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Abstract

The main goal of this paper is to define a new colour space that represents the colour infor-
mation of the image in such a way to give a more coherent spatio-chromatic representation.
This space can allow to improve the performance of the algorithms of blob detection. To
build the space we base colour representation on the ridges of the colour image distribution
since it has been proved that they capture the essential colours of the image. Then we will
define a colour space where each channel depends on one of the ridges and we explain how
we can make an inverse transformation to the original space. Finally, to select the essential
channels we suggest three different criteria: one based on a minimization of the minimizes
mutual information, another based on a distance-maximization and the third one based on
high-level hypothesis called nameability.
Keywords: Colour space, nameability, blob detection

1. Introduction

Colour is an important cue for Computer Vision. It is useful in different visual tasks such
as segmentation, blob detection and tracking (Cheng et al., 2001). It is also one of the
principal advantages of trichromatic primates over other primates. Colour was also an
important step in primates evolution, since they became fitter than other primates at the
moment they could choose the best coloured fruits using colour vision, leading to the current
dominance of trichromatic primates (and humans) in the world.

Evolutionary biology has discussed about this topics a lot of years (Mollon, 1989),
(Dominy and Lucas, 2001) and (Parraga C.A. and D.J., 2002) and it also has proved some
particularities of the Human Visual System (HVS), for example, colour is useful in shadow
removal (Lovell and Troscianko). .

It is related to the importance of colour in Computer Vision that our work makes sense.
In this work we propose a new colour space that adapt to the image context.

Several colour spaces had been defined in colour science (Wyszecki and Stiles, 1982),
each one with a certain intention. Some of them, as RGB or CMY, trying to improve the
image acquisition, visualization or printing devices. Others, the uniform spaces, such as,
CIELAB or CIELUV, allowing an Euclidean distance to represent perceptual similarity.

This work have a first clear application that we focus on, it is the computational detec-
tion of colour image blobs.

Detection of coloured image blobs is a low-level visual task of a great importance in
computer vision. In computer vision an image blob is a connected image region presenting
an homogeneous colour. A successful extraction of image blobs can be the basis to overcome
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(a) (b) (c) (d)

Figure 1: RGB channels of image (a), where (b) is the red channel, (c) the green channel,
and (d) the blue channel

the subsequent steps in the image understanding process. Blob extraction is essential in
the first steps of texture description (Julesz and Bergen, 1983), background substraction
(Collins et al., 1999),(Haritaoglu et al., 2000), or motion analysis (L. Wang and Tan, 2003).
The computational approaches to deal with blob extraction has been essentially developed
for gray-level images (Lindeberg and Eklundh, 1991), where the laplacian filtering is the
basis to extract image blobs. However, not such an effort has been done to extend this
theory to colour images, and usually, the extension is done by just applying the gray-level
algorithms on each colour channel separately. Hence the final detection of blobs is the
combination of the blobs detected separately on each colour channel, usually red, green and
blue. However, in figure 1 we can see that detecting blobs in RGB channels separately, does
not assure to get the blobs we perceive in the colour image, in this case we can see small
non-elongated blobs in red, yellow, light blue and dark blue, whereas in the RGB channels
we have long elongated blobs in different orientations.

The results of this work are framed in the context of a project on automatic image ano-
tation, where one of the goals is the description of textures. There are different approaches
to extract and describe texture information and several works discuss how to deal with
coloured texture (Maempaa, 2004). A type of approaches are those that build the texture
description based on the attribute of its blobs, following psychophysical theories (Julesz and
Bergen, 1983). These are the ones that motivates the goal of this paper, that is, to build
a colour space that provide an adequate representation to detect colour image blobs as the
basis for colour-texture description.

