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ABSTRACT: Spatial resolution is a key parameter of all kind of im-

ages. This is of particular importance in fields as, for example, medi-

cine or remote sensing. The nominal resolution of a positron emission

tomography (PET) or nuclear magnetic resonance (NMR) scanners
are directly related to the size, number, and position of the detectors

in the scanner ring. Also, the nominal spatial resolution of the remote

sensing satellites is a well-known characteristic because it is directly

related to the area in ground that represents a pixel in the detector.
Nevertheless, in practice, the actual resolution of a medical scanner

image or of an image obtained from a satellite is difficult to know pre-

cisely because it depends of many other factors. However, if we have
two or more images of the same region of interest, obtained using

similar or different instruments, it is possible to compare the relative

resolution between them. In this paper we propose a wavelet-decom-

position-based method for the determination of the relative resolution
between two images of the same area. The method can be applied,

in principle, to any kind of images. As example, we applied the meth-

od to pairs of remote sensing and medical images. In the case of re-

mote sensing, we computed the relative resolution between SPOT-3,
LANDSAT-5 and LANDSAT-7 panchromatic and multispectral images

taken under similar as well as under very different conditions. In the

case of medical imaging, we computed the relative resolution be-
tween a pair of simultaneously obtained PET and NMR images of the

same object. On the other hand, if we know the true absolute resolu-

tion of one of the images of the pair, we can compute the resolution

of the other. Thus, in the last part of this paper, we describe a spatial
calibrator that we have designed and constructed to help compute

the absolute resolution of a single remotely sensed image, presenting

an example of its use. VVC 2006 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 15, 225–235, 2005; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/ima.20055
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I. INTRODUCTION

The spatial resolution is a key parameter for any kind of imaging in-

struments. This is true regardless of the particular application of the

instrument: astronomy, medicine, remote sensing, civil and military

patrol, engineering, and so on.

The spatial nominal resolution of many instruments can be de-

rived from their physical characteristics. For example, in satellite-

based remote sensing, the nominal resolution is directly related to

the area in ground that represents a pixel in the detector. Thus, it is

related to the distance from satellite to ground (satellite orbit), pixel

size, and focal length of the observing camera or instrument. This

nominal resolution has been in constant improvement during the

last years (Table I shows the nominal spatial resolution of some of

these satellites). In another example, the nominal resolution of a

PET scanner is directly related to the diameter of the annulus of de-

tectors of the scanner and to the size, number, and position of the

scintillation crystals in the annulus.

However, in practice, the true resolution of an image is also re-

lated to many other factors. In the remote sensing example indicated

earlier, the true resolution is also related to the size of the point

spread function (PSF) of the whole observing system that includes

the detector, the optics, the atmospheric conditions, the illumination

of the scene, and so on. Also, the atmospheric conditions depend of

the quantity of water vapor in the atmosphere, dust in suspension,

aerosol concentration, pollution, etc. All these factors are difficult or

impossible to know with enough accuracy at any time. In the cited

medical example, the true resolution of a scanner image depends, be-

tween many other factors, of the type and concentration of the used

isotope, the quality of the electronics, the metabolic conditions of the

patient, the reconstruction algorithm used, and even the magnetic
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field present during the observation (e.g., during a simultaneous ac-

quisition of PET and NMR images of the same specimen).

Thus, the actual practical spatial resolution of a single image is

difficult to know accurately. One method to overcome the problem

is to know precisely the size of several features appearing in the

image, so we can calibrate the absolute spatial resolution.

However, if we have more than one image of the same region,

obtained either by the same or different instruments, it is possible to

compare the relative resolution between both images. If we know

the absolute resolution of one of them we could compute the resolu-

tion of the other. Otherwise, we will have at least a comparison be-

tween the quality of both images and its relative resolution. This

could be very important in the comparison of, for example, the ac-

tual resolution between two different satellite-based platforms or

between two different medical scanners.

Another possible application could be to estimate the degree of

increment of resolution obtained by a super-resolution method

(Park et al., 2003). By computing the relative resolution between

the super-resolution result and the images contributing to such re-

sult, we could estimate the increment of resolution (super-resolu-

tion) achieved.

Thus, in an effort to solve the problem of determining the relative

resolution between images, in the first part of this paper, we propose

a general wavelet-decomposition-based method for the determina-

tion of the relative resolution between two images of the same area.

