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How different are two images when viewed by a human observer? There is a class of computational models which attempt to

predict perceived differences between subtly different images. These are derived from theoretical considerations of human vision

and are mostly validated from psychophysical experiments on stimuli, such as sinusoidal gratings. We are developing a model

of visual difference prediction, based on multiscale analysis of local contrast, to be tested with psychophysical discrimination

experiments on natural-scene stimuli. Here, we extend our model to account for differences in the chromatic domain by mod-

eling differences in the luminance domain and in two opponent chromatic domains. We describe psychophysical measurements

of objective (discrimination thresholds) and subjective (magnitude estimations) perceptual differences between visual stimuli

derived from colored photographs of natural scenes. We use one set of psychophysical data to determine the best parameters for

the model and then determine the extent to which the model generalizes to other experimental data. In particular, we show that

the cues from different spatial scales and from the separate luminance and chromatic channels contribute roughly equally to

discrimination and that these several cues are combined in a relatively straightforward manner. In general, the model provides

good predictions of both threshold and suprathreshold image differences arising from a wide variety of geometrical and optical

manipulations. This implies that models of this class can be generally useful in specifying how different two similar images will

look to human observers.

Categories and Subject Descriptors: J.2 [Physical Sciences and Engineering]: Engineering; J.4 [Social and Behavioral
Sciences]: Psychology

General Terms: Experimentation, Human Factors

Additional Key Words and Phrases: Psychophysical testing, image difference metrics, color vision

1. INTRODUCTION

There has been much interest in developing computational models to predict how well human observers
can discriminate differences between pairs of images. A successful model would have many uses, which
include the computation of visibility of targets in natural scenes [Rohaly et al. 1997] and of measures
of the perceptual effects of, lossy image compression algorithms [e.g., Lubin, 1995]. One class of model
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is based on knowledge of how human psychophysical channels and single neurons in primary visual
cortex (V1) respond to simple visual stimuli, such as sinusoidal gratings of different spatial frequency,
orientation, and contrast [see Daly 1993; Doll et al. 1998; Lubin 1995; Rohaly et al. 1997; Watson 1987;
Watson and Solomon 1997; Watson and Ahumada 2005]. These models recognize that a visual image
is processed in parallel (at least in the early stages of visual cortex processing) by channels or neurons
with different optimal spatial frequencies, but all with much the same bandwidth of about 1 octave [see
Blakemore and Campbell 1969; DeValois et al. 1982; Movshon et al. 1978b; Tolhurst and Thompson
1981; Watson and Robson 1981]. Sometimes, the models are constructed as “pyramids” of increasing
sampling density at increasing spatial frequencies.

We, too, have been developing a simple (low-level), physiologically plausible model of achromatic local
contrast discrimination to predict human performance for discriminating between pairs of slightly
different achromatic natural-scene-based images [Tadmor and Tolhurst 1994; Tolhurst and Tadmor
1997a, 1997b; Párraga and Tolhurst 2000; Párraga et al. 2005]. We compute the band-limited contrast
[Peli 1990] at several spatial scales within images. The model then carries out a multiresolution analysis
of the two pictures under comparison, detecting differences in local contrast in each spatial frequency
“channel”. This model (like others) examines several spatial scales in parallel, but unlike those cited
above, did not include the orientation tuning so prevalent in visual cortex neurons. However, this type
of model has been shown to be very effective in explaining the appearance of natural-scene stimuli
under different viewing conditions [Peli 2001; Peli and Geri 2001].

Such models must be validated against real psychophysical experimental data to determine how
well they explain human discrimination performance. Generally, such validation has been carried out
against psychophysical experiments performed with sinusoidal gratings [e.g., Watson and Solomon
1997; Watson and Ahumada 2005], but there has also been some validation against natural-scene stim-
uli [Lubin 1995; Rohaly et al. 1997; Párraga et al. 2005]. We have described a variety of psychophysical
experiments, measuring thresholds for discriminating small changes in naturalistic images that we
control by morphing [Párraga et al. 2005]. We decided to use a morphing technique (as opposed, to a su-
perimposition of two images to different degrees [e.g., Tolhurst and Tadmor 2000], because it produces
a set of stimuli where each one of the component pictures is an image of a plausible object (with slightly
different shape, color, and texture); each morphed image still shares the natural Fourier statistics of
the original ones [see Párraga and Tolhurst 2000].

Here we extend our experiments and modeling to deal with colored images. We describe experiments
in which human observers attempt to discriminate small changes in the shape, brightness, texture, and
color of images of fruit. We compare the observers’ measured thresholds with those predicted by our
low-level model of visual cortex processing. We also examine observer ratings of suprathreshold image
differences. We are particularly concerned with two issues:

• Often models are developed and tested on a relatively small set of related images. It is important
to determine how generalized a model might be by testing it on a great variety of image pairs. Dis-
crimination data (obtained using 2AFC procedures; see Section 3) are “costly” in that many trials
are needed to obtain one discrimination threshold. Also, by definition, these techniques measure dis-
crimination thresholds. However, it is important to test the model (a) when there are suprathreshold
image differences and (b) for a large image set. The only procedure able to deal with this require-
ment is the magnitude estimation procedure developed by Stevens [1975] [see also, Lubin 1995]. We
describe some experiments using a magnitude estimation technique on a variety of image pairs to
show the potential of testing on a large data set.

• Each “channel” within in a multiresolution model, determined by spatial scale, orientation, and
opponent channel, may contribute to a greater or lesser extent towards overall discrimination. How
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are these many cues combined? Do the many cues contribute equally to discrimination and might
there be complicated contingencies between them?

2. A DISCRIMINATION MODEL: BACKGROUND AND IMPLEMENTATION

Several visual discrimination models analyze pairs of images into several spatial scales and then com-
pare the filtered images, spatial scale by spatial scale. The details of the models may differ and steps
may be performed in different order. However, the models share very similar features. We will describe
the implementation of our model, pointing out some differences from others, and we will show some
of the neurophysiological (see review by Lennie and Movshon 2005) and psychophysical observations
that lead to steps in such models.