To this end, this paper has been organized as follows. In section 2 we introduce an
algorithm to extract the essential colour information of an image, that is, the ridges of the
colour distribution. Afterwards, in section 3 we propose a procedure to build a new colour
space based on these essential ridges. In section 4 we propose three different criteria to
reduce the number of dimensions of this new space, using a statistical measure, a distance-
based method or a high-level assumption, being first and second method applied with a
constraint satisfaction algorithm. Results and application are showed in 5. Finally, we sum
up the conclusions and explain different lines of research.
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(a) (b) (c)

Figure 2: 3D coloured representation of the colour distribution of image 1, (b) ridges de-
tected in the 4D colour distribution and (c) selected ridges

2. Colour-Content Structure

In order to be able to define a colour space with the properties we have expressed above,
we will need to extract the essential information of the image content. To this end we will
extract this information dealing with the results of a recent work from (E.Vazquez et al.,
2007) where they propose to cope the essential colour structure of an image by extracting
the ridges (López et al., 2000) of the 3D colour distribution by aplying the next formulation,
based on the divergence of the structural tensor.

κ̂d = −d

r

r∑

k=1

ŵt
knk (1)

where d is the dimensionality, r is the number of neighbours, nk is the normal vector of one
point, and ŵk are the dominant directions of that point.

Figure 2.(b) gives the ridges detected by the method from the original image in figure
1 and in figure 2.(c) we show a simplification after removing the noisy ridges as we will
explain in next section. This reduction let us to represent the four principal colours we
perceive in the original image, these are red, yellow, dark blue and light blue.

It has been proved in (E.Vazquez et al., 2007) that ridges fulfill two essential properties
which are those who allow them to cope the colour structure, these are:

• Connectivity of all the points in a ridge.

• Peek and valley substraction, since the ridges extract all the distribution maxima plus
all their nearby important colour.

Therefore, we will use this reduced representation of the essential image colour as the
basis, in some sense, of our proposal for a new space.

3. Content-Based Colour Space: Definition

In order to compute our proposal for a content-based colour space (CBCS),we must firstly
decide the desirable conditions our space should fulfill (J.Vazquez et al., 2007).
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Perceptual-coherence: Distances in this space should correlate with perceived colour
differences.

Spatial-coherence: Important blobs must maintain its perceived geometric structure.

Chromatic-coherence: Each space dimension should represent a different colour property
in order to cope with most of the color information.

Once we have defined these conditions to fulfill, we propose a colour space whose dimen-
sion will coincide with the number of important ridges we extract. Therefore, each image
channel will be related to a specific ridge.

Let I : DI → <3 an image where Di ∈ <2
+ and H(I) : <3 → < the image histogram.

Let {Ck}k=1:m the ridges we extract applying the method introduced in section 2 in H(I).
Let ci,j ∈ Ci = {ci,l}l=1:m′ a point that accomplishes

∀x ∈ Ci\{ci,j} =⇒ H(x) ≤ H(ci,j) (2)

We will refer ci,j as the ridge-representant. It can be defined in some other ways, for example
taking the point that have 50 % of information in each side of the ridge.

Let d : <n → R the Euclidean distance defined as:

d(x, y) =
√ ∑

i=1:n

(xi − yi)2 (3)

where x, y ∈ <n. Let p, q ∈ DI pixels of the image I. Then we define the new space given
by the following image transform CBCS : DI → <m as the space that pixel p in the i− th
component has the value:

CBCSi(p) = max
q∈DI

(d(ci,j , I(q)))− d(ci,j , I(p)) (4)

At this point, an inverse transform to the original space can be built if we store a little
extra information as we explain below. Nevertheless, if we want to re-arrange the values of
our channel in a [0, Ym] range, where Ym is the maximum intensity value, we must also save
the maximum value of our original channel to reconstruct the original image.

Another important consideration is that our space is now defined with a 3D origin. It
means that we can take as original image, one in any of the 3D spaces as RGB or CIELAB.
Furthermore, to extend our space to other dimensions it would be needed the extension of
the ridges extraction algorithm, but all the formulation it would be still true.

The definition we have presented above to build the CBCS space is based on the as-
sumption we have previously selected a reduced set of ridges, in order to have the same
number of channels for all the images. To reduce the number of ridges we will use to rep-
resent the CBCS we apply a preprocessing step on the ridges obtained with the algorithm
of section 2. It is based on an iterative process that reduces those ridges containing a
minimum number of pixels in its influence zone (where influence zones are computed from
the Voronoi diagram of the ridges on the colour distribution. The original-space values,
for instance RGB or CIELAB, of an image point will determine to which influence zone
it belongs). Afterwards all these points are redistributed to the remaining ridges. This is
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Figure 3: CBCS channels from image in figure 1

Original Image CBCS1 CBCS2 CBCS3 CBCS4

CBCS5 CBCS6 CBCS7 CBCS8 Recovered Image

Figure 4: From an original image, its CBCS channels and the image recovered.

repeated iteratively until we achieve a prefixed number of ridges that will be the number
of channels of our proposed colour space. The number of ridges we select will determine
the amount of information we are able to represent and this number will allow to fulfill the
property 3 we have established.