Then, we present examples of application to medical and remote

sensing imaging. Also, in the last section we describe the form and

use of a spatial calibrator that we have constructed to help to com-

pute the absolute resolution of a single remotely sensed image.

Although, in principle, the method proposed in this paper could

be applied to both electronic imaging and digitized classical pho-

tography, in practice, digitizing a photographic plate introduces

other parameters related to both the photographic process itself (type

and density of the emulsion, color or black and white negative, sen-

sitivity, preprocessing, development, etc.) and the digitizing process

(type of scanner, physical or interpolated resolution, accuracy of

scanning, etc.). These factors beside the nonlinearity of the photo-

graphic plate make very difficult the comparison between two dif-

ferent images obtained from digitized photographies unless a com-

plicated system of calibration be carried out. Thus, in this work we

will only consider the relative resolution for the case of original

digital images obtained, for example, using medical scanners or

spatially-based platforms.

II. ALGORITHM FOR ESTIMATING THE RELATIVE
RESOLUTION BETWEEN TWO IMAGES

A. Method Outline. The main idea on which the proposed meth-

od for evaluating the relative resolution between a pair of images is

based consists in the following:

1. Preprocess the images by registering (if needed) the low-re-

solution image to the same size as the high-resolution one in

order to be superimposed, and perform (if needed) a histo-

gram matching between both images.

2. Obtain a series of decreasing resolution versions of the higher

resolution image.

3. Compare quantitatively these images with the lower-resolu-

tion image of the original pair.

4. Obtain a point of maximum correlation between the images

of the series and the low-resolution image of the pair. If

we use the higher resolution image to obtain the series and

this series is enough long, the correlation should present a

maximum.

5. From this maximum compute the relative resolution between

the images of the pair.

B. Preprocessing the Images. To carry out the registering and

histogram matching, in this work, the images are registered up to

within 0.25 pixels rms by resampling the low-resolution image us-

ing control points and a bicubic polynomial fit. Also, to take into

account the spectral differences (if any), the different atmospheric

and illumination conditions, between the two images of the pair, we

performed a conventional histogram matching between them. Spe-

cifically, after computing the histogram of both images, the histo-

gram of the low-resolution image is used as reference to which we

match the histogram of the high resolution one. Of course, if both

images were obtained by the same platform under similar condi-

tions this first step could be skipped. Finally, if the number of

counts of both images is different, a normalization factor is applied.

This preprocessing was applied in the examples of this work for

both the medical and remote sensing cases.

If one of the images of the pair is multispectral and the other is

panchromatic, as can be the case in many situations, the best way to

compare the relative resolution between both images is to use the

intensity component of the multispectral one. This intensity compo-

nent should be computed in a way such that the result spectrally be

as close as possible to the panchromatic image. If both images are

multispectral, we can either compare each band of the images one

by one (if the bands of both images match), or compute the intensity

component of both images as earlier. In the examples of remote

sensing in this work, we used the intensity component L of the mul-

tispectral images, using the expression L ¼ RþGþB
3

with preference

to other expressions as I ¼ max(R,G,B) or L0 ¼ mxxðR;G;BÞþminðR;G;BÞ
2

.

This choice was due to the spectral characteristics of the used im-

ages (SPOT-3, LANDSAT-5, and LANDSAT-7).

C. Wavelet Decomposition. To obtain the series of successive

lower-resolution versions of the higher resolution image of the pair,

we can use several techniques such as, for example, filtering itera-

tively the image with a low pass filter, e.g., by convolving the im-

age successively with a Gaussian function of known standard devia-

tion. However, in this work, we preferred to use the well-estab-

lished theory of wavelet decomposition, as described later. This is

because we can mathematically know the resolution of each image

of the obtained series with respect to the original image.

In the last years, multiresolution analysis has become one of the

most promising tools for the analysis of images in all disciplines,

particularly in remote sensing (Datcu et al., 1996) and with great in-

cidence in the field of image merging (Yocky, 1995; Ranchin et al.,

Table 1. Nominal spatial resolution of some remote sensing satellites.