2.1 Calculating Contrast in Several Spatial Frequency Bands

It is a basic tenet of visual psychophysics and neurophysiology that the visual system is sensitive to
the contrast (relative differences in luminance) in a stimulus rather than to absolute differences in
luminance or radiance, at least at the higher ranges of mean luminance [e.g. Enroth-Cugell and Robson
1966; Shapley and Enroth-Cugell 1984; Troy and Enroth-Cugell 1993].

Thus, the first stage in any model is to calculate the contrast at each point in an image; we calculate
contrast at each of six spatial frequency scales an octave apart [Peli 1990; Tadmor and Tolhurst 1994;
Párraga et al. 2005] and at four orientations 45◦ apart. Contrast at the point (x, y) and in the frequency
band F and at orientation φ is:

CF (x, y) = aF (x, y)

lF (x, y)
(1)

where aF (x, y) is a bandpass filtered version of the original image, obtained by convolving the image
with a circularly symmetric filter with frequency response given by Eqn 2:

AF ( f ) = exp

[
− ( f − F )2

2σ 2

]
(2)

Spatial-frequency channels are further subdivided into orientation channels by multiplying by a
pie-slice filter (Eq. 3):

� (x, y) = exp

[
− φ

(b/2)

2
]

(3)

where b is the bandwidth of each orientation channel (40◦) and φ is the orientation (0, 45, 90, 135◦).
Pointer and Hess (1989, 1990) have demonstrated that contrast sensitivity varies as a function of ori-
entation, among other variables. Currently the models contrast-sensitivity function (CSF) is not varied
as a function of orientation. However, while the CSF is constant across orientation in the current im-
plementation, the neural network stage allows for the possibility of reweighting different orientations.

The linear nature of this filtering is justified by the quasilinear summation behavior of simple cells in
the visual cortex in response to sinusoidal gratings [Movshon et al. 1978a; Jones and Palmer 1987] and
to natural scene stimuli [Smyth et al. 2003]. It is, however, true, that there are a number of nonlinear
behaviors that a veridical model of visual cortex should capture [review by Carandini et al. 2005].
lF (x, y) is the result of convolving the original image with a circularly symmetric low pass operator
with frequency response given by:

LF ( f ) = exp

[
− ( f )2

2σ 2

]
(4)
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Fig. 1. (Left) Typical observer’s CSF—measures of the sensitivity for detecting the contrast of gratings. The sensitivity at a given

spatial frequency determines the location of the contrast discrimination “dipper” on the x and y axes. The template intercepts

the yaxis at a contrast difference of 1.0 and the dip is at its minimum for a reference contrast of 1.0. The calculated dipper for

a particular frequency band is estimated by multiplying both x and y axis values by the observer’s contrast threshold at that

frequency.

f is spatial frequency and σ is the spread of the Gaussian frequency-response curves, and is chosen to
be 0.3F so that the bandpass filters have a frequency bandwidth of about 1 octave and an orientation
bandwidth of about 40◦, to match estimates of psychophysical channel bandwidth and the most narrowly
tuned visual cortex neurons [citations in Introduction]. In fact, the spatial frequency tuning of individual
cortical neurons varies widely [Tolhurst and Thompson 1981] and there is a suggestion that higher
spatial-frequency channels or neurons have narrower bandwidths [Blakemore and Campbell 1969;
Tolhurst and Thompson 1981; DeValois et al. 1982; Baker et al. 1998]. Division of the bandpassed
convolution by lF (the local mean luminance) is a model of the fact that the visual system encodes
contrast rather than luminance per se [Peli 1990]; the mean luminance is calculated over an area
proportional to the period of F . In other modeling contexts [e.g., Field 1994; van Hateren and van der
Schaaf 1998; Willmore and Tolhurst 2001] contrast encoding has been modeled by taking the logarithm
of the pixel values in an image before applying linear filtering operations.

2.2 Comparing Contrast in Two Images

To model how the visual system discriminates two images, we calculate the CF (x, y) (Eq.1) for both
images at all frequency scales, and then compare the contrasts in the two images, point-by-point within
each frequency band. We calculate the absolute value of the difference in contrast between the two
pictures under comparison at each location and in each frequency band:

�CF (x, y) = |CF, J (x, y) − CF,O (x, y)| (5)

where j is the picture number of the test stimulus and j = 0 represents the reference picture. We
then, must estimate how much each value of �C might contribute toward the visibility of the difference
between the pictures. We hypothesize that visibility depends not just on �C, but that it follows Weber’s
Law: i.e., we evaluate each �C value against the familiar “dipper function” for contrast discrimina-
tion for sinusoidal gratings [Campbell and Kulikowski 1966; Nachmias and Sansbury 1974; Tolhurst
and Barfield, 1978; Legge 1981; Legge and Foley 1980; Meese, 2004; Chirimuuta and Tolhurst, 2005].
Figure 1 shows such a “dipper function”. Note that the linear, “Weber” part of the experimental dipper
function for gratings has a slope of only 0.7 on log/log axes rather than unity [Legge 1981]. Each value
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of �CF (x, y) is treated as if it is the contrast increment (�C) of a test sinusoidal grating of frequency
F to be compared with a reference grating, whose contrast is the average of the paired contrast values
in the two pictures at that location and frequency band.