Some results of our space can be showed in figures 3 and 4. In figure 3 we can see the
result of applying our space finding the four colours in the original image of figure 1, this
means that in each channel we will find the dark blue, red, ligth blue and yellow blobs
respectively . And, in figure 4 we could see from an natural image, its CBCS channels and
the recovered image found with the method we will explain below. Both cases are taking
CIELAB as the original image space.
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On the other hand, to built the inverse transformation is not a hard work. All is based
in the next property:

∃p ∈ DI , I(p) = ci,j ⇒ maxq∈DI
CBCSi(q) = maxq∈DI

d(ci,j , q) (5)

and also,
p ∈ Di ⇒ minq∈DI

CBCSi(q) = 0 (6)

It is for this that we can say that

d(ci,j , p) = max
q∈DI

(CBCSi(q))− CBCSi(p) (7)

Once we have this property two different ways of recover the space appear. First one,
that minimizes the cost, is to save only three different ridge-representants and make a
triangularization from them. Second one, that minimizes the time execution is based in the
spherical space since

ri(p) = d(ci,j , p), (8)

where ri is the radius of an sphere centred in cj that has p has a point. This means that
if we compute for one ridge the azimuth and the zenith for each radius, we find an inverse
transformation as we will. This transformation is, from cartesian to spherical

ri =
√

x2 + y2 + z2

θ = arctan(
y

x
) (9)

φ = arccos(
z

r
)

And from spherical to cartesian

x = ri cos θ cosφ

y = ri cos θ sinφ (10)
z = ri sin θ

4. Dimensional Reduction

As we have enumerate in section 3, there are three properties we should accomplish. This
section is focussed in reaching the Chromatic-coherence, that pursuit to achieve the max-
imum dissimilarity between channels. To this end we will use three different criteria, a
statistical method, a distance-based method and a high-level method. Two first criteria
do not provide with an automatic channel-dimension selection, we just apply a Constraint
Satisfaction Algorithm with a fixed predefined number of dimensions. On the other hand,
third criteria give us the number of channels and which are the preferred channels.

In the first criteria, the constraint we use to sort the channels is based on the mutual
information (Karmeshu, 2003).

I(X, Y ) = H(X) + H(Y )−H(X, Y ) (11)
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where H(X) is the entropy defined as:

H(X) = −
∑

x∈Vx

p(x) ∗ log2 p(x) (12)

and H(X,Y ) is the joint entropy defined as

H(X, Y ) = −
∑

x∈Vx

∑

y∈Vy

p(x, y) ∗ log2 p(x, y) (13)

Mutual information is a technique quite used in information theory to make variables
to be as independent as they can be. In our case, we select the channels that minimize it,
because minimize mutual information is equivalent to maximize independency. To do this
minimization we do not use the mutual information explained above, we use a normalized
version that is always between 1 and 2 (1 if the channels are independent, 2 if they are
dependent) (Hajnal et al., 2001):

S(X, Y ) =
H(X) + H(Y )

H(X, Y )
=

H(X) + H(Y )
H(X) + H(Y )− I(X,Y )

=
I(X, Y )
H(X, Y )

+ 1; (14)

To minimize it, we apply a constraint satisfaction algorithm that is an algorithm technique
to find the optimal solution fulfilling a set of constraints. It is based on a tree search
technique. In our case, we will use a tree of depth n to find the best solution in dimension
n. In this case, the constraint to minimize in depth s is:

F (a1, ..., as) =
∑

i=1:s,j=1:s,i>j

S(ai, aj) (15)

where (a1, · · · , as) ∈ A, A = (a1, · · · , am) is the set of channels.
Results on this criteria from image in figure 4 are showed in Tables 1 and 2. In the first

one we can see the values of the normalized mutual information between all the channels
and in the second one, we can see the channels selected by the Constraint Satisfaction
algorithm. This criteria seems to performs quite well in selecting channels quite different
in each level. In this case, the result for dimension 3 seems to be enough since we find the
red apples, the leaves and the background, one in each channel, this is adequate to follows
with a blob detection step.