Satellite

Resolution (m)

Multispectral Panchromatic

LANDSAT-7 30.0 15.0

SPOT-4 20.0 10.0

SPOT-5 5.0 2.5

IKONOS 4.0 1.0

QuickBird 2.5 0.6
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1996; Wald et al., 1997; Núñez et al., 1999a, 1999b; González-

Audı́cana et al., 2005; Otazu et al., 2005). Multiresolution analysis

based on the wavelet theory allows the introduction of the concept

of detail between successive levels of scale or resolution.

Wavelet decomposition is increasingly being used for the process-

ing of images (Chui, 1992; Daubechies, 1992; Meyer, 1993; Young,

1993; Kaiser, 1994; Vetterli and Kovacevic, 1995; Rué and Bijaoui,

1996; Starck and Pantin, 1996; Mallat, 1998). The method is based

on the decomposition of the image into multiple channels, based on

their local frequency content. The wavelet transform provides a

framework to decompose images into a number of new images, each

one of them with a different degree of resolution. Although the Fouri-

er transform gives an idea of the frequency content in our image, the

wavelet representation is an intermediate representation between the

Fourier and the spatial representation, and it can provide good local-

ization in both frequency and space domains. The wavelet transform

of a distribution f(t) can be expressed as

WðfÞða; bÞ ¼ jaj�1=2

Z þ1

�1
f ðtÞ t� b

a

� �
dt; ð1Þ

where a and b are scaling and translational parameters respectively.

Each base function  ððt� bÞ=aÞ is a scaled and translated version

of a function  called mother wavelet. These base functions areR
 ððt� bÞ=aÞdt ¼ 0.

D. The ‘‘à trous’’ Algorithm. The discrete approach of the wave-

let transform can be done with several different algorithms. How-

ever, not all algorithms are well suited for all the problems. The

popular Mallat’s algorithm (Mallat, 1998, 1989) uses an orthonor-

mal basis, but the transform is not shift-invariant, which can be a

problem in signal analysis, pattern recognition, or, as in our case,

resolution comparison.

To obtain a shift-invariant discrete wavelet decomposition of an

image, we follow Starck and Murtagh (1994), and we use the dis-

crete wavelet transform known as ‘‘à trous’’ (‘‘with holes’’) algo-

rithm (Holschneider and Tchamitchian, 1990) to decompose the im-

age into wavelet planes. Given an image p, we construct the se-

quence of approximations:

F1ðpÞ ¼ p1; F2ðp1Þ ¼ p2; F3ðp2Þ ¼ p3; :::

To construct the sequence, this algorithm performs successive con-

volutions with a filter obtained from an auxiliary function named

scaling function. We use a scaling function that has a B3 cubic

spline profile. The use of a B3 cubic spline leads to a convolution

with a mask of 5 � 5:

1

256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

0
BBBB@

1
CCCCA ð2Þ

The wavelet planes are computed as the differences between two

consecutive approximations pl�1 and pl. Letting wl ¼ pl�1� pl(l ¼
1,. . ., n), in which p0 ¼ p, we can write the reconstruction formula:

p ¼
Xn
l¼1

wl þ pr ð3Þ

In this representation, the approximation images pl (l ¼ 0,. . .,n) are
versions of the original image p at increasing scales (decreasing re-

solution levels), wl (l ¼ 1,. . .,n) are the multiresolution wavelet

planes, and pr is a residual image. In our case, we are using a dyadic

decomposition scheme. Thus, the original image p0 has double re-

solution than p1, the image p1 double resolution than p2, and so on.

If the resolution of image p0 is, for example, 10 m, the resolution of

p1 would be 20 m, the resolution of p2 would be 40 m, and os on.

However, note that in this process all the consecutive approxima-

tions (and wavelet planes) have the same number of pixels as the

original image. This is a consequence of the fact that the ‘‘à trous’’

algorithm is a nonorthogonal oversampled transform (Vetterli and

Kovacevic, 1995). This is a restriction on the use of this particular

wavelet approach for applications such as image compression.

E. Image Correlation. Once obtained the series of successive

lower-resolution versions of the higher resolution image, we pro-

ceed to quantitatively compare these images with the lower-resolu-

tion image of the original pair. In this work, we performed it by

computing the correlation coefficient between the images using the

standard coefficient:

CorrðA=BÞ ¼
Pnpix

j¼1ðAj � �AÞðBj � �BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnpix
j¼1ðAj � �AÞ2 Pnpix

j¼1ðBj � �BÞ2
q ; ð4Þ

where A and B state for the mean value of the corresponding data

set. For positive images �1 <Corr(A/B) <1.

