
Colour naming, or colour categorization, has been studied from different disciplines. For many years, 
biologists, philosophers, linguistics and anthropologists have worked about this topic providing very 
different points of view about the problem. Recently, Schirillo2 has presented an extensive and 
complete review of this topic. To understand the motivation of our work we will summarize those 
works which are closer to our goal, that is, the computational automation of the colour naming task in 
the frame of computer vision applications. 
 
The basis of most of the works on colour naming has been the study of Berlin and Kay1 in which they 
stated the existence of a unique and common set of eleven basic colour terms in different languages. 
Several later works have confirmed this result from experiments on the OSA space3,4, the Munsell 
space5,6 and also when comparing the colour naming in Japanese and American observers.7 
 
In the way of explaining the colour naming process, Kay and McDaniel8 proposed a general model of 
colour naming which attempted to find the relationship between the neuro-physiological mechanisms 
involved in colour naming and the semantic categories of basic colour terms. The model is based on 
fuzzy set theory where each colour category has a characteristic function which defines a membership 
degree to the category. The most interesting of the model is that it considers the colour naming 
problem as something more than the assignment of a colour term to a stimulus, since the fuzzy 
approach takes into account the non-discrete nature of the problem.  
 
Afterwards, some works have studied the structure of the colour naming space9,10,11 and some 
models12,13,14 have been proposed. In a different point of view, some studies about the dependence of 
the colour naming task to the illumination changes have also been presented.15,16  
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In computer vision, colour is a very important visual cue for image understanding and it has been used 
to perform very different tasks such as object recognition,17 image segmentation,18 image indexing19 
or tracking.20 However, the automatic assignment of names to image regions has not been widely 
dealt up to now, although it could be very useful for some automatic visual tasks such as image 
annotation, image indexing, object recognition, or robotics. Up to the present, Lammens21 has been 
the only one in proposing a parametrical model for colour naming in different colour spaces. In this 
model, each colour category is modelled by a variant of the gaussian function which is fitted on the 
Munsell colour space considering the boundaries and focuses for each category defined by Berlin and 
Kay for American English. The model obtains interesting results, but it has not been extensively 
tested. 
 
Hence, we can state that although colour naming has been widely studied from different disciplines, 
the computational automation of this task is still in its first stages. It seems evident that a 
computational model allowing several degrees of membership to the colour categories is the most 
adequate for this goal. Moreover, if we want to automate colour naming with the same behaviour as a 
human being, we have to use a learning set of data obtained from human observations as the basis of 
our model. To this end, in this paper, we present a general computational colour naming model in 
which each one of the eleven basic colour categories is modelled by a fuzzy set with a characteristic 
function. The goal of the model is, for a given stimulus, to assign the same colour name that a human 
observer would do. In the next sections, we firstly present a fuzzy set framework for colour naming. 
Secondly, we build a computational learning set from a psycho-physical colour naming experiment, 
and we use this set to fit the membership functions of each fuzzy set corresponding to the colour 
categories. The model is tested on the Munsell colour array used by Berlin and Kay and our automatic 
categorization of this space is compared to previous results. Finally, we present the conclusions of this 
work and future research lines. 
 
 
 

FUZZY SETS FOR COLOUR NAMING 
 
The final goal of this work is to build a computational model which allows defining a decision 
function that automatically performs the colour naming visual task. Our model is based on the idea 
proposed by Kay and McDaniel8 which considers the colour naming task as a fuzzy decision. The best 
way to mathematically model this decision functions is by considering the basis of the fuzzy set 
theory.22  
 
A fuzzy set is described by its membership function. In colour naming, we can consider that any 
colour category, Ck, is a fuzzy set with a membership function, 

kCf , which assigns to each colour 

sample x a membership value )(xf
kC  within the [0,1] interval. This value represents the certainty we 

have about x has to be named with the linguistic term, tk, corresponding to category Ck. From this 
point of view, the first step of any colour naming modelling process will be the definition of the 
membership functions for each colour category. Once these functions are defined, it will be possible 
to compute a colour descriptor, CD(x), such as: 
 

),...,())(),...,(()( 11 nCC mmxfxfxCD
n

  where  mk0,1  k = 1,...,n   and    
k

km 1    (1) 

 
CD(x) describes the membership relation of x to each colour category, mk is the certainty value 
associated to x by 

kCf and n is the number of categories considered. In our case n=11 and the 

categories considered in the model are the corresponding to the 11 basic colour terms proposed by 
Berlin and Kay, that is tk{white, black, red, green, yellow, blue, brown, purple, pink, orange, and 
grey} k = 1,...,n. Therefore the colour descriptor CD(x) defined above is a vector of 11 components 
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and the information contained in such descriptor can be used by a decision function to decide the 
colour name of a given stimulus x. 
 