The second criteria is based on the assumption that two similar channels must present
less distance that two further channels. It is for this that we define the distance between
channels as:

d(CBCSi, CBCSj) =

√∑
p∈Di

(CBCSi(p)− CBCSj(p))2

]DI
(16)

When we have defined this distance we could apply the constraint satisfaction algorithm
that maximize the distance between channels. It means to maximize:

F (a1, ..., as) =
∑

i=1:s,j=1:s,i>j

d(ai, aj) (17)
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CBCS1 CBCS2 CBCS3 CBCS4 CBCS5 CBCS6 CBCS7 CBCS8

CBCS1 2 1.2958 1.2049 1.1257 1.0984 1.0962 1.1658 1.177

CBCS2 1.2958 2 1.3006 1.1329 1.1129 1.1128 1.1894 1.1908

CBCS3 1.2049 1.3006 2 1.1394 1.1215 1.1297 1.2068 1.1857

CBCS4 1.1257 1.1329 1.1394 2 1.2444 1.2219 1.1364 1.1524

CBCS5 1.0984 1.1129 1.1215 1.2444 2 1.3037 1.1234 1.1312

CBCS6 1.0962 1.1128 1.1297 1.2219 1.3037 2 1.1279 1.1333

CBCS7 1.1658 1.1894 1.2068 1.1364 1.1234 1.1279 2 1.2583

CBCS8 1.177 1.1908 1.1857 1.1524 1.1312 1.1333 1.2583 2

Table 1: Normalized mutual information values to apply the Constraint Satisfaction Algo-
rithm

Dimension Channels selected
2 CBCS1,CBCS6

3 CBCS1,CBCS5,CBCS7

4 CBCS1,CBCS4,CBCS6,CBCS7

5 CBCS1,CBCS3,CBCS4,CBCS6,CBCS7

6 CBCS1,CBCS3,CBCS4,CBCS5,CBCS6,CBCS7

7 CBCS1,CBCS3,CBCS4,CBCS5,CBCS6,CBCS7,CBCS8

Table 2: Channels selected in each dimension applying mutual information from image in
figure 4

CBCS1 CBCS2 CBCS3 CBCS4 CBCS5 CBCS6 CBCS7 CBCS8

CBCS1 0 26.8552 47.4058 101.8697 120.5651 123.0601 87.7351 85.4542

CBCS2 26.8552 0 23.9958 114.8892 132.9074 136.2849 74.5125 73.6196

CBCS3 47.4058 23.9958 0 119.8127 137.1281 141.2671 59.7812 62.7544

CBCS4 101.8697 114.8892 119.8127 0 27.2009 32.7925 116.757 118.6836

CBCS5 120.5651 132.9074 137.1281 27.2009 0 16.8895 127.9755 129.0985

CBCS6 123.0601 136.2849 141.2671 32.7925 16.8895 0 131.9352 131.6465

CBCS7 87.7351 74.5125 59.7812 116.757 127.9755 131.9352 0 21.8582

CBCS8 85.4542 73.6196 62.7544 118.6836 129.0985 131.6465 21.8582 0

Table 3: Distance values to apply the Constraint Satisfaction Algorithm
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Dimension Channels selected
2 CBCS3,CBCS6

3 CBCS2,CBCS6,CBCS7

4 CBCS2,CBCS5,CBCS6,CBCS7

5 CBCS1,CBCS3,CBCS5,CBCS6,CBCS8

6 CBCS1,CBCS3,CBCS5,CBCS6,CBCS7,CBCS8

7 CBCS1,CBCS3,CBCS4,CBCS5,CBCS6,CBCS7,CBCS8

Table 4: Channels selected in each dimension applying distance between channels from
image in figure 4

where (a1, · · · , as) ∈ A, A = (a1, · · · , am) is the set of channels.
Results on this criteria for image 4 are showed in Tables 3 and 4 .In the first one, we

could see the distance values between the channels and in the second the channels selected
by this method. In dimension 3 we could see that chosen channels are 2, 6 and 7 that are a
good representation of the image.