F. Maximum of Correlation. Using Eq. (4), we compute the cor-

relation between each one of the images of the series and the lower-

resolution image. The result is a series of correlation numbers

which, as stated earlier, if the series is long enough, should present

a maximum. For example, if in a remote sensing application, the re-

solution of the high and low-resolution images of the pair were 10

and 30 m respectively, the series of successive lower-resolution ver-

sions of the first image would have resolutions of 10 m (scale 0), 20

m (scale 1), 40 m (scale 2), 80 m (scale 3), and so on. So, the series

of correlation numbers between such images and the 30 m image

would present a maximum at some point between the 20 and 40 m

images of the series.

To compute such maximum, in this work, we fit a cubic spline

function to the obtained series of correlation numbers as a function

of the scale. Figure 1 shows an example of a correlation curve ob-

tained using real data coming from SPOT-3 (10 m nominal resolu-

tion) and LANDSAT-5 (30 m nominal resolution) remote sensing

satellites (see examples later). In Figure 1, it is easy to see that, as

expected, the maximum of the correlation curve is between scales 1

and 2 (1.585), i.e., between 20 and 40 m.

It is interesting to note here that the series of lower-resolution

versions of the higher resolution image could be obtained by other

methods as, for example, by Gaussian convolution with a kernel of

known Full Width at Half the Maximum (FWHM). In this case a

curve similar in form to Figure 1 would be obtained. Figure 2 shows

such curve as correlation vs. FWHM of the Gaussian kernel. The

maximum of correlation is reached at about FWHM ¼ 3.70. How-

ever, as commented later, the relationship between the FWHM of

the maximum of the curve and the resolution is not as straight for-

ward to derive as in the case of wavelets.

G. Relative Resolution. As stated earlier, one of the advantages

of using the wavelet approach is the dyadic decomposition scheme,

which allows an immediate correspondence between the scale of
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the decomposition and the resolution. This is a consequence of the

properties of the wavelets. Thus, the relationship between the scale

of the wavelet decomposition and the relative resolution with regard

to the first image of the series (scale 0 or original high resolution

image) is:

Y ¼ 2X ð5Þ
where X is the scale and Y is the relative resolution between the im-

ages of the pair.

In the example of Figure 1, the maximum is for scale ¼ 1.585

that represents a relative resolution of 21.585 ¼ 3.00 identical in this

example to the ratio of nominal resolutions (30 m/10 m ¼ 3) be-

tween both images.

Note that in the case of Figure 2 (same data but using Gaussian

convolution in place of wavelet decomposition), we do not have a

dyadic scheme. So, we cannot use a direct expression as Eq. (5) to

compute easily the relative resolution from the FWHM of the maxi-

mum of the curve, and an accurate calibration would be needed.

This is a consequence of the lack of orthogonal properties of this

decomposition scheme.

III. EXAMPLES OF RELATIVE RESOLUTION

We applied the above methodology to compute the relative resolu-

tion between three pairs of images obtained from different sensors.

The first example belongs to medical imaging while the other two

belong to remote sensing.

A. Application to PET and NMR Medical Images. In the

medical imaging example, we computed the relative resolution be-

tween a pair of simultaneously obtained Positron Emission Tomog-

raphy (PET) and Nuclear Magnetic Resonance (NMR) images of

the same object. The images were obtained by Paul Marsden and

collaborators (Marsden et al., 2002), using a small prototype NMR-

compatible PET scanner of their own design. The prototype is capa-

ble of acquiring PET images simultaneously with either NMR im-

ages or NMR spectra. As described by Marsden et al. (2002) one of

the advantages of performing PET and NMR imaging simultane-

ously is that we can obtain a very good spatial registration of func-

tional PET and anatomical (or functional) NMR images. The possi-

bility to obtain an almost perfect registration (besides the accurate

anatomical localization) allows us to use such images for our pur-

pose to compute the relative resolution between them. Of course,

images obtained independently by PET and NMR scanners can also

be registered but sophisticated software should be used.

Figures 3 and 4 show images of a small hot-spot phantom ob-

tained simultaneously with PET and NMR respectively. Both im-

ages are from the paper of Marsden et al. (2002). The PET image

Figure 1. Example of correlation curve between the high and low

resolutions images as a function of the scale of the wavelet function.

