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Abstract. An essential functionality for advanced driver assistance sys-
tems (ADAS) is road segmentation, which directly supports ADAS ap-
plications like road departure warning and is an invaluable background
segmentation stage for other functionalities as vehicle detection. Unfor-
tunately, road segmentation is far from being trivial since the road is
in an outdoor scenario imaged from a mobile platform. For instance,
shadows are a relevant problem for segmentation. The usual approaches
are ad hoc mechanisms, applied after an initial segmentation step, that
try to recover road patches not included as segmented road for being in
shadow. In this paper we argue that by using a different feature space to
perform the segmentation we can minimize the problem of shadows from
the very beginning. Rather than the usual segmentation in a color space
we propose segmentation in a shadowless image which is computable in
real–time using a color camera. The paper presents comparative results
for both asphalted and non–asphalted roads, showing the benefits of the
proposal in presence of shadows and vehicles.

1 Introduction

Advanced driver assistance systems (ADAS) arise as a contribution to traffic
safety, a major social issue in modern countries. The functionalities required to
build such systems can be addressed by computer vision techniques, which have
many advantages over using active sensors (e.g. radar, lidar). Some of them are:
higher resolution, richness of features (color, texture), low cost, easy aesthetic
integration, non–intrusive nature, low power consumption, and besides, some
functionalities can only be addressed by interpreting visual information. A rele-
vant functionality is road segmentation which supports ADAS applications like
road departure warning. Moreover, it is an invaluable background segmentation
stage for other functionalities as vehicle and pedestrian detection, since knowing
the road surface considerably reduces the image region to search for such objects,
thus, allowing real–time and reducing false detections.

Our interest is real–time segmentation of road surfaces, both non–asphalted
and asphalted, using a single forward facing color camera placed at the wind-
shield of a vehicle. However, road segmentation is far from being trivial since the
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Fig. 1. Roads with shadows

road is in an outdoor scenario imaged from a mobile platform. Hence, we deal
with a continuously changing background, the presence of different vehicles of un-
known movement, different road shapes with worn–out asphalt (or not asphalted
at all), and different illumination conditions. For instance, a particularly rele-
vant problem is the presence of shadows (Fig. 1). The usual approaches found
in the literature are ad hoc mechanisms applied after an initial segmentation
step (e.g. [1,2,3]). These mechanisms try to recover road patches not included as
segmented road for being in shadow. In this paper we argue that by using a dif-
ferent feature space to perform the segmentation we can minimize the problem of
shadows from the very beginning. Rather than the usual segmentation in a color
space, we propose segmentation in a shadowless image, which is computable in
real–time using a color camera. In particular, we use the grey–scale illuminant
invariant image introduced in [4], I from now on.

In Sect. 2 we summarize the formulation of I. Moreover, we also show that
automatic shutter, needed outdoors to avoid global over/under–exposure, fits
well in such formulation. In order to illustrate the usefulness of I, in Sect. 3 we
propose a segmentation algorithm based on standard region growing applied to
I. We remark that we do not recover a shadow–free color image from the orig-
inal, which would result in too large processing time for the road segmentation
problem. Section 4 presents comparative road segmentation results in presence
of shadows and vehicles, both in asphalted and non–asphalted roads, confirming
the validity of our hypothesis. Finally, conclusions are drawn in Sect. 5.

2 Illuminant Invariant Image

Image formation models are defined in terms of the interaction between the
spectral power distribution of illumination, surface reflectance and spectral sen-
sitivity of the imaging sensors. Finlayson et al. [4] show that under the assump-
tions of Planckian illumination, Lambertian surfaces and having three different
narrow band sensors, it is possible to obtain a shadow–free color image. We are
not interested in such image since it requires very large processing time to be
recovered. We focus on an illuminant invariant image (I) that is obtained at the
first stage of the shadow–free color image recovering process. We briefly expose
here the idea behind I and refer to [4] for details.
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Fig. 2. Ideal log–log chromaticity plot. A Lambertian surface patch of a given chro-
maticity under a Planckian illumination is represented by a point. By changing the
color temperature of the Planckian illuminator we obtain a straight line associated to
the patch. Lambertian surface patches of different chromaticity have different associ-
ated lines. All these lines form a family of parallel lines, namely Ψθ . Let �θ be a line
perpendicular to Ψθ and θ the angle between �θ and the horizontal axis. Then, by pro-
jection, we have a one–to–one correspondence between points in �θ and straight lines of
Ψθ, so that �θ preserves the differences regarding chromaticity but removes differences
due to illumination changes assuming Planckian radiators.