The third criteria is based on the nameability, that has been defined as the ability of
assigning a name to a given colour (Tous, 2006) and (Benavente et al., 2004). To apply this
criteria we have defined a nameability function of a channel, that is directly related to the
nameability function of its associated ridge and this function is defined as follows:

N(Ci, j) =

∑
rk∈Ci

(µj(rk))
]Ci

(18)

where µj is the membership function to give the name j the color rk and Ci is a ridge.
And for each ridge we choose the colour that maximizes equation 18 , it means:

< vname >i= (Nmax, jmax) (19)

where Nmax = maxj∈Names N(Ci, j) and jmax is the name of the colour where this maximum
is reached.

When we have this information of each channel we reduce dimension by removing names
repetition, it means, we choose the ridge with high Nmax for each different jmax, or by
removing diffused ridges, where a diffused ridge is a ridge that do not have a predominant
colour, it means a ridge where the Nmax is less than a threshold for example we can define
a threshold of 0.66.

As a example of this criteria, we can see in Table 5 that from image in figure 4 channels
4, 5 and 6 are mainly red being channel 5 the one with highest Nmax of them, channels
2, 3, 7 and 8 are green being 3 the highest and channel 1 is mainly black. This means that
according to this criteria we select channels 1, 3 and 5.

5. Results and applications

Since the work we are presenting is just a preliminary work in a new research line we are
starting to explore, we do not present yet an exhaustive validation for the results. Then
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Red Orange Brown Yellow Green Blue Purple Pink Black Grey White

CBCS1 0.0003 0 0.0009 0 0.2555 0.0001 0.0006 0 0.7428 0 4.797e-11

CBCS2 4.377e-12 0 0.0002 0 0.9998 4.306e-14 0 0 0 0 0

CBCS3 2.954e-22 0 0 0 1 1.834e-16 1.780e-11 0 0 0 0

CBCS4 0.894 0 0.106 0 6.543e-18 7.865e-24 1.418e-12 0 0 0 0

CBCS5 1 0 4.3e-14 0 2.120e-20 5.930e-31 1.158e-26 0 0 0 0

CBCS6 0.7281 0 4.459e-12 0 1.935e-28 1.535e-25 7.142e-13 0.2719 0 0 0

CBCS7 1.565e-11 0.0002 0 0.0018 0.9982 4.249e-12 1.783e-41 2.646e-14 0 0 0

CBCS8 0 0.0002 0 0.0001 0.9999 0 6.934e-13 0 0 0 0

Table 5: Results of the Nameability function in figure 4. Once we have this we want to take
the maximum for each row to know the colour name of the channel

in this section we will only present a qualitative validation of the results, to extract some
conclusions about the feasibility of this new research line.

This section will be divided into two parts. In the first part we will show the CBCS
channels computed on different images and the dimensional reduction step. In the second
part, we analyze on a set of images the behaviour of the proposed space in the visual task
of detecting blobs.

In figures 5,6,7,8 and 9 we can see the CBCS transform for each image and we can also
see two tables for each image, one with the results of criterias 1 and 2 (mutual information
and distance) of the dimensionality reduction results, and another with the results of criteria
3 (Nameability).

In figure 5 we can see the CBCS channels, that extracts the flowers (in its different
chromaticities: channels e,f,g,), the trees (channels a,b,d), the mountains (channel h) and
the grass (channel c). If we see tables 6 and 7, we observe that Nameability seems to work
as expected, and distance-based method also, but mutual information could be not the best
way to solve. On the other hand, we can see in figure 6, table 8, table 9 that in this case
channel g does not appear in the distance-method in low dimensions, and this is not a good
solution. Other two methods seems to works properly.

In other sense in figure 7, when we see Table 11 it seems to be necessary more colour
names because we said as ṕurple t́wo different colours: violet and lilac. The other two
methods, that are exposed on Table 10 works correctly and they give us the three interpre-
tations the image need it. In figure 8, the three validation method works properly, as we
show in Tables 12 and 13 and also it is quite clear that our colour space brings us a great
decomposition of the image. There are mainly 3 interpretations: flowers (channels f,g,h),
trucks (d,e) and background (a,b,c) and in all the methods we find them greatly.