Figure 2. Example of correlation curve between the high and low

resolutions images as a function of the FWHM of the Gaussian filter.

Figure 3. PET image of a small hot-spot phantom obtained by

Marsden et al. (2002) using a small prototype NMR-compatible PET

scanner. The image was acquired with 18F in 15 min (total counts

300k, activity in phantom 10 MBq). The spot diameter was 2 mm and
the separation between spots was 6 mm. The nominal spatial resolu-

tion of the scanner is about 2 mm FWHM.
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(Fig. 3) was obtained with 18F in 15 min, with an activity in the

phantom of 10 MBq which gives a total of about 300.000 counts.

The MR image (Fig. 4) was acquired on a 4.7 T, 30 cm bore system

during the same 15 min (spin echo, TE 30 ms, TR 2000 ms). The

spot diameter was 2 mm and the separation between spots was

6 mm. The nominal spatial resolution of the PET scanner is about

2 mm FWHM.

The images of Figures 3 and 4 were registered by the method

stated earlier, i.e., using control points and a bicubic polynomial fit.

Also, we performed a conventional histogram matching between

them. Since both images were obtained simultaneously the result of

the registration process was very good allowing to apply the algo-

rithm to compute the relative resolution.

Following the above described methodology, we used the wave-

let decomposition to obtain a series of lower-resolution images of

the NMR image, we used Eq. (4) to compute the correlation of each

image of the series with respect to the PET image and we fitted a

cubic spline to the set of correlations. Figure 5 shows the obtained

curve.

The curve in Figure 5 presents, as expected, a maximum. The

maximum correlation is about 0.85. The maximum of the correla-

tion of Figure 5 corresponds to a wavelet scale of 4.33. Applying

Eq. (5), we computed the relative resolution of the pair as 19.97.

Since the nominal spatial resolution of the PET scanner is about

2 mm FWHM, the result means that, in this example, the spatial re-

solution of the NMR image was 20 times higher i.e., about 0.1 mm

(100 �m). This result is in good agreement with the high (sub-mm)

spatial resolution of a 4.7 T, NMR 30 cm bore system acquiring

during 15 min.

Of course this result does not imply in any way that the NMR

scanner is better than the PET one since both are observing different

functional and anatomical images.

On the other hand, it has been published results using both simu-

lations (Iida et al., 1986) and experimental measurements (Hammer

et al., 1994) that the reduction in positron range that occurs in a

strong magnetic field could in principle lead to an improvement in

the resolution obtainable with a PET scanner. So, if the true spatial

resolution of the NMR scanner is well known, the presented method

can help to further study this effect on the spatial resolution on PET

images.

B. Application to Remote Sensing Images. In the remote

sensing examples, the first pair of images was obtained by the same

satellite (LANDSAT-7) during the same passage, but using two dif-

ferent instruments. They show a detail of the Italian city of Naples

showing, thus, an urban area. Figure 6 shows the high resolution

image of the pair. It was obtained using the panchromatic sensor

which has a nominal spatial resolution of 15 m. The low-resolution

image corresponds to the multispectral sensor of the satellite, which

has a nominal spatial resolution of 30 m. To compare its resolution

with respect to the panchromatic image, we transformed this image

to panchromatic, considering only the intensity component, which

was computed as the mean of the first three channels (1, 2, 3) of the

multispectral image. Figure 7 shows the low-resolution image (30

m) once transformed to panchromatic. Of course, both images of

the pair belong to the same epoch of the year and present the same

conditions of illumination.

A very different situation is shown in the second pair of images.

They show a nonurban area observed from different satellites in dif-

ferent epoch of the year. The images show a detail of an Argenti-

nean landscape, which includes several agricultural lots, roads, a

river bed, and a small town. Figure 8 shows the high resolution im-

age of the pair which is a 10 m resolution panchromatic image ob-

tained by the SPOT-3 satellite. The corresponding low-resolution

image of the pair is displayed in Figure 9. It was obtained with the

multispectral sensor of the LANDSAT-5 satellite, which has a nom-

inal spatial resolution of 30 m. As in the previous pair, to compare

its resolution with respect to the high resolution panchromatic im-

age, we transformed this image to panchromatic, using the intensity

component of the image. In this case, the intensity component was

computed as the mean of the three (R, G, B) pseudochannels, which

Figure 4. NMR image of the same small hot-spot phantom ob-
tained simultaneously as Fig. 3. The image was acquired on a 4.7T,

30 cm bore system during the same 15 min (spin echo, TE 30 ms, TR

2000 ms).