C̄F, J (x, y) = 0.5|CF, J (x, y) + CF,O (x, y)| (6)

We estimated the observer’s contrast discrimination functions for achromatic gratings indirectly by
adjusting the position on the x-axis (contrast reference) and y-axis (contrast difference) of a “dipper
function” template for contrast discrimination according to the observer’s contrast detection thresholds
measured for a grating of the same spatial frequency [Párraga and Tolhurst 2000]. In fact, the dipper
template used within the model has a different form from the experimental one; the model template is
adjusted so that, on solution of the model for discriminating contrast gratings, the model’s output will
have the same form as the measured experimental data. In fact, the form of the dipper may depend
upon stimulus configuration (Meese, 2004) and the present model should be regarded as a simplifica-
tion. Previously, we determined the model dipper functions from each observer’s CSFs separately. Any
differences between observer’s abilities to discriminate between pictures would hopefully be accounted
for by differences in their CSFs [Párraga et al. 2005]. However, in this paper, we develop the model
using a single averaged CSF, as if there is a single standard observer, since we are partially interested in
the question of modeling whether a given image pair might be distinguishable by an average observer.

The strange shape of the psychophysical dipper function has been hypothesized to be because of to
a sigmoidal transducer function, relating response magnitude to stimulus contrast [Legge and Foley
1980; but see discussions by Itti et al. 2000, Chirimuuta and Tolhurst 2005]; single neurons in V1 do
have a sigmoidal response function (Tolhurst and Thompson 1981; Albrecht and Hamilton 1982). Other
models [e.g. Lubin 1995; Watson and Solomon 1997] achieve the same estimate of the likely visibility
of a small contrast difference without explicit comparison with a dipper template. Instead, the contrast
at each point in each spatial-frequency band is scaled by the observer’s threshold for that frequency. It
is then transformed through an appropriate sigmoidal transfer function and, finally, the transformed
contrasts in the two images are simply subtracted. This latter procedure has the advantage that it
allows easy inclusion of contrast normalization [Heeger 1992; Foley 1994; Watson and Solomon 1997;
Watson and Ahumada 2005], a feature that we have not yet incorporated into our modeling.

2.3 Pooling Discrimination Cues Across Location and Spatial Scale

A measure (V ) of how different two pictures might be at a single location and in a single frequency band
is given by how far the calculated �C is above or below the model’s internal dipper template. There
will be thousands of minute cues to discrimination, at the many locations, and in the several frequency
and orientations bands and opponent channels. To assess the overall discriminability of the two images
requires some algorithm for pooling these many cues. Thus, the second stage in the model is to pool the
many cues (V ) provided at different locations and different frequency and orientation bands to give an
overall assessment of whether or not the two pictures differ sufficiently for discrimination to be made.
Previously, we have used a weighted average of all the V cues, weighted across all locations and all
frequency bands, so that there is a single metric for a given pair of pictures rather than one measure
per frequency band. We use a Minkowski sum (see Eq.7) with power of four [Rohaly et al. 1997]. The
power of 4 derives from an empirical description of the amount of probability summation seen in grating
detection experiments and relates to the steepness of the psychometric function [Quick 1974; Robson
and Graham 1981]. We hypothesize that the same nonlinear weighting would apply to discrimination
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experiments for complex natural scenes. Thus, an overall cue V4 is given by:

V4 = 4

√∑
F

∑
π

∑
y

(VF (x, y))4 (7)

Later in this paper, we will consider whether the cues from the six spatial-frequency scales, from the
four orientation bands and from the three luminance/chromatic planes (see below) should be so simply
summed, or whether they should be summed unequally or combined in more complex ways.

2.4 A Color Version of the Discrimination Model

The above refers essentially to the model we have been developing to try to model human observers’
ability to discriminate between monochrome images. We now extend this to evaluation of colored images.
Since human vision is trichromatic and colored images are represented as three planes (RGB), it seems
inevitable that a color model would perform three parallel operations. The Sarnoff model [after Lubin
1995] transforms the RGB images into the CIE L*u*v* space, before performing parallel comparisons
on the two images’ L planes, on the two u* planes, and on the two v* planes. Jin et al. [1998], enhancing
the Daly [1993] model, suggest using the CIELAB transform, which first transforms the RGB planes
into LMS planes—representing the calculated responses of human L cones (“red” cones), M cones
(“green” cones), and S cones (“blue” cones). The LMS planes are then transformed to one luminance
plane and red–green and blue–yellow opponent planes, since it is believed that human vision processes
luminance and color information separately and in parallel [Mullen and Losada 1994] and that the
color information is processed in red–green and blue–yellow opponent channels [Hurvich and Jameson
1957; DeValois 1965; Wiesel and Hubel 1966]. Here we investigate a model explicitly based upon a
stylized split of human vision into independent luminance processing and opponent chromatic planes:
a luminance plane and red–green and yellow-blue color opponent planes.

The colored images (in a conventional RGB format) are first transformed in order to calculate how
the three cone types of human vision (L, M, and S) would respond to the images. This calculation
required that we did a spectroradiometric analysis of the wavelength emission of the three (RGB)
phosphors of our CRT display used in the experiments and knowledge of the spectral activations of the
three cone types [Smith and Pokorny 1975]. The opponent channel values are computed using Macleod
and Boynton’s [1979] color space, where the channel definitions are as follows: luminance is L + M,
red–green is L/Luminance, and blue–yellow is S/Luminance.

Our proposed three channels reflect the psychophysical observations that luminance information in
simple grating stimuli seems to be processed independently of isoluminant red–green or blue–yellow
information [Mullen and Losada 1994; Mullen and Sankeralli 1999]. The early stages of the monkey’s
visual system do not show such a neat split into three separate channels; individual neurons respond
to both luminance and to isoluminant chromatic stimuli to varying degrees [DeMonasterio et al. 1975;
Derrington et al. 1984; Lennie et al. 1990; Conway 2001; Johnson et al. 2001].