Let us denote by R, G, B the usual color channels and assume a normalizing
channel (or combination of channels), e.g. without losing generality let us choose
G as such normalizing channel. Then, under the assumptions regarding the sen-
sors, the surfaces and the illuminators, if we perform a plot of r = log(R/G)
vs. b = log(B/G) for a set of surfaces of different chromaticity under different
illuminants, we would obtain a result similar to the one in Fig. 2. This means
that we obtain an axis, �θ, where a surface under different illuminations is rep-
resented by the same point, while moving along �θ implies to change the surface
chromaticity. In other words, �θ can be seen as a grey–level axis where each grey
level corresponds to a surface chromaticity, independently of the surface illu-
mination. Therefore, we obtain an illuminant invariant image, I(p), by taking
each pixel p = (x, y) of the original color image, IRGB(p) = (R(p), G(p), B(p)),
computing p′ = (r(p), b(p)) and projecting p′ onto �θ according to θ (a camera
dependent constant angle). The reason for I being shadow–free is, roughly, that
non–shadow surface areas are illuminated by both direct sunlight and skylight
(a sort of scattered ambient light), while areas in the umbra are only illuminated
by skylight. Since both, skylight alone and with sunlight addition, can be consid-
ered Planckian illuminations [5], areas of the same chromaticity ideally project
onto the same point in �θ, no matter if the areas are in shadow or not.

Given this result, the first question is whether the working assumptions are
realistic or not. In fact, Finlayson et al. [4] show examples where, despite the
departures from the assumptions that are found in practice, the obtained re-
sults are quite good. We will see in Sect. 4 that this holds in our case, i.e., the
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combination of our camera, the daylight illuminant and the surface we are
interested in (the road) fits pretty well the I theory.

A detail to point out is that our acquisition system was operating in auto-
matic shutter mode: i.e., inside predefined ranges, the shutter changes to avoid
both global overexposure and underexposure. However, provided we are us-
ing sensors with linear response and the same shutter for the three channels,
we can model the shutter action as a multiplicative constant s, i.e., we have
sIRGB = (sR, sG, sB) and, therefore, the channel normalization removes the
constant (e.g. sR/sG = R/G).

In addition, we expect the illumination invariant image to reduce not only
differences due to shadow but also differences due to asphalt degradation since,
at the resolution we work, they are pretty analogous to just intensity changes.
Note that the whole intensity axis is equivalent to a single chromaticity, i.e., all
the patches of the last row of the Macbeth color checker in Fig. 2 (Ni) project
to the same point of �θ.

3 Road Segmentation

With the aim of evaluating the suitability of the illuminant invariant image we
have devised a relatively simple segmentation method based on region growing
[6], sketched in Fig. 3. This is, we do not claim that the proposed segmentation
is the best, but one of the most simplest that can be expected to work in our
problem. We emphasize that our aim is to show the suitability of I for road
segmentation and we think that providing good results can be a proof of it, even
using such simple segmentation approach.

The region growing uses a very simple aggregation criterium: if p = (x, y)
is a pixel already classified as of the road, any other pixel pn = (xn, yn) of its
8–connected neighborhood is classified as road one if

diss(p,pn) < tagg , (1)

where diss(p,pn) is the dissimilarity metric for the aggregation and tagg a
threshold that fixes the maximum dissimilarity to consider two connected pixels
as of the same region. To prove the usefulness of I we use the simplest dissimi-
larity based on grey levels, i.e.,

dissI(p,pn) = |I(p) − I(pn)| . (2)

Of course, region growing needs initialization, i.e., the so–called seeds. Cur-
rently, such seeds are taken from fixed positions at the bottom region of the
image (Fig. 3), i.e., we assume that such region is part of the road. In fact, the
lowest row of the image corresponds to a distance of about 4 meters away from
the vehicle, thus, it is a reasonable assumption most of the time (other proposals
require to see the full road free at the start up of the system, e.g. [1]).

In order to compute the angle θ corresponding to our camera, we have fol-
lowed two approaches. One is the proposal in [7], based on acquiring images of
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Fig. 3. Proposed algorithm. In all our experiments we have fixed values for the algo-
rithm parameters: σ = 0.5 for Gaussian smoothing (Gaussian kernel, gσ, discretized
in a 3 × 3 window for convolution ’∗’); θ = 38◦; tagg = 0, 007 and seven seeds placed
at the squares pointed out in the region growing result; structuring element (SE) of
n × m = 5 × 3. Notice that we apply some mathematical morphology just to fill in
some small gaps and thin grooves.

the Macbeth color checker under different day time illuminations and using the
(r,b)–plot to obtain θ. The other approach consists in taking a few road images
with shadows and use them as positive examples to find θ providing the best
shadow–free images for all the examples. The values of θ obtained from the two
calibration methods basically give rise to the same segmentation results. We have
taken θ from the example–based calibration because it provides slightly better
segmentations. Besides, although not proposed in the original formulation of I,
before computing it we regularize the input image IRGB by a small amount of
Gaussian smoothing (the same for each color channel).