The goal of the next sections will be to estimate the memberships functions of the colour categories, 

kCf . To this end, we will firstly build a learning set and, secondly, we will define the shape of these 

functions. Afterwards, we will estimate their parameters according to the psycho-physical data. 
 
 
 
 

BUILDING THE LEARNING SET 
 
The fuzzy approach to the problem presented in the previous section requires a proper learning set as 
the basis to develop the colour naming model. To this end, we need to perform two steps. Firstly, we 
have to select a set of surfaces with their computational representations and, secondly, we have to 
collect the name assignments performed by human observers to these samples. To achieve these 
goals, 422 different colour samples were selected and their reflectances were measured and tabulated 
using a PhotoResearch PR-650 spectro-radiometer. These reflectances were selected trying to cover a 
region of the colour space as wide as possible and have been the basis to build two sets of data. The 
first set is a computational representation of these reflectances in a 3D colour space, and the second is 
a set of colour naming assignments to the samples obtained from a psychophysical experiment. In the 
next paragraphs we go deeply in these two points. 
 
 
A computational colour space 
 
In computer vision the starting point is normally a digital image acquired with a camera. Cameras are 
usually based on the use of prisms to decompose the input signal into a set of signals only containing 
wavelengths that correspond to each one of the camera sensors. Normally, three sensor devices are 
used. The three sensors provide a decomposition of the input signal into three channels: R (red), G 
(green), and B (blue). Therefore, the colour space generated by the camera is a device-dependent 
RGB space. Computational colour is normally based on the dichromatic model of Shafer23 which 
allows to consider the tri-stimulus integration as: 
 

       dRSEx ii           (2) 

 
where xi represents the i-th component of vector x=(R,G,B), that is, the RGB response corresponding 
to a point in the scene with S() as the surface reflectance function, E() as the spectral distribution of 
the illuminant of the scene and Ri() as the spectral sensitivity of the i-th sensor of the device. In our 
case, we have used the sensitivities of a common camera (SONY DXC-930) obtained from the 
Computational Colour Vision Laboratory of the Simon Fraser University.24 The camera response was 
white balanced according to the selected illuminant conditions (D65 daylight) in order to match the 
white reflectance to the maximum value represented in each colour channel of the image. The original 
and the balanced sensitivities are shown in figure 1. Thus, the RGB values of the selected reflectances 
were computed according to equation 2. 
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FIG. 1.    Sensitivities of the SONY DXC-930 camera used to generate the RGB values of the colour 
samples selected to build the learning set. Left: Original sensitivities of the camera. Right: White 
balanced camera responses. 
 
At this point, one possibility would be to transform the RGB values to a standard colour space, such 
as CIE XYZ, CIELuv, CIELab, etc. However, in computer vision, we will normally work under 
uncontrolled conditions and the acquisition parameters will be unknown. To obtain the CIE XYZ 
values from the RGB of a camera we should know the spectral response of the camera which is not 
normally provided by the manufacturer. Another possibility would be to obtain the camera response 
by using a monochromator, but it should be done on strictly controlled lab conditions which is not 
practical for most industrial applications of computer vision. Hence, our computational model must be 
able to work on a device-dependent colour space. However, in this work, data analysis will be also 
performed on the CIELab space for comparative purposes. Experimentation on how our model 
behaves when the acquisition device is changed is left for further works. 
 
To establish our colour naming model based on a specific parametric function that we will introduce 
afterwards, we need to separate chromaticity information from intensity. The initial RGB space is 
transformed to a new 3D-space, denoted here as uvI, where the first two axes represent chromaticity 
and the third one corresponds to the intensity. To obtain the chromaticity information of axes u and v, 
the colour vectors are projected on the unit plane and referred to the uv coordinate system. The 
intensity axis, I, corresponds to the module of the original RGB vectors. This space is defined by 
equations 3 and 4. In figure 2, an scheme of the transformation from RGB to uvI space is shown. 
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FIG. 2.    Scheme of the transformation from the RGB colour space to the uvI space.  
 