Thus, we run the image discrimination model three times on each pair of colored images. First, we
obtain an estimate of the overall discrimination variable V4 for the luminance plane of the images. We
then obtain estimates of V4 for the red–green and yellow–blue planes. Note that the CSF’s for the color-
opponent planes are of a different form from that for the luminance plane [Mullen 1985; Mullen and
Kingdom 2002]. Measurement of isoluminant thresholds poses many technical challenges including
compensation for the effects of chromatic aberrations (Mullen, 1985); however, good estimates of the
relative sensitivities of the red–green, blue–yellow and luminance systems can be obtained with stimuli
presented on regular CRT monitors (Mullen and Kingdom 2002). As our stimuli were presented on CRT
monitors, our model employs the latter estimates of chromatic contrast sensitivity. However, the color
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Fig. 2. Examples of morphed images. A lemon (top left) is gradually morphed into a pepper (bottom right).

opponent psychophysical system contains similar 1 octave-wide spatial-frequency channels [Mullen
and Losada 1999]. The way in which we should combine the cues from the luminance and chromatic
channels is one topic of this paper.

3. DETERMINING OBSERVER SENSITIVITIES TO NEAR-THRESHOLD AND SUPRATHRESHOLD
CHANGES IN NATURAL IMAGES

In order to examine how well the current model predicts performance, we conducted two independent
studies that examined how well observers could discriminate differences between pairs of natural
images. One experiment concentrated upon establishing discrimination thresholds, where differences
between images were relatively subtle. Another experiment examined observer ratings of differences,
where the changes between image pairs could be relatively large. The acquisition of two disparate
datasets allows us to examine the performance of the model under near-threshold and suprathreshold
conditions.

3.1 Examining Thresholds for Image Differences in a Morph Sequence

The purpose of this experiment was to obtain a large set of image-discrimination data on which the
model could be optimized. In order to achieve this, two sets of images were produced. The first set was
of a red pepper morphing gradually into a yellow lemon, all on the same background of leaves with
dappled illumination. The morph from one fruit to the other was conducted in 40 steps, so that there
were 41 images in a sequence. Figure 2 shows typical basic stimuli (only 9 of the 40 steps are shown).
In an experiment, a computer-controlled procedure would determine how much morphing (in %) was
needed for an observer to discriminate the initial pepper image from a morphed image.

In fact, the morphed image set was subjected to various filtering operations so that, in all, we obtained
49 different stimulus sequences. The 41 images in the sequence were split into their L, M, and S
representations (see above), and then into the three planes of luminance, red–green, and blue–yellow
opponent. These three transformed images were Fourier transformed and their amplitude spectra were
filtered to either blur or sharpen (edge-enhance or whiten) them. The Fourier spectra were multiplied
by a filter of the form:

weight( f ) = f −α (8)
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Fig. 3. Examples of a manipulated image. Here a lemon (central image) is either blurred or sharpened separately in the chromatic

or luminance channel. The top-right image has been blurred in the luminance and both chromatic planes; the lower-left image

has been sharpened in all three planes.

where f is spatial frequency and α is a slope parameter. Positive values of α (+ 0.4, + 0.8, and + 1.2)
give different degrees of blurring and a reduction in high spatial frequencies; negative values (−0.4,
−0.8, and −1.2) give different degrees of sharpening and a relative increase in the amount of high spa-
tial frequencies; a zero value leaves the images in their original unfiltered forms. The filtered spectra
were inverse-transformed back to give modified luminance and modified color-opponent planes. The
luminance plane was filtered in seven different ways—from extreme sharpening to extreme blurring.
Similarly, the two color-opponent planes were filtered in seven different ways (in fact, we always per-
formed the same operation on the red–green and blue–yellow planes, so that they can be considered as a
single “color” plane). These filtering operations were performed in all combinations to give 49 different
sets (including one set, which actually had been unfiltered). The modified planes were reverse trans-
formed to calculate the L, M, and S cone values implied; these values were then reverse-transformed
to give the RGB values needed to display the desired images on a CRT. Figure 3 shows 9 exemplary
images out of our set of 49.

Since these images were derived from pictures of a red pepper and a yellow lemon, the morph se-
quences resulted in images that changed primarily in luminance or in the red–green opponent plane. To
make a sequence with color variations predominantly along the other color axis (blue–yellow opponent
channel), we produced a second set of experimental stimuli by exchanging the “R” and “B” planes in the
parent image of the red pepper, and morphing this with the uncorrupted yellow lemon, while keeping
the rest of the parameters the same (the background was the same as before). Furthermore, the order
of the morph sequence was reversed, so observers judged differences from the pepper, rather than from
the lemon. The resulting morph sequence shows a “bluish pepper” transforming into a yellow lemon
on a “normal” leafy background. Based on these images, we made a second series of image sets (49
combinations of luminance and color filtering, as described before).

3.2 Experimental Methods

Thresholds were measured for several observers for the 49 different filtering combinations of the original
morph sequence and for the 49 different combinations of the “bluish pepper” morph sequence. The
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images were presented on a CRT with overall size 36.5 × 27.4 cm viewed from 200 cm. The individual
images were presented one at a time in the centre of the screen; the images measured 11.2 cm square
(i.e., 3.2◦ of visual angle square) and the remaining parts of the screen were held a uniform gray (5.64
cd.m2). The stimuli were presented with a VSG 2/5 graphics card with pseudo 15-bit output; this allowed
compensation for the nonlinear “gamma” of the CRT display. Two alternative forced-choice techniques
determined, for each of the 49 conditions, how much a filtered stimulus needed to be morphed in
order for reliable discrimination (75% correct) from the parent pepper image [Párraga et al. 2005].
In a single trial, there were three time intervals of 0.5 s each. The observers were free to look at
whichever part of the image they wished and were free to make eye movements within the 0.5-s image
presentations. The middle interval was always known by the observer to contain a parent image. The
first or third interval (chosen randomly by computer) would also contain that same image, but the third
or first interval (respectively) would contain the morphed image. The observer’s task was to inform the
computer whether the first or third interval contained the different image. If the observer chose the
wrong interval too frequently, the task was made easier by choosing a morphed image more different
than the parent; if the observer chose the correct interval too frequently, the task was made harder.
Thus, during an experiment, the “staircase” converged on that percentage morph that the observer
could correctly identify approximately 75% of the time. The red–green morph sequences were from
lemon to pepper, but the blue–yellow sequences were from bluish pepper to lemon.