4 Results

In this section we present comparative results based on the region growing al-
gorithm introduced in Sect. 3 for three different feature spaces: intensity image
(I; also called luminance or brightness); hue–saturation–intensity (HSI) color
space; and the illuminant invariant image (I).
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The intensity image is included in the comparison just to see what can we
expect from a monocular monochrome system. Since it is a grey level image, its
corresponding dissimilarity measure is defined analogously to Eq. (2), i.e.:

dissI(p,pn) = |I(p) − I(pn)| . (3)

The HSI space is chosen because it is one of the most accepted color spaces for
segmentation purposes [8]. The reason is that by having separated chrominance
(H & S) and intensity (I) such space allows reasoning in a closer way to human
perception than others. For instance, it is possible to define a psychologically
meaningful distance between colors as the cylindrical metric proposed in [8] for
multimedia applications, and used in [1] for segmenting non–asphalted roads.
Such metric gives rise to the following dissimilarity measure for HSI space:

– Case achromatic pixels: use only the definition of dissI given in Eq. (3).
– Case chromatic pixels:

dissHSI(p,pn) =
√

diss2
HS(p,pn) + diss2

I(p,pn) , (4)

taking the definition of dissI from Eq. (3), and given

dissHS(p,pn) =
√

S2(p) + S2(pn) + S(p)S(pn) cosϕ ,

being ϕ =
{

dissH(p,pn) if dissH(p,pn) < 180◦ ,
360◦ − dissH(p,pn) otherwise ,

for dissH(p,pn) = |H(p) − H(pn)| ,

where the different criterion regarding chromaticity is used to take into account
the fact that hue value (H) is meaningless when the intensity (I) is very low or
very high, or when the saturation (S) is very low. For such cases only intensity
is taken into account for aggregation. We use the proposal in [8,1] to define the
frontier of meaningful hue, i.e., p is an achromatic pixel if either I(p) > 0.9Imax or
I(p) < 0.1Imax or S(p) < 0.1Smax, where Imax and Smax represent the maximum
intensity and saturation values, respectively.

In summary, to compute Eq. (1) we use Eq. (2) for I with threshold tagg,I , Eq.
(3) for I with threshold tagg,I , and Eq. (4) for HSI with thresholds tagg,ch (chro-
matic case) and tagg,ach (achromatic case). Figure 4 shows the results obtained
for examples of both asphalted and non–asphalted roads. We have manually set
the tagg,I , tagg,I , and tagg,ch, tagg,ach parameters to obtain the best results for
each feature space, but such values are not changed from image to image, i.e.,
all the frames of our sequences have been processed with them fixed.

These results suggest that I is a more suitable feature space for road seg-
mentation than the others. Road surface is well recovered most of the times,
with the segmentation stopping at road limits and vehicles1, even with a simple
1 Other on going experiments, not included here for space restrictions, also show that

segmentation is quite stable regarding the chosen aggregation threshold as well as
the number and position of seeds, much more stable than both I and HSI .
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(a) (b) (c) (d)

Fig. 4. From left to right columns: (a) original 640 × 480 color image with the seven
used seeds marked in white; (b) segmentation using I with tagg,I = 0, 008; (c) segmen-
tation using I with tagg,I = 0, 003; (d) segmentation using HSI with tagg,ch = 0, 08,
and tagg,ach = 0, 008. The white pixels over the original image correspond to the seg-
mentation results. The top four rows correspond to asphalted roads and the rest to
non–asphalted areas of a parking.

segmentation method. Now, such segmentation can be augmented with road
shape models like in [9,10] with the aim of estimating the not seen road in case
of many vehicles in the scene. As a result, road limits and road curvature ob-
tained will be useful for applications as road departure warning. The processing
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time required in non–optimized MatLab code to compute I is about 125ms and
700ms for the whole segmentation process. We expect it to reach real–time when
written in C++ code.

5 Conclusions

We have addressed road segmentation by using a shadow–free image (I). In
order to illustrate the suitability of I for such task we have devised a very
simple segmentation method based on region growing. By using this method we
have provided comparative results for asphalted and non–asphalted roads which
suggest that I makes the segmentation process easier in comparison to other
popular feature space found in road segmentation algorithms, namely the HSI.
In addition, the process can run in real–time. In fact, since the computation of I
only depends on a precalculated parameter, i.e., the camera characteristic angle
θ, it is possible that a camera supplier would provide such angle after calibration
(analogously to calibration parameters provided with stereo rigs).
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