 
A colour naming experiment 
 
To collect the naming assignments, we made a psychophysical experiment.25 Since we have 
considered colour naming as a fuzzy problem, a simple colour naming experiment in which a colour 
term is assigned to each sample is not enough to build our set of naming assignments. Hence, in our 
experiment subjects were asked to distribute 10 points between the eleven basic colour terms 
according to the certainty they had about the sample belonging to different categories. Thus, if the 
subject was absolutely sure about the colour name of a sample, then the 10 points had to be assigned 
to the category corresponding to that name. Otherwise, if there was a doubt between two or more 
names, the 10 points had to be distributed between the categories corresponding to those names. The 
constraint of only using the eleven basic colour terms was set to reach a high degree of consistency 
and consensus, which is highly desirable for our purpose. Previous experiments4,6,9 have shown that 
basic colour terms are used more consistently and with greater consensus than non-basic names.  
 
The experiment was developed under a D65 illuminant and using the set of 422 colour samples 
mentioned above. The samples were presented in random order, one at a time, to 10 subjects with 
normal colour vision. All the subjects were screened for colour vision deficiencies using the Ishihara 
test. The experiment was done twice by all 10 subjects and in the second trial the samples were 
presented in reverse order. This implied a total number of 8440 observations. For each sample, the 
scores were averaged and normalized to the [0,1] interval. Further information on the procedures and 
details about the experiment have been explained in a previous work25. 
 
After this experiment, we have all the necessary data to build a proper learning set. On one hand, we 
have a three-dimensional representation of a set of 422 different colours, and on the other hand, we 
have their corresponding fuzzy assignment performed by human observers corresponding to the set of 
eleven colour categories. In the next section we present the process followed to estimate the 
underlying statistical model of these data. 
 
 
 

DEFINING THE MEMBERSHIP FUNCTIONS  
 
Once the learning set has been built, we are ready to propose a general colour naming model. The first 
step is to define the membership functions of the colour fuzzy-sets. The next step is to estimate the 
parameters of these functions for each colour category by using the learning set built in the previous 
section. This implies to solve a non-linear data-fitting problem in the least squares sense, that is, 
minimizing the mean squared error (MSE) between the membership values provided by the model 
and the values obtained in the experiment. For each of the 11 colour categories, the fitting was done 
using a Large-Scale optimization algorithm which minimizes the following expression: 
 

  



s

j

j
kk

j
C xCDxf

k
k 1

2
)(,

2

1
min 


    (6) 



This is a preprint of an article published in COLOR research and application, 29(5):342-353, 2004. 
http://www3.interscience.wiley.com/journal/35037/home 
 

 
where s is the number of samples in the learning set, Ck is the colour category being modelled with 
k=1,...,n, xj is the j-th sample of the learning set, CDk(x

j) is the k-th component of the colour descriptor 
obtained from the experiment for the sample xj, and k is the set of parameters of the membership 
function

kCf . Now, the problem is to decide which is the best function to represent the colour name 

membership. We will examine two different functions: a simple gaussian function and a sigmoid 
function modulated by a one-dimensional gaussian. 
 
 
Gaussian model 
 
This first approach is based on the work of Lammens21 that assumes gaussian membership functions 
given by: 
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where k=(,). The fitting of this functions to the learning set was done both in our uvI space and in 
the CIELab space. The results of these fittings in terms of the MSE obtained for the 11 colour 
categories are presented in table I. The sum of the individual MSE’s obtained for this fitting on the uvI 
space was 14.1110-2.  In the case of CIELab space, the sum of MSE’s was 6.6510-2. 
 
TABLE I.     Results in terms of the MSE (10-2) of the gaussian functions fitting to each one of the 
11 colour categories considered. In the last column, the sum of the individual MSE’s is presented as a 
global measure of the error of the model. 
 
CATEGORY Red Orange Brown Yellow Green Blue Purple Pink White Grey Black Total 

uvI Space 0.51 0.25 1.26 0.29 4.75 1.54 3.21 1.63 0.1 0.53 0.02 14.11 

CIELab 0.25 0.12 0.59 0.24 2.34 0.69 1.55 0.61 0.1 0.16 0.00 6.65 

 
Despite the global error of the model might seem not very high, several categories (brown, green, 
blue, purple and pink) are very badly modelled. Moreover, some facts indicate that the gaussian 
model is only adequate to model the achromatic categories (white, grey and black). If the intensity 
component is eliminated, then it is easy to show that the membership maps over the uv-plane derived 
from the experiment for the chromatic categories (red, orange, brown, yellow, green, blue, purple and  
pink), are not normal distributions (figure 3). Hence, this brought us to conclude that a different 
membership function for the chromatic categories could provide better results. 
 