After 100 to 200 such trials for each of the 49 conditions of each of the two morph sequences, it
was possible to construct psychometric functions for each condition and for each observer separately. A
sigmoidal psychophysical function was fitted to the experimental data using psignifit [Wichmann and
Hill 2001] and threshold or just-noticeable difference (JND) was (arbitrarily) taken by interpolation
as the magnitude of morph step that would lead to the observer correctly choosing on 75% of trials.
The proportion correct value predicted by the fitted psychometric functions, for each step in the morph
sequence were retained; these values were subsequently used in the training or tuning of models
discussed in Sections 4.1 and 4.2.

3.3 Discrimination Threshold Results

Figure 4 summarizes the discrimination thresholds for the two morph series. Thresholds for observers
KB and CAP were highly correlated. For red–green morphs, the correlation coefficient was 0.74, while
for blue–yellow thresholds the correlation was 0.66. Figure 4 left) shows the averaged thresholds for
discriminating the various forms of the red pepper to yellow lemon sequence. The thresholds for the 49
conditions are similar, mostly around 11% morph with standard error of about 0.2% morph. Interest-
ingly, the poorest observer performance was for highly sharpened chrominance (α = −1.2) and highly
blurred luminance pictures (α = +1.2) (top-left corner of the plot). Observers were relatively poor at
discriminating changes in the image when the color information had been sharpened or edge-enhanced,
while the luminance information was blurred. This seems consistent with the finding [Mullen 1985]
that the human visual system favors low spatial-frequency color information (i.e., not sharpened) and
high spatial-frequency luminance information (i.e., not blurred).

Figure 4 (right) shows a similar plot of the averaged thresholds for discriminating changes in the
bluish pepper to yellow-lemon sequences. The threshold surface has a different form, with observer per-
formance worsening for images with their chromatic information blurred (right side of plot).
Figure 4 (right) shows a similar plot of the averaged thresholds for discriminating changes in the
bluish pepper to yellow lemon sequences. The threshold surface has a different form, with observer
performance worsening for images with their chromatic information blurred (right side of plot). It is,
at first, surprising that the forms of the R-G and B-Y morph surfaces are different, since the CSFs re-
ported by Mullen (1985) for isoluminant R-G and B-Y gratings are rather similar. Our results indicate

ACM Transactions on Applied Perception, Vol. 3, No. 3, July 2006.



164 • P. G. Lovell et al.

Fig. 4. Surface plots to show the 49 averaged thresholds or JNDs for the variously blurred or sharpened versions of the morph

sequences. (Left) Red–green morph series; (right) blue–yellow morph series. Note the difference in the y-axis scales: left is from

10 to 17; right is from 2 to 14.

that perhaps the effective CSFs are not identical. We have not accounted for chromatic aberration in
the human eyeball, which is likely to be greater for the BY then the RG images because of the greater
wavelength difference in the former compared to the latter. Such imperfections in stimulus display
(coupled with the fact that we have only eight-bit resolution on our graphics system) would be likely
to generate high spatial-frequency luminance artifacts when isoluminant images are presented (Forte
et al. 2006). Therefore, the effective CSFs of the isoluminant channels may not have the assumed shape.
Interestingly, the thresholds are generally much lower (approximately 5% morph, standard error equal
to 0.2% morph) than for the red pepper sequences.

4. OBTAINING RATINGS OF SUPRATHRESHOLD IMAGE DIFFERENCES

In common with many other studies, we have previously developed and tested our modeling on a
relatively small set of psychophysical stimuli. Even seemingly small change in stimulus presentation
conditions may require the parameters of such a model to be changed [e.g., Párraga et al. 2005]. It is
important, therefore, to validate a model on as wide a variety of different tasks and stimuli as possible
[see e.g., Lubin 1995]. The threshold discrimination task that we described above (Section 3) does not
lend itself to generating the required large amount of psychophysical data:

1. The 2-AFC staircase procedure is time consuming. We can collect only four to five threshold values
in a 30-min session.

2. The nature of the staircase requires that we have to use stimuli which can be graded stepwise
between two end points, thus limiting the choice of avoidable natural-scene-based stimuli. The syn-
thesis of such image sequences is time consuming and limited to image pairs in which corresponding
points can be identified.

3. The procedure described above deals only with “threshold” perceptual differences between images.
We are also interested in how well a model fares in predicting how great a perceptual difference is
evoked by an image pair, where the differences are clearly visible and above threshold.

For these reasons, we have been developing a rating procedure [Stevens 1975; Lubin 1995] to obtain
measures of the perceptual differences between large numbers of varied image pairs. The observer is

ACM Transactions on Applied Perception, Vol. 3, No. 3, July 2006.



Evaluation of a Multiscale Color Model for Visual Difference Prediction • 165

presented with a pair of similar natural scene-based images and is asked to provide a numerical rating
as to how different the images appear to be. We describe some preliminary observations to show the
potential of this technique.

4.1 Rating Scale Methodology

Two observers (naı̈ve to the purpose of the experiments) were presented with 102 pairs of images that
were derived from a great variety of digitized photographs of natural scenes—taken with calibrated
[Lovell et al. 2005] Nikon 950 or Nikon 5700 still cameras or a JVC digital camcorder. The photographs
were loosely grouped into six categories (animals, landscapes, object or “still lifes”, people, plants).
Within each category, we chose 17 “parent images.” For each parent, we chose or synthesized a related
image. This might be a second photograph of the scene or a later frame in the JVC video stream after
some natural change in the scene (about 1/3 of the image pairs). We could also change the saturation
or hue of all or parts of an image or we could blur or brighten all or part of an image. We could also cut
and paste features or objects between images. Figures 5A and B show two examples where we made
one such change between the images. Figures 5C and D show examples where we made two or more
changes. In fact, in 20 of the pairs, the images were identical; these pairs enable us to estimate bias in
observer ratings.