To finish this part of the section, in figure 9 we can also see that the different flowers are
detected, and the channels represents quite well the image. The results of the dimensionality
reduction step, showed in tables 14 and 15, show us that distance-based method works
correctly, Nameability also works correctly, but it can be interesting to consider two different
greens, and mutual information works well too, but not as well as the others two, because
yellow flowers appear in dimension 5. All the results in these images have been done applying
our method in the CIELAB space.
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Original image a b

c d e

f g h

Figure 5: CBCS channels from an original image. In Tables 6 and 7 we can see the dimen-
sionality reduction of these channels with each method

Dimension Channels selected by mutual information Channels selected by distance
2 e,h b,f
3 c,e,h a,f,h
4 c,e,g,h a,f,g,h
5 c,d,e,g,h b,c,f,g,h
6 a,c,d,e,g,h a,b,e,f,g,h
7 a,c,d,e,f,g,h a,c,d,e,f,g,h

Table 6: Dimensionality reduction with criteria 1 and 2 from figure 5
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Channel jmax Nmax Selected?
a Green 1 Yes (this one or c)
b Green 0.9996 No (a and c have higher Nmax)
c Green 1 Yes (this one or a)
d Blue 0.5095 No (Diffused ridge)
e Brown 0.5301 No (Diffused ridge)
f Red 0.951 Yes
g Orange 0.5526 No (Diffused ridge)
h Blue 0.9924 Yes

Table 7: Dimensionality reduction with criteria 3 from figure 5

Dimension Channels selected by mutual information Channels selected by distance
2 d,g c,e
3 a,d,g b,e,h
4 a,d,f,g c,d,e,h
5 a,d,f,g,h a,c,d,e,h
6 a,d,e,f,g,h a,c,d,e,g,h
7 a,c,d,e,f,g,h a,c,d,e,f,g,h

Table 8: Dimensionality reduction with criteria 1 and 2 from figure 6

Channel jmax Nmax Selected?
a Black 0.6243 No (Diffused ridge)
b Green 0.8967 No (c has higher Nmax)
c Green 0.9933 Yes
d Red 0.7837 Yes
e Orange 0.9993 Yes
f Green 0.7622 No (c has higher Nmax)
g Yellow 0.9969 Yes
h Blue 0.9865 Yes

Table 9: Dimensionality reduction with criteria 3 from figure 6

Dimension Channels selected by mutual information Channels selected by distance
2 a,f d,e
3 a,f,g a,d,h
4 a,b,f,g a,d,e,g
5 a,b,f,g,h a,c,d,e,h
6 a,b,c,f,g,h a,b,d,e,g,h
7 a,b,c,e,f,g,h a,b,c,d,e,g,h

Table 10: Dimensionality reduction with criteria 1 and 2 from figure 7
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Original image a b

c d e

f g h

Figure 6: CBCS channels from an original image. In Tables 8 and 9 we can see the dimen-
sionality reduction of these channels with each method
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Original image a b

c d e

f g h

Figure 7: CBCS channels from an original image. In Tables 10 and 11 we can see the
dimensionality reduction of these channels with each method

Channel jmax Nmax Selected?
a Purple 0.9412 No (e has higher Nmax)
b Red 0.8908 No (c has higher Nmax)
c Red 0.9999 Yes
d Red 0.9647 No (c has higher Nmax)
e Purple 1 Yes
f Purple 0.5369 No (Diffused ridge)
g Pink 1 Yes
h Purple 0.9967 No (e has higher Nmax)

Table 11: Dimensionality reduction with criteria 3 from figure 7
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Original image a b

c d e

f g h

Figure 8: CBCS channels from an original image. In Tables 12 and 13 we can see the
dimensionality reduction of these channels with each method

Dimension Channels selected by mutual information Channels selected by distance
2 a,d b,g
3 a,d,e b,d,g
4 a,d,e,f a,c,f,g
5 a,c,d,e,f b,c,d,f,g
6 a,c,d,e,f,h a,b,c,e,f,g
7 a,b,c,d,e,f,h a,b,c,d,f,g,h