 

 
 

 
 

 
FIG. 3.    Membership values for the green category (C5) derived from the psycho-physical colour 
naming experiment. Each sample with green membership value (m5) higher than zero is represented as 
a point in the diagram where grey level intensity indicates its certainty value to be named ‘green’. 
Relationship between certainty and grey level is indicated in the scale on the right. 
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Sigmoid-gaussian model 
 
After the first approach, we focussed on the modelling of the chromatic categories on the uv-plane. 
The introduction of the intensity in the model will be explained afterwards. The study of the 
membership maps over the uv-plane (figures 3 and 4) allowed us to define the desirable properties 
that should fulfil a characteristic function, )(xf

kC with x=(u,v), for the cited colour categories: 

 
 )(xf

kC  [0,1], in order to be a membership function. 

 )(xf
kC  has a plateau form in its central area that spans on a triangular basis with a principal 

vertex. 
 )(xf

kC  is a parametrical function with parameters controlling the slope of the surface on the 

boundaries formed by the two sides of the triangular basis that share the principal vertex. 
 )(xf

kC  is a parametrical function with parameters allowing asymmetry with respect to the 

central axis, that is, the bisector of the angle formed by the two sides of the triangular basis 
that have the principal vertex in common. 

 

 
 
FIG. 4.    Chromatic categories have a triangular basis with a principal vertex and a central axis. In the 
central area of the triangular basis, samples have membership values near one. In the areas near the 
two sides of the triangle that share the principal vertex membership values decrease from one to zero. 
 
Several functions were considered to achieve the above constraints. However, the best results have 
been obtained by using a combination of two well-known functions. The first three constraints are 
fulfilled by using a sigmoid function. To reach the last one, we propose to modulate the sigmoid with 
a gaussian function in the direction perpendicular to the central axis of the category. To simplify the 
definition of this function we will suppose that we have all the points of the category being modelled 
in the first quadrant. To avoid confusions we will denote these axes as u’v’ and will suppose that the 
central axis of the category is the line u’=v’. 
 
The sigmoid function in one dimension is defined as: 
 

xe
xS  
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1
),(      (8) 

 
where  is a parameter that controls the slope of the function. Hence, we define the sigmoid function 
in two dimensions for our u’v’-plane as:  
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Once the sigmoid function has been defined, we define the 1D-gaussian function which we have 
proposed to modulate the sigmoid function as: 
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where  is the mean and  is the standard deviation. Figure 5 shows an scheme of the purpose of this 
function. 

 
 
FIG. 5.    A 1D-gaussian function is used to modulate the sigmoid in the direction u’=v’. For a point 
(u0,v0) the sigmoid function is modulated by the value of the gaussian at the position (u0 - v0)/sqrt(2). 
 
Hence, the final expression which will be used as characteristic function for each colour category is: 
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In figure 6, some examples of the sigmoid-gaussian function can be seen for different values of the 
parameters. 

 
a) u=10, v=10, =0, =1.5 b) u=20, v=20, =0, =0.5 

 
c) u=5, v=20, =0, =2      d) u=20, v=20, =0.5, =1.5 

 
FIG. 6.    Examples of the sigmoid-gaussian function for different parameters.  
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The function presented above has been defined supposing that the samples were on the positive 
quadrant of the space. Hence, the samples of the colour category to be modelled must be centred on 
the first quadrant. To this purpose, a translation T(tu,tv) and a rotation R() are applied to the samples 
(equations 12 and 13). Notice the use of homogeneous coordinates which allow us to express both 
transformations as a matrix product. 
 

  xttTRx vu  ),(      (12) 
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Hence, the final expression of the membership function, )(xf

kC , used to model the eight chromatic 

colour categories has seven parameters: 
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As it has been shown, the sigmoid-gaussian function is defined on the uv-plane, that is, we only work 
using two dimensions. Previous works10 and our first approaches with gaussian models have shown 
the usefulness of the intensity component for colour naming. Therefore, in order to consider the 
intensity component, we have divided the uvI colour space in three levels of intensity. For each level, 
all the samples inside it are represented and modelled on a 2D uv-plane (figure 7). 
 