In an experimental trial, the observer first viewed the CRT which was held at a uniform mid gray; in
the center of the display was a small dark spot and the observer was asked to fixate upon that spot and
not to move their gaze during the image presentations (unlike in our earlier experiments). Thus they
focused their attention on the center of each image, which measured 3.2◦ square. One image of a pair
was presented for 1 s. The screen then went mid-gray, with the dark spot for 0.25 s. The other image of
the pair was presented for 1 s, which was again followed by a 0.25-s interval when the dark spot was
presented. Last, the first image was presented again for 1 s. The observer was then asked to make a
numerical rating and indicate that number to the control computer.

Before the experiment proper, the observer became acquainted with the technique and learned to
make consistent rating judgments using presentations of a different set of images. Frequently, within
the training set and within the experiment proper, the observer was shown the image pair of Figure 5A
(this was called the “standard”) and the observer was instructed to rate all other image pairs with
reference to that image. The standard or any other image pair that seemed equally distinct should be
given a rating of “20”. Any other image pair should be given a higher or lower rating, whose magnitude
depended upon how much more or less different the stimuli seemed than the standard. Each observer
ran three sessions, so that the rating values we present are the means of three ratings. In the three
sessions, the same 102 image pairs were presented, but in a different random order.

4.2 Results

Figure 6 plots the rating results of the two observers against each other. Each point represents the
average of the three ratings given by one observer to a given image pair against the average of the
three ratings given by the other observer to the same image pair. There is a good overall correlation
between the two observers’ ratings (r = 0.864; n = 102). However, it is clear that the two observers
have adopted different strategies for rating images, especially for those image pairs where there was,
in fact, no difference. Observer 2 has given very low scores to these (mostly zero, rarely above 2) while
observer 1 has given a range of values up to about 8. Nevertheless, the good overall correlation shows
that the two observers were generally rating in the same way, so that these data can be used to examine
how the V1 model copes with suprathreshold data. For the analyses (below) we average together the
two observers’ ratings.
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Fig. 6. Correlations between observer 1 and observer 2 for image difference ratings.

5. EXAMINING MODEL PERFORMANCE

Previous implementations of our color model (Tolhurst et al. 2005) combined the weighted fourthe power
outputs of the opponent channels. In the current implementation, we investigate whether additional
weightings of spatial-frequency and orientation channels might improve the models performance as a
predictor of human ratings and thresholds.

In order to test whether there might be a more powerful method for combining the fourth power (V4)
outputs of the model, we examined whether a neural-network stage, that was trained to predict the
thresholds and ratings of observers, would give better performance than the current opponent channel
weighted output stage. A model-selection procedure was adopted, where all potential weightings of
opponent channel, orientation, and spatial frequency where tested. The most complex model may apply
a different weight to each combination of opponent channel (3), orientation (4), and spatial frequency (6)
differently, resulting in 73 weights (3*4*6 + bias). The simplest model would weight all model outputs
equally, i.e., it would have only a single weight (+bias). An output of the existing model forms the
input to the neural-network stage. Each model output was based upon the Minkowski sum (V4) of all
differences in the particular opponent channel, spatial frequency, and orientation (depending upon the
model criteria under examination).

We implemented a variety of neural networks, each trained to associate the output of the model with
the responses of our observers. Where an individual neural network results in more reliable predictions
of observer performance, then this might indicate areas where the basic V1 model may be improved.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 5. Four examples of image pairs used in the rating scale experiment. (A) A pair of images in which the color saturation

of the entire image has been changed. This pair was the “reference standard” in the experiment; observers had to learn that

this amount of perceptual difference merited a rating of “20.” (B) The image of a cow from one photograph has been removed

from another similar image. (C) Two changes have been made. The color of part of the image has been changed and the spatial

organization of that object has changed. (D) There two changes were made there are two slightly different images of the same

scene, one image is blurred.
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The model-selection technique has been used successfully in other areas of vision research, for example,
motion perception [Baddeley and Tripathy 1998].

However, it is a relatively straightforward, but fruitless, pursuit to attempt to optimize the perfor-
mance of the model by adding additional free parameters without ensuring that the improvements
achieved generalize to predictions of novel image difference ratings and thresholds. It is easy to have
a network over-learn, so that it is excellent at discriminating the training set, but poor at dealing with
a novel data set. Thus, two forms of cross-validation are undertaken here; first, model weights are
established by training on the morph sequence results and cross-validating on rating stimuli (and vice
versa). Furthermore, rating stimuli image-pairs are split into six subgroups (animals, landscapes, gar-
den scenes, object or “still lifes,” people and plants), enabling a six-fold cross-validation where training
is undertaken with the image-pairs from five groups and generalization is measured with the remain-
ing group. Improved performance on the training sets with poor cross-validation would suggest that
the neural network had merely overfitted the characteristics of the training data.

The number of hidden units within the neural network was also varied; networks either featured
no hidden layer, or featured one to three hidden units. All networks were fully-connected, i.e., every
unit was connected by a weighted value to all other units in the subsequent layer. Bias units were also
present and these where connected to both hidden layers (where present) and to the single output unit;
Figure 7 illustrates the architecture of network implemented.

Where neural networks were trained to predict morph-sequence performance, training data were the
predicted psychophysical function values, but only where the predicted values fell below the asymptote
(<0.95%). For rating-trained networks, the average rating value for the two observers were used as
training data. Hidden units, where present, utilized the Matlab tansig function and output units were
linear.

In order to maximize the likelihood that the global minimum was discovered for each network, a
two-stage training procedure was followed. For each type of network architecture, 200 networks were
created each with randomized initial weights. Initial training using the scaled conjugate gradient back-
propagation learning algorithm, limited the number of training epochs to the total number of weights
present within a particular network. In a second stage of training, the 25 networks with the smallest
mean squared error were selected and trained for a further 200 epochs with the BFGS quasi-Newton
back-propagation algorithm. Finally, for each network architecture, the network with the lowest mean
squared error was retained.