Figure 5. Correlation curve between the NMR and PET images dis-

played in Figs. 4 and 3, as a function of the scale of the wavelet function.
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were previously computed using the usual transformation:

R ¼ B5þB7

2
, G ¼ B3þB4

2
, B ¼ B1þB2

2
. In Figures 8 and 9 it is easy to see

that the SPOT-3 and LANDSAT-5 images were taken at different

epochs as it is usual when working with images from different satel-

lites. Note, for example, the aspect of the bed of the river, the water

ponds (black rounded areas in the LANDSAT image) or the crop

fields, which in the SPOT image are clearly different from their ap-

pearance in the LANDSAT image. Also, there are several features

in the SPOT picture that were not present when the LANDSAT im-

age was taken.

The registering between the two images of each pair was carried

out, as stated earlier, resampling the low-resolution image using

control points and a bicubic polynomial fit. Also, to compensate the

spectral differences between the images, we performed a histogram

matching between the two images of each pair using the histogram

of the low-resolution image as reference to match the histogram of

the high resolution one.

Following again the aforementioned method, we used the wave-

let decomposition to obtain a series of lower-resolution images of

the high resolution image for each pair, we used Eq. (4) to compute

the correlation of each image of the series and the corresponding

low-resolution image, and we fitted a cubic spline to each set of cor-

relations. Figures 10 and 11 show the obtained curves. Note that

Figure 11 is the same as Figure 1, but we repeat the figure here for

completeness.

As expected, both curves present a maximum. The maximum

correlation reached in both examples is, however, different: in the

first example the maximum correlation is about 0.59, while in the

second is about 0.24. This is a logic consequence of the different

type of images involved in the presented examples: while in the first

example both images come from the same satellite under same con-

ditions, in the second example they come, as commented above,

from different satellites under very different conditions.

The maximum of the correlation of Figure 10 corresponds to a

scale of 1.083, while the maximum in Figure 11 is at scale 1.585.

Applying Eq. (5), we computed the relative resolution of each pair

as 2.12 and 3.00, respectively.

The computed relative resolution of the first example (2.12) is

close but slightly higher than the nominal which is 2 (30 m vs. 15 m

nominal resolutions of both sensors of the LANDSAT-7 satellite).

This difference can be due to several effects. Since both images of

the pair were obtained under the same observing conditions by the

same satellite, the most plausible reason could be that the multi-

spectral camera has an actual spatial resolution slightly worst than

nominal, although other explanations could be also present. Since

the proposed method can only compute the relative resolution is not

possible to know accurately the origin of this difference.

Figure 6. High resolution (15m)

panchhromatic image of Naples ob-

tained by the LANDSAT-7 satellite.
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In the case of the second example, we obtained a relative resolu-

tion (3.00) identical to the nominal one which is 3 (30 m vs. 10 m

nominal resolutions of LANDSAT5 and SPOT3 satellites). We be-

lieve this result could be due to chance because, even accepting that

both SPOT-3 and LANDSAT-5 satellites could give exactly their

nominal resolution, the different observing conditions should make

at least small differences in the actual resolution of the images.

Additional details about these remote sensing examples, includ-

ing an analysis by spectral bands, can be found in Núñez et al.

(2006).

From these results, we can conclude that the proposed method

shows a good performance when estimating the relative resolution

between remotely sensed images, not only under ideal conditions

but even under quite different circumstances as different satellites,

different epoch of the year and different type of images (panchro-

matic and multispectral) as in the last example.

IV. SPATIAL ABSOLUTE CALIBRATOR FOR REMOTE
SENSING

The method developed in previous sections allows estimating the

relative resolution between two images, but we cannot compute the

absolute resolution of them. As stated earlier, the actual spatial re-

solution of an image is difficult to know precisely and the best way

to estimate it is to know the size of a set of features appearing in the

image in order to calibrate its absolute spatial resolution. This can

be easy in disciplines in which it is possible to construct and ob-

serve a spatial calibrator as is the case of the small hot spot phantom

displayed in the medical example above, but can be difficult in oth-

er disciplines as remote sensing in which such calibrators are not

common.