 
 
FIG. 7.    Scheme of the division of the uvI colour space in three levels of intensity. All the samples 
inside a level of intensity are represented and modelled with the sigmoid-gaussian function on a 2D 
uv-plane. 
 
The values that define the three levels were chosen in order to isolate some categories in only one or 
two of the intensity levels (i.e. yellow is only present for high intensity and orange does not appear for 
low intensity). Following this criterion and taking into account the results from the psycho-physical 
experiment, the values which provided the best results in the fitting process were chosen to divide the 
uvI space in three slices. These values for the uvI space were the 20% and 40% of the maximum 
intensity, that is, the intensity of the white of the model. This values are space-dependent and in the 
case of the CIELab space the values chosen were the 35% and the 70% of the maximum intensity. 
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Modelling the achromatic categories 
 
Due to their position in the uv-plane, and considering the previous results, the achromatic categories 
can be modelled with the gaussian model. However, we will need a different process for these 
categories (white, grey and black) which includes two steps. On the first step, the three categories are 
considered as a unique category and it is modelled with a 2D-gaussian function on the uv-plane for 
each intensity level. This will allow us to differentiate between the chromatic and the achromatic 
categories. On the second step, the membership values of the three achromatic categories are 
modelled as 1D-gaussian functions on the intensity axis. This will allow us to differentiate between 
white, grey and black once we have determined that we have an achromatic sample. 
 
 
 

ESTIMATION OF A COLOUR NAMING MODEL 
 
Once our sigmoid-gaussian colour naming model has been defined, the next step is to estimate the 
parameters for each characteristic function. In each intensity level, a function must be estimated for 
each one of the colour categories with samples in that intensity level. In figure 8, the samples for the 
three intensity levels are shown. 
 

 
 
FIG. 8.    Samples of the learning set for each intensity level. Left: Low intensity (Level 1). Centre: 
Medium intensity (Level 2). Right: High intensity (Level 3). 
 
For a certain chromatic category Ck of an intensity level p, the modelling process works as follows. 
Firstly, all the samples of the learning set with intensity coordinate included in the level p are selected. 
Using the experiment membership values for category Ck, the seven parameters of the sigmoid-
gaussian function are estimated. As in the case of the first gaussian approach, the parameter 
estimation is performed as a non-linear least-squares data fitting (equation 6).  
 
On the other hand, the membership values of the three achromatic categories are summed and the 
parameters of the corresponding 2D multivariate gaussian functions are estimated with the same 
optimization algorithm as before. The final step is to estimate the parameters for the 1D gaussian 
functions across the intensity axis used to differentiate between the three achromatic categories 
(white, grey and black). The values of the parameters obtained on the uvI space as a result of the 
estimation process are presented in tables II to VI. 
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TABLE II. Model parameters (,) for the achromatic 2D-gaussian functions with =(1, 2), 1,1=0, 
1,2=2,1=1 and 2,2=2. 
 

Intensity level 1 2 0 1 2 
Int < 60% 0.71 0.42 0.0032 0.0002 0.0006 

60% < Int < 80% 0.72 0.42 0.0017 0.0001 0.0006 
Int > 80% 0.73 0.42 0.0013 0.0002 0.0003 

 
 
TABLE III. Model parameters for the 1D-gaussians modelling white, grey and black categories.   
 

Colour   
White 450.30 45.73 
Grey 240.50 156.52 
Black 16.06 26.21 

 
 
TABLE IV.     Model parameters for intensity level 1. 
 

Colour tu tv  u v   
Red 0.83 0.37 1.09 49 53 0.110 0.04 
Brown 0.78 0.33 0.38 140 119 0.080 0.13 
Green 0.52 0.47 0.11 37 97 0.005 0.81 
Blue 0.63 0.43 -2.55 118 49 0.050 0.14 
Purple 0.64 0.44 2.21 178 107 0.050 0.25 

 
 
TABLE V.     Model parameters for intensity level 2. 
 