Where models were trained with rating data, a six-fold cross-validation procedure was followed (as
explained above). Consequently, six models were created for each architecture. Figure 8 shows the
internal rating cross-validation results. These values represent the mean correlation between the model
and observer for each of the six cross-validation groups. Following the six-fold cross-validation process,
an average model was generated by calculating the mean of the corresponding weights in the six
networks. The results presented in Figure 8 are based upon the performance of the average model,
except for the internal cross-validation values.

For human observers, the JNDs for each morph sequence were established using a psychophysical
staircase procedure. A single threshold value was defined in order to establish equivalent JNDs for
the neural-network outputs. Model outputs for each morph sequence were interpolated using a simple
spline (Matlab). The point where the interpolated output exceeded the threshold value was taken as the
model’s JND. The threshold was determined using a least-squares fit for model and averaged observer
JNDs. Separate thresholds were established for each neural-network model. Where model outputs are
highly nonmonotonic, thresholds could be established incorrectly, because of there being more than one
zero-crossing. Consequently, two thresholds were established by locating the first and last zero-crossing
in each fitted spline. Where correlations between observer and model performance differed, depending
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Fig. 7. Schematic diagram of neural network architecture. The diagram illustrates a neural network with three inputs and

two hidden units. Where three inputs were present, each input node received the overall activation (Eq. 6) across all spatial

frequencies for each opponent channel. The inset plots (top left) depict the transfer functions used within the hidden-layer and

output-layer nodes. The bottom row of plots illustrate the spatial-frequency channels used, the peaks of which were at 24, 12, 6,

3, 1.5, and 0.75 cycles per degree.

upon the choice of direction through morph sequence, the lower correlation was reported. This only
occurs in the most complex morph-trained models.

5.1 Results

Correlations between the observer responses and the model outputs rose as a function of the number
of hidden units present within the neural network. However, cross-validation performance was poor
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Fig. 8. Correlations between the model predictions and human observer results obtained from morph-thresholds and rating

data. Models were ranked in order of cross-validation performance (mean morph RG/BY correlations) and are presented in this

order. Cross-validation performance improves as a function of model simplicity, those models featuring the fewest free-weights

give rise to the best cross-validation performance. The lower panel of the figure shows how the output of the V1 model was divided

into separate neural-network inputs.

in all networks featuring a hidden-layer. As a consequence, only models without a hidden layer are
considered below. Figures 8 and 9 show the training and cross-validation performance for models trained
with ratings (Figure 8) and with morph thresholds (Figure 9). In both cases, performance for trained
datasets is better in the more complex models; conversely, cross-validation performance improves as
models become less complex and, thereby, feature fewer weights. The least complex model in both figures
is represented as the rightmost set of symbols; the most complex models are represented toward the
left of the plots.

For the rating-trained models the cross-validation results for rating images (Rating internal cross-
validation) are informative. Correlations for cross-validation image-pair ratings are almost as high as
they are for the trained image pairs, apart from the two most complex models; clearly these complex
models have overfitted the training data at the cost of performance on the cross-validation data. Cross-
validation on morph thresholds improves as models are simplified, i.e., they have fewer free weights.
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Fig. 9. Correlations of thresholds and image difference ratings for models and human observers. Models were ranked in order

of cross-validation performance (image difference ratings) and are presented in this order. As with the rating-trained models,

cross-validation performance improves as a function of model simplicity. The lower panel of the figure shows how the output of

the V1 model was divided into separate neural-network inputs.

For the rating-trained models, there was a consistent inverse relationship between performance on
image difference ratings (training set) and performance predicting morph thresholds. In the case of the
morph-trained models, this relationship is less consistent. The more sophisticated models (the three
leftmost plots in Figure 9) also show relatively impaired performance in their predictions of morph
thresholds and ratings. This is because of a nonlinear relationship between the output of the model and
the distance along the morph sequence. Models were only trained with morph imagepairs that were
near thresholds. Consequently, the more complex models overfit these images and do not generalize to
image pairs further along in the morph sequence. Thresholds identified in these models are unreliable,
leading to the lower correlations between observer and model thresholds.

Figure 10 shows observer discrimination thresholds for the morphed fruit stimuli and selected model
predictions of these thresholds. Models were selected according to their overall performance on the train-
ing and cross-validation sets. For rating-trained models, the most simple model of all provided the best
overall performance levels (Figures 10C and F), in this model all channels where equally weighted.
For the morph-trained models, some improvement was demonstrated, i.e., some training improve-
ment without significant cross-validation losses when opponent channels where differentially weighted
(Figures 10B and E).
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Fig. 10. (A,D) Averaged observer thresholds for morph-sequences with varying blur and sharpening in the luminance and

chromatic channels. (B,E) Model predictions of morph thresholds, where the model was allowed to weight the three opponent

channels separately. (C,F) Model predictions of morph thresholds where all model outputs are weighted equally.

The model predictions capture something of the gross form of these surfaces; the average correlation is
greater than 0.4. However, the forms are somewhat exaggerated. For blue–yellow morphs, the increased
threshold, where chromatic image content is blurred is present, but the predicted thresholds are too
high. While the increased threshold for red–green morphs that have been sharpened in the chromatic
channels and blurred in the luminance channel are present, but, once again, these are exaggerated.
We have already speculated about the possible sources of discrepancies between ideal CSF chromatic
channels and real data and about the possible differences between RG and YB chromatic planes. How-
ever, it should be noted that the models have correctly predicted that the observers’ threshold for the
blue–yellow stimuli are substantially lower than those for the red–green stimuli.