In this section, we describe a spatial calibrator that we have con-

structed to help to compute the absolute resolution of a single re-

motely sensed image. The calibrator, which is painted on the terrace

of the Physics Department of the University of Barcelona, consists

in two series of parallel fringes of decreasing width and a series of

triangles with a common vertex. One of the series of parallel fringes

is in direction North–South and the other in direction East–West, so

we can calibrate the resolution in both directions. The fringes are

painted alternatively in white and red color. We use the red color in

place of black to facilitate the use of the calibrator when using mul-

tispectral observations. The total size of the calibrator is 18 � 6 m2

divided in three squares of 6 � 6 m2 (one for each group of fringes

and one for the triangles). The width of the fringes are 100, 90, 80,

70, 60, 50, 40, 30, and 20 cm and 6 fringes of 10 cm. Each triangle

is a rectangle triangle of 300 cm basis. The size of the whole cali-

brator and the width of the fringes were chosen in order to be useful

for both observations from airborne sensors and for high resolution

satellites as SPOT-5, IKONOS, Quickbird and other future

platforms.

Figure 7. Low resolution (30m)

multispectral image of the same

area as Fig. 6 obtained simulta-
neously as Fig. 6 by the LAND-

SAT-7 satellite. The image was

transformed to intensity levels.
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Figure 12 shows an outline of the calibrator and Figure 13 a real

observation of it taken from an airborne panchromatic camera. The

calibrator is located at World Geodetic System coordinates

(WGS84) � ¼ 28704.1@ E; � ¼ 4182304.4@ N; h ¼ 95 m HMSL.

The calibrator can be used in different ways. We use two criteria

to compute the resolution.

Since the width of fringes is variable, the first criterion is simply

to see up to which width it is possible to solve the fringes or the ad-

ditional triangles in the image. Using this criterion, we can compute

resolutions between 300 cm (the basis of the triangles) and 10 cm

(the minimum width of the fringes).

If the spatial resolution is higher than 10 cm, i.e., even all the

smallest fringes (10 cm) are solved in the image (presently only air-

borne sensors can achieve this), we apply the second criterion to es-

timate the resolution. This is based in the Rayleigh criterion, which

establishes that two punctual sources are solved if the center of their

PSFs is separated more than the radius of the same PSF. In our case,

this criterion is translated into computing the intensity profile of a

line perpendicular to the fringes and to study the transition zone be-

tween two consecutive fringes. We define the resolution of the im-

age as the distance at which the intensity of a white fringe drops a

half of the intensity difference with regard to the adjacent dark

fringe.

Figure 14 illustrates the second estimation criterion. Figure 14 is

a detail of an image similar to Figure 13, it shows a dark fringe be-

tween two white ones and the intensity profile along a line perpen-

dicular to them. It is easy to see that the intensity of the white fringe

drops a half of the difference between adjacent fringes at about 4.5

pixels. To compute the corresponding resolution we need also the

scale of the image, but since we know the true size of the fringes,

computing the scale in cm/pixel is straightforward.

Figure 13 also illustrates that the calibrator can be used to detect

differences of resolution in different directions due to problems in

the optics or to errors in the motion compensator. Note that, in Fig-

ure 13, the resolution in E–W direction (horizontal) is clearly worse

than that in the N–S direction (vertical). It can be easily seen be-

cause the 10 cm horizontal fringes at left are clearly visible while

the 10 cm vertical fringes at center-right are not. This is probably

due to a bad calibration of the motion compensator of the airborne

camera which took the image. In a case like this, we can use the first

criterion above to estimate the resolution in the E–W direction and

the second one for the N–S direction. In this particular example, we

obtained about 10 cm resolution in the E–W direction but better

than 5 cm resolution (applying second criterion) in the N–S

direction.

We should note that, since the calibrator is located at a fixed

place, its use is, in principle, restricted to calibrate observations that

include it. However, given that remote sensing satellites can observe

an specified area as many times as desired, it is possible to use the

calibrator to obtain the true resolution of a series of images taken

Figure 8. High resolution (10m)

panchhromatic image of an Ar-

gentinean scene obtained by the

SPOT-3 satellite.

232 Vol. 15, 225–235 (2005)



under different conditions of illumination, dust, pollution or weather.