Colour tu tv  u v   
Red 0.89 0.35 1.22 114 36 0.060 0.04 
Orange 0.99 0.28 0.41 34 101 0.010 0.18 
Brown 0.79 0.38 0.38 58 55 0.060 0.05 
Green 0.54 0.50 0.11 91 75 0.100 0.34 
Blue 0.66 0.46 -2.63 240 69 0.004 0.14 
Purple 0.80 0.39 3.14 55 161 0.060 0.11 
Pink 0.83 0.38 2.41 42 192 -0.050 0.12 

 
 
TABLE VI.     Model parameters for intensity level 3. 
 

Colour tu tv  u v   
Orange 0.87 0.44 0.88 90 44 0.070 0.04 
Brown 0.79 0.35 1.03 9 505 -0.060 0.03 
Yellow 0.80 0.43 0.59 135 198 0.007 0.03 
Green 0.67 0.44 -0.22 48 145 0.007 0.64 
Blue 0.70 0.43 -2.27 200 65 0.001 0.05 
Purple 0.74 0.40 3.14 407 227 -3.580 9.02 
Pink 0.73 0.40 1.34 170 554 0.030 0.06 

 
 
The results in terms of the MSE error for all the categories are presented in table VII. In this case, the 
total fitting error of the model on the uvI space is 1.9810-2. The fitting was repeated on the CIELab 
space, where the total error is 4.6010-2. On the uvI space, all the categories are modelled with less 
error than before and in some cases, such as in green or purple categories, the improvement is 
remarkable. On the CIELab space, the improvement is less evident but it is still important for some of 
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the categories. These results confirm that the proposed sigmoid-gaussian model is modelling the 
colour categories better than the gaussian model. 
 
 
TABLE VII.     Results in terms of the MSE (10-2) of the sigmoid-gaussian functions fitting to each 
one of the 11 colour categories considered. In the last column, the sum of the individual MSE’s is 
presented as a global measure of the error of the model. 
 
CATEGORY Red Orange Brown Yellow Green Blue Purple Pink White Grey Black Total 

uvI Space 0.12 0.16 0.52 0.20 0.28 0.08 0.16 0.17 0.04 0.25 0.0 1.98 

CIELab 0.13 0.24 0.87 0.29 1.71 0.16 0.24 0.70 0.06 0.14 0.02 4.60 

 
Once the parameters of the functions that characterize the fuzzy colour categories have been 
estimated, we are able to compute the colour descriptor CD(x) for any sample x in the colour space. 
The information contained by CD(x) can be used by a decision function N(x) that assigns to x one of 
the 11 colour terms considered. At the moment, the decision function we have chosen assigns the 
colour term which corresponds to the category Ck with the highest membership value mk in CD(x): 
 

 )(max|)( xfmtxN
iC

i
kk      (15) 

where tk is the linguistic term corresponding to category Ck. Hence, to assign a colour name to a 
sample x in the colour space, the membership values for all the categories in the intensity level in 
which x is included are computed. These membership values form the colour descriptor CD(x), which 
is normalized to sum one, and the decision function N(x) is applied to obtain the colour name 
associated to x. 
 
The psychophysical experiment described above has provided us a set of membership values for all 
the samples in the learning set. Hence, the experiment results have been considered the target values 
for the output of the characteristic functions. Up to this point, the mean-squared error (MSE) between 
the values returned by the models and the ones obtained in the experiment has been used as a 
goodness measure of the model fitting to the colour data. However, as the main goal of a colour 
naming system is to automatically assign a colour term to a colour stimulus, we should also evaluate 
the validity of the model in terms of the number of samples which are correctly named.  
 
The colour descriptors for all the samples in the learning set have been computed with the 
membership functions estimated and the decision function (equation 15) has been applied to obtain a 
set of automatic name assignments. This categorization has been compared to the one obtained from 
the psycho-physical experiment to compute the percentage of samples which are correctly named. The 
same has been done to the naming obtained by applying the first gaussian approach. The results are 
presented in table VIII. 
 
TABLE VIII.     Results in terms of MSE in the learning data fitting and number of samples correctly 
named.  
 