Figure 11 shows a scatter plot of the observer ratings of image pairs against the least sophisticated
model’s prediction of these ratings, this model’s performance is shown in the right-most data points
of Figure 8 (this model was rating-trained, although this factor would have no influence on the rating
correlation as all channels within the V1 stage were equally weighted). The overall correlation is good
(r = 0.87; n = 102), although there seem to be some outliers. These seem to fall into a number of
categories. Where the model is predicting a higher rating than the one actually measured, the change
in the image is often diffuse (circular symbols), e.g., a chromatic or textural change across the whole
image. Other changes to which the model is oversensitive include those where an object has moved
slightly within a scene (diamond). There are fewer cases where the model predicts a rating that is far
lower than those measured in observers. An example is object appearances (triangle “C”). Figure 12
shows examples of these outliers.
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Fig. 11. A plot of the output of the best cross-validated neural-network model against the subjective magnitude ratings of two

observers (different symbols) for 82 very different image pairs. “Diffuse change” includes variations in illumination through

time-lapse, blurring, hue changes to the whole image, and texture changes through wave movement, etc.

6. CONCLUSIONS

We have examined a V1-inspired model of visual discriminations for colored natural scene stimuli. Fig-
ures 8, 9, and 10 summarize this part of the modeling. The left-most column of Figure 10 shows surface
plots of the 49 averaged JND values measured in the experiments on the red pepper to yellow lemon
morph sequences for two observers. The middle and right-hand plots shows the thresholds predicted
by the two of the more successful models.

Figure 10A shows the two observers’ threshold surface plots for the bluish pepper to yellow lemon
morphs; Figures 10C and F show the surfaces predicted by the V1 model, with all channels weighted
equally. The two model surfaces show many of the features of the actual experimental results: the
gross difference in threshold between the red pepper (above) and blue pepper (below) and some hint of
threshold elevations in the corners or edges of the plots.

Patterns of cross-validation performance reveal that training on thresholds for a relatively few image-
pairs (morphs) may lead to overspecialization in the model, which precludes successful generalization
to novel image-pairs. Note that cross-validation to image ratings from morphs is relatively poor where
training is undertaken with image-morph thresholds and complex models (Figure 9). It is interesting
that the neural-network modeling produced little improvement in this final cross-validation, imply-
ing that the rules for combining discrimination cues in such models might be thankfully simple. How-
ever, although our version of the V1 family of models explains some of the variance in the rating scale
data, it is still certainly true that there is much variance that remains unexplained. Obviously, some
variance will be caused by the observers giving slightly inconsistent ratings when they are presented
with one image pair more than once, but we should consider other more important reasons why our
present model is only partially successful.
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Fig. 12. Examples of outliers in the scatter-plot presented in Figure 11. (A) diffuse change (B) object movement (C) object

disappearance.

1. Two observers provided the morph discrimination thresholds from which the model parameters
were developed. Their thresholds were different in detail; furthermore, their sensitivities to sinu-
soidal gratings (one input to the model) were different. Such differences might lead to different
image discrimination thresholds and model predictions (see data and modeling for the same two
observers in Párraga et al. 2005). Here, we have used an average CSF to develop the model, as if
there was a single standard observer. The rating scale data were obtained for two other observers,
who quite likely had different CSFs again. If we had to model one single observer’s data with that
observer’s own idiosyncratic CSF, we would expect to obtain better fits. However, if a visual dif-
ferences predictor model is to have any widespread practical applications, it must probably relate
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to a typical observer rather than to specific ones. In the future, it will be necessary to investigate
interobserver differences in order to gauge the range of perceptual differences that may apply to a
population of people.

2. The model may not be a perfect fit, because it does not follow the true behavior of V1 neurons
carefully enough. Unlike some other models [Lubin 1995; Watson and Solomon 1997], ours does
not yet include “contrast normalization” or “nonspecific suppression” [Heeger 1992], which is an
obvious feature of V1 response behavior. There are, in fact, a variety of other nonlinear behaviors
[see Carandini et al. 2005 for review] which ought to be considered, most particularly “surround
suppression” [Blakemore and Tobin 1972] where stimuli spatially remote from a neuron’s receptive
field may nonlinearly suppress its responses to its preferred stimuli. Meese (2004) has shown that
this phenomenon too needs to be accounted for in explaining some psychophysical results with
grating stimuli.

3. It is well known that a person’s sensitivity to simple stimuli falls off steadily the further the stimuli
are from the center of gaze (the fovea) [e.g., Robson and Graham 1981]. We have not modeled
such visual-field inhomogeneity and, we suspect from other work [Ripamonti et al. 2005], that,
for natural-scene stimuli, the decrease in sensitivity is particularly rapid. It is possible that an
observer’s attention to detecting differences in natural scenes is highly focused on the point where
they are presently looking; in the rating experiments, we obliged the observers to look only at the
centers of the pictures.

4. There is a more interesting possibility: that V1-based models, however accurately they may rep-
resent V1 physiology, may simply not be the complete descriptor of human perceptual differences.
There may be some visual discriminations, for instance, that the V1 model might predict are rela-
tively easy, while a human observer finds them especially difficult. For instance, the “neurons” in
our V1 model have precisely defined receptive-field locations. For instance, the model will respond to
small translations of objects or to changes in the detailed organization of textures, such as pebbles
or leaves on the ground. It is likely that a human would find it difficult to detect such changes in a
pair of images.

Finally, in a natural-viewing situation rather than the rather contrived psychophysical procedures
used here, people scan both images and try to spot the differences, as in a comic-book “spot the differ-
ence” task. This is notoriously hard, since it presupposes a pictorial memory that persists across eye
movements. Yet, change blindness experiments suggest that there are severe restrictions on encoding
and memory in these situations [see Simons and Rensink 2005].

However, given the caveats above, a simple V1 model of pictorial discrimination (now with color)
emerges reasonably well from being tested on threshold and suprathreshold image differences, using
real, albeit static images, and using both staircase (to determine threshold) and rating procedures
(to determine suprathreshold differences). Therefore, one might be cautiously optimistic that further
refinements to such models are warranted and that we may be beginning to be able to predict to what
extent two images will appear different to a human observer.
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