Table 12: Dimensionality reduction with criteria 1 and 2 from figure 8
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Channel jmax Nmax Selected?
a Black 0.7374 Yes
b Blue 0.9932 No (c has higher Nmax)
c Blue 0.9974 Yes
d Green 1 Yes (or e)
e Green 1 Yes (or d)
f Orange 0.9908 Yes
g Orange 0.9214 No (f has higher Nmax)
h Yellow 0.996 Yes

Table 13: Dimensionality reduction with criteria 3 from figure 8

Original image a b

c d e

f g h

Figure 9: CBCS channels from an original image. In Tables 14 and 15 we can see the
dimensionality reduction of these channels with each method
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Dimension Channels selected by mutual information Channels selected by distance
2 d,f b,h
3 d,f,g b,d,h
4 c,d,f,g b,d,e,h
5 c,d,f,g,h a,b,d,g,h
6 b,c,d,f,g,h a,b,d,e,f,h
7 b,c,d,e,f,g,h a,b,d,e,f,g,h

Table 14: Dimensionality reduction with criteria 1 and 2 from figure 9

Channel jmax Nmax Selected?
a Black 0.9936 Yes
b Green 0.9995 Yes
c Red 0.9711 No (d has higher Nmax)
r Red 0.9998 Yes
e Green 0.9905 No (b has higher Nmax)
f Brown 0.5038 No (Diffused Ridge)
g Green 0.8857 No (b has higher Nmax)
h Yellow 0.8975 Yes

Table 15: Dimensionality reduction with criteria 3 from figure 9

On the other hand,if we try to find an application for our space, the clearest one is the
blob detection. In figures 10 and 11 we have applied a blob detection algorithm created by
(A.Salvatella et al., 2003) in our space and it RGB.

The results of this comparison could be clearly seen it figure 10, where the RGB channels
are practically equal and they only found one of the three differents parts of the image.
Nevertheless in the CBCS channels we can find the three different parts of the image. In
this image we have applied the method in an RGB image. Moreover, in figure 11 we can see
the results of the blob detection algorithm in 8 using the channels chosen by nameability.
In this case it is also clear that our space finds out the different parts of the image, but
RGB channels do not detect the trunks and the background.

6. Conclusions and Further Work

This preliminary work is based on the assumption that colour and texture are quite related
cues, it means that we could not consider one and reject any information of the other. In
particular, this work is a first step in the idea of adapt colour information to help texture
descriptors based on image blobs.

Nevertheless, although it is a preliminary work, some goals are achieved. One of them
is the novelty of the idea, since to consider the coloured blob detection problem from a
representational point of view has not been approached yet. Moreover, in this work we have
given a first approach to the properties that a space with this objective should accomplish.

We also give an algorithm to compute an space accomplishing this properties, and we
propose some criteria to compare the channels contents.
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channel r channel g channel b

CBCS1 CBCS2 CBCS3

Figure 10: Comparison between blobs detected in RGB from an image anb blobs detected
in CBCS. In this case CBCS has been applied taking RGB as the original
space (in all of the other cases the origin has been CIELAB)
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channel r channel g channel b

CBCS1 CBCS2 CBCS3 CBCS4 CBCS5

Figure 11: Comparison between blobs detected in CBCS channels of figure 8 selected by
Nameability and blobs detected in RGB

As it can be seen it section 5 results are quite encouraging and it seems that this idea
could apport a new vision on blob detection. It must be also studied some other applications
of the space because we think that this space must also be useful in other applications.

There are quite different ways to continue. Clearly a deeper study must be done in the
selection step, to improve and combine the different criteria we could consider, three have
been explained in this work and others that could appear.

In the same sense we can try to change the Constraint Satisfaction algorithm by a
cluster, not to select directly the channels, but to join them in some sets that represent
more or less the same part of the image.

We also would try to make CBCS independent to the illuminant. This could imply
makes some changes on the ridges or to introduce new features. But we think that is an
important step towards a complete and useful colour space.

Finally, it must be also important to prove our space in a complete and specialized
database, to detect some other weaknesses and improve them.
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