Model Color 
Space 

MSE Samples 
correctly named 

Samples correctly 
named (%) 

Gaussian uvI 14.1110-2 370 87.68 % 
Sigmoid-gaussian  uvI 1.9810-2 406 96.21 % 
Gaussian CIELab 6.6510-2 405 95.97 % 
Sigmoid-gaussian CIELab 4.6010-2 395 93.60 % 

 
As can be seen in table VIII, the results obtained by the sigmoid-gaussian model on the uvI space are 
better than the ones obtained with the gaussian model, both in terms of the MSE in the data fitting 
process and the percentage of samples which are assigned the same name as the subjects in the 
psycho-physical experiment did. The improvement is specially important in the case of the MSE, 
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since the error of 14.1110-2 on the gaussian model is decreased to 1.9810-2. Moreover, the 
percentage of the learning samples which are correctly named increases to 96.21 %. This means that 
406 of the 422 samples are assigned the same colour name than the mean subject of the experiment. 
Hence, the sigmoid-gaussian function considerably improves the results obtained by the gaussian 
model on this colour space. 
 
On the CIELab space, the improvement of the results in terms of the MSE obtained by the Sigmoid-
gaussian model is lower than in the uvI space, but the error decrease is still considerable (from 
6.6510-2  to 4.6010-2). When analysing, the results in terms of the number of samples which are 
correctly named it can be seen that the better results correspond to the gaussian model. However, as it 
will be seen in the next section, the gaussian model obtains poor results when it is tested over a wider 
data set different from the one used on the learning step. This means that although the gaussian model 
can describe the learning data set better than the sigmoid function, the whole colour space is better 
modelled by the sigmoid-gaussian model. 
 
 

RESULTS 
 
In the previous section, we have evaluated the fitting results of the estimation of our colour naming 
model. In this section, we present the results obtained when the sigmoid-gaussian model is used to 
categorize the Munsell colour array. 
 
A set of Munsell reflectances were obtained from the Lappeenranta University of Technology 
(http://www.it.lut.fi/ip/research/color/database/download.html). These reflectances correspond to the 
stimuli used by Berlin and Kay for their anthropological studies, and were used to obtain their 
computational representation on the uvI colour space according to equations 2 to 5. The illuminant 
and the camera sensitivities used to generate this set of data were the same used to generate the 
learning set. The reflectances of ten samples of the Munsell array were not available and therefore we 
do not have their computational representations. These samples correspond to value 2 and hue from 
5YR to 7.5GY.  
 
Once we had the computational representation of the Munsell colour array, our model was applied to 
obtain the colour descriptor, CD(x), for each chip of the Munsell array. Then, the decision function, 
N(x), was applied and, finally, the colour term provided by N(x) was assigned to the sample if the 
maximum membership value of CD(x) was higher than a threshold value . In our case, we set =0.5 
and considered that samples with a maximum membership value of less than 0.5 did not have a 
definite colour name. The categorization obtained is presented in figure 9, where each chip is painted 
with the colour corresponding to the assigned category. Inside each chip, the highest membership 
value obtained by our model is provided. Chips without a definite colour term, that is a highest 
membership value below , are coloured in light blue. The chips in dotted pattern correspond to the 
samples that were not available. 
 

 
 
FIG. 9.    Categorization of the Munsell colour array obtained by applying our proposed sigmoid-
gaussian model on the uvI space.  
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The categorization of the Munsell array has also been obtained by applying the gaussian and the 
sigmoid gaussian model on the CIELab space (figures 10 and 11). The categorization obtained by the 
gaussian model on the uvI space was very poor and will not be shown here. 
 

 
 
FIG. 10.    Categorization of the Munsell colour array obtained by applying the gaussian model on the 
CIELab space.  
 
 

 
 
FIG. 11.    Categorization of the Munsell colour array obtained by applying our proposed sigmoid-
gaussian model on the CIELab space.  
 
The categorization of the Munsell array obtained by our model was compared to the results obtained 
in previous works about colour naming. The comparison was done to the boundaries for American 
English derived from Berlin and Kay experiments (figure 12) and to the categorization done by a 35 
year old male English speaker presented by MacLaury26 (figure 13). At this point we have to remark 
that although the subjects of our experiment were Catalan and/or Spanish speakers, we compare our 
results to the ones obtained from English speakers. This fact is due to the lack of previous results 
about these two languages. Therefore, some of the differences between our categorization and the 
others could be due to this fact. Finally, our results are compared with the previous approach of 
Lammens to automatic colour naming for computer vision (figure 14). 
 
 

 
 
FIG. 12.    Categorization of the Munsell colour array obtained by Berlin and Kay in their experiments 
for American English. 
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FIG. 13.    Categorization of the Munsell colour array provided by MacLaury’s English speaker26. 
 