This can help to better calibrate the actual resolution of the satellite

under such conditions or to calibrate a possible malfunction of the

satellite. The combination of this true resolution calibration and the

relative resolution computation presented above can help to better

estimate the absolute resolution of any image in remote sensing.

Figure 10. Correlation curve between the high and low resolutions
images displayed in Figs. 6 and 7, as a function of the scale of the

wavelet function.

Figure 11. Correlation curve between the high and low resolutions
images displayed in Figs. 8 and 9, as a function of the scale of the

wavelet function.

Figure 9. Low resolution (30m) mul-

tispectral image of the same area as

Fig. 8 obtained by LANDSAT-5 satel-

lite. The image was transformed to in-
tensity levels. Figs. 8 and 9 were ob-

tained during different epochs of the

year.
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V. CONCLUSIONS

The actual spatial resolution of an image is a key parameter, but dif-

ficult to know with high accuracy. The main aim of this paper was

to establish a method for estimating the relative resolution between

images showing its applicability over a very different types of them

(medicine and remote sensing). Also we propose a calibrator to esti-

mate the absolute resolution in the case of remote sensing.

The proposed relative method, useful for the determination of the

relative resolution between two images of the same object or area, is

based in the mathematical properties of the wavelet decomposition,

in particular in the dyadic properties of the ‘‘à trous’’ algorithm of

wavelet decomposition. The proposed method obtains the relative re-

solution from the computation of the maximum of the correlation be-

tween a series of images of decreasing resolution of the high resolu-

tion image and the lower-resolution image of the pair. The method

works well with panchromatic and multispectral images.

To show the power of the method, we applied it to three very

different pairs of images belonging to medicine and remote sensing.

In the medicine example, the pair of images were a PET and a

NMR images of the same object obtained simultaneously by a

NMR compatible PET scanner, which allows a good registration

between them. We computed accurately the relative resolution be-

tween the images of the pair concluding that the proposed method

is enough robust to estimate the relative resolution between such

different kind of images. We also show that the method can help to

better measure some properties of these images as, for example, the

increment of spatial resolution of PET images taken under strong

magnetic fields.

In the remote sensing examples, one of them was a pair of im-

ages obtained by the panchromatic and multispectral sensors of the

LANDSAT-7 satellite under identical conditions. The other pair

was composed by a panchromatic image obtained by the SPOT-3

satellite and a multispectral image obtained at different epoch of

the year by the LANDSAT-5 satellite, thus under very different

conditions. In both cases we computed accurately the relative reso-

lution between the images of the pair. Thus, we can conclude that

the method is also robust in estimating the relative resolution be-

tween remotely sensed images, not only under ideal conditions but

even for different satellite and under different circumstances as

epoch of the year and spectral characteristics of the images.

Since the proposed method can only estimate relative resolution,

in the last part of this paper we presented the design, characteristics,

and use of a spatial calibrator for remote sensing that we con-

structed on the terrace of our Department. Its design helps to com-

pute the absolute resolution of an image in both N–S and E–W di-

rections, allowing to detect possible differences in resolution with

direction. Its size makes it useful for both airborne sensors and high

resolution satellites. The calibrator can be used to better establish

Figure 12. Outline of the calibrator designed to estimate the absolute resolution of remotely sensed images.

Figure 13. Real observation of the calibrator obtained from an air-

borne panchromatic camera. The calibrator is located at WGS84 co-
ordinates: � ¼ 2 7 4.1 E; � ¼ 41 23 4.4 N; h ¼ 95m H M S L. Note the

different spatial resolutions in E-W and in N-S directions.

Figure 14. Illustration of the Rayleigh criterion to compute the ab-

solute resolution of an image. The figure shows a dark fringe of the

calibrator between two white ones and the intensity profile along a
line perpendicular to them. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com]
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the actual resolution of a satellite under different conditions of

weather, illumination, pollution, etc., and to detect possible mal-

functions of the satellite. To use the calibrator we presented a direct

estimation method, and another method based on Rayleigh crite-

rion, which allows to compute absolute resolutions from 3 m to few

cm. We presented a real example of its use that allowed us to detect

appreciable differences in resolution in E–W and N–S directions.

Finally, the combination of the relative and absolute methods

presented in this paper can help to estimate the absolute resolution

of any image.
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