 

 
 
FIG. 14.     Results of Lammens gaussian model on the CIELab colour space which is the one where 
the model obtained the best results. 
 
 
The comparison of our model’s categorization with the results of Berlin and Kay studies and the 
categorization made by MacLaury’s English speaker shows that our categorization considerably 
agrees with these previous ones. It must be remarked that both categorizations were made by human 
observers which means that the output of our model approaches the goal of obtaining a behaviour 
similar to that of a human being. Apart from small differences in the categorization of single chips, 
the most important difference is found on the orange category. In our results, orange is shifted 
compared to Berlin and Kay experiments. However, the observation of the Munsell samples, the 
learning samples and the subject’s responses in the experiment have brought us to consider the 
possibility that this is a cultural difference, since the results of the model agree with the subjects 
judgements on the experiment. At this point, it is easy to see the subjectivity of the problem, since the 
categorization of MacLaury’s English speaker has very important differences with Berlin and Kay 
division of the colour space. See, for example, that red in the subject’s categorization overlaps the 
purple region in Berlin and Kay results.  
 
To have an objective measure of the performance of our model, we considered the chips inside the 
boundaries proposed by Berlin and Kay (210 of the 329 chips on the Munsell array) and evaluated the 
number of coincidences and errors of the other categorizations compared with Berlin and Kay results. 
To do this, we calculated the number of chips inside the boundaries which are named with the same 
term in the two categorizations being compared. The results show that the number of coincidences 
and errors in our categorization on the uvI space and MacLaury’s English speaker is the same while 
the percentage of coincidences in Lammens results is considerably lower. The results of our model are 
even better on the CIELab space. Hence, this evaluation confirms that our model has a behaviour 
similar to that of human observers, and that our model improves the results obtained by the previous 
computational approach of Lammens. These results are summarized in table IX. 
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TABLE IX.     Comparison of the different categorizations in terms of the coincidence with Berlin and 
Kay categorization.  
 

Categorization Coincidences Errors % Coincidences 
Lammens gaussian 
model 

161 49 76.67 % 

Gaussian model 
(CIELab) 

173 37 82.38 % 

MacLaury’s English 
speaker 

182 28 86.67 % 

Sigmoid-gaussian 
model (uvI space) 

182 28 86.67 % 

Sigmoid-gaussian 
model (CIELab) 

188 22 89.52 % 

 
 
Another important advantage of our model is that the membership values are expanded in a quite 
perceptual sense, since values of one are in the centre of the categories and these values decrease as 
we approach to the boundaries of the category, where they tend to the threshold value. Despite the 
good results, we have noticed that there are some errors on the sigmoid-gaussian categorization which 
are concentred in the extremes of the intensity scale, that is, the samples with low and high value in 
the Munsell system. This problem is due to some deficiencies of the learning set with these samples 
that, in some cases, were unavailable. However, despite this considerations, the categorization 
provided by our model is very coherent with human judgements and the results show the validity of 
the sigmoid-gaussian function to model the colour naming categories. 
 
 
 

CONCLUSIONS 
 
In this paper we have proposed a general model of colour naming in digital images, which can be 
applied to real computer vision problems. The model is based on fuzzy set theory and each colour 
category has a characteristic function which provides a membership value to that category for any 
sample in the colour space. The full model has been defined and estimated.  
 
The model presents the eight chromatic categories defined by Berlin and Kay as basic colour terms 
modelled with a sigmoid-gaussian function. This function fulfils a set of desirable properties that 
colour naming characteristic functions should have. The three achromatic categories are modelled 
using gaussian functions and intensity is used to differentiate between them. The functions for all the 
categories have been fitted to data from a psycho-physical experiment with a low MSE. The model 
has also been tested on the Munsell colour array and the results support the validity of our model to 
address the colour naming problem. Although there are still some problems, our model can be a first 
useful step on the way of automating the colour naming task. 
 
As future research lines, we firstly should consider the colour constancy problem27 and take into 
account the effects that a change in the illumination might have over the final result of the colour 
naming. Secondly, the results obtained could be improved by using the knowledge we have about the 
structure of the colour naming space. This means, that some constraints should be applied to the 
process in order to obtain a better estimation of the parameters of the membership functions. Finally, 
we should study the performance of the model when the acquisition device is changed in order to 
evaluate the validity of the model for different device-dependent colour spaces.  
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