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Abstract

Edge-based color constancy makes use of image deriva-
tives to estimate the illuminant. However, different edge
types exist in real-world images such as shadow, geometry,
material and highlight edges. These different edge types
may have a distinctive inf luence on the performance of the
illuminant estimation.

Therefore, in this paper, an extensive analysis is provided
of different edge types on the performance of edge-based
color constancy methods. First, an edge-based taxonomy is
presented classifying edge types based on their ref lectance
properties (e.g. material, shadow-geometry and highlights).
Then, a performance evaluation of edge-based color con-
stancy is provided using these different edge types. From
this performance evaluation, it is derived that certain edge
types are more valuable than material edges for the estima-
tion of the illuminant. To this end, the weighted Grey-Edge
algorithm is proposed in which certain valuable edge types
are more emphasized for the estimation of the illuminant.

From the experimental results, it is shown that the pro-
posed weighted Grey-Edge algorithm based on the shadow-
shading variant, i.e. assigning higher weights to edges
with more energy in the shadow-shading direction, results
in the best performance. Moreover, all current state-of-the-
art methods, including pixel-based methods and edge-based
methods, have been signif icantly outperformed by the pro-
posed weighted Grey-Edge algorithm, resulting in an im-
provement of 9% over the current best-performing algo-
rithm.

1. Introduction

Changes in illumination cause the measurements of ob-
ject colors to be biased towards the color of the light source.
Color constancy is the ability to maintain invariance with re-
spect to these changes. The ability of color constancy facil-
itates many computer vision related tasks like color feature

extraction [17] and color appearance models [9].
Many computational color constancy algorithms have

been proposed, see e.g. [20] for an overview. Tradition-
ally, color constancy methods use pixel values of an image
to estimate the illuminant. Examples of such methods in-
clude approaches based on low-level features [5, 14, 22] and
gamut-based algorithms [11, 13, 15]. Only recently, meth-
ods that use derivatives (i.e. edges) and even higher-order
statistics have been proposed [6, 7, 19, 24].

From earlier studies on pixel-based color constancy, it is
known that highlights (under the assumption of the neutral
interface reflection) contain important information about
the color of the light source [1, 3]. Other work shows that,
using zeroth-order statistics, a varying illumination can aid
the estimation of the illuminant, if surfaces are accurately
identified under different light sources [2, 10, 25]. How-
ever, prior knowledge about the scene is required to classify
pixels into e.g. material and highlight pixels reducing the
applicability of the methods [1, 2, 3, 10]. Therefore, in this
paper, the focus will be on edge-based color constancy.

Various edge classification schemes have been proposed
which categorize edges based on their reflectance charac-
teristics and physical nature [12, 16, 18, 23]. For example,
edges can be classified into material edges (e.g. edges be-
tween objects), shadow/shading edges (e.g. edges caused
by the geometry of an object) and specular edges (e.g. high-
lights). Edge-based color constancy makes use of image
derivatives to estimate the illuminant, and consequently, dif-
ferent edge types may provide a different impact on the
performance of the illuminant estimation. Although, edge-
based color constancy show promising results, an analysis
of different edge types has not been studied.

Therefore, in this paper, an extensive analysis is pro-
vided of the physical nature of different edge types on the
performance of edge-based color constancy methods. Fur-
ther, a weighted Grey-Edge algorithm is proposed to im-
prove edge-based color constancy. To this end, first, an
edge-based taxonomy is presented classifying edge types
based on their reflectance properties (e.g. material, shadow-
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geometry and highlights). Then, a performance evaluation
of edge-based color constancy is provided using these dif-
ferent edge types. From this performance evaluation, it is
derived that certain edge types are more valuable than ma-
terial edges for the estimation of the illuminant. To this end,
the weighted Grey-Edge algorithm is proposed in which
certain edge types are more emphasized than others for the
estimation of the illuminant.

This paper is organized as follows. In section 2, color
constancy is discussed, followed by a categorization of
edges into several types in section 3. In section 4, the per-
formance of edge-based color constancy is analyzed with
respect to different edge types. Then, in section 5, the
weighted Grey-Edge algorithm is proposed.

2. Color Constancy

The image values f for a Lambertian surface depend on
the color of the light source e(λ), the surface reflectance
s(x, λ) and the camera sensitivity function c(λ):

f(x) =

∫

ω

e(λ)c(λ)s(x, λ)dλ, (1)

where ω is the visible spectrum, λ is the wavelength of the
light and x is the spatial coordinate. Assuming that the
scene is illuminated by one light source and that the ob-
served color of the light source e depends on the color of
the light source e(λ) as well as the camera sensitivity func-
tion c(λ), then color constancy is equivalent to the estima-
tion of e =

∫

ω
e(λ)c(λ)dλ, given the image values of f ,

since both e(λ) and c(λ) are, in general, unknown. This
is an under-constrained problem and therefore it can not be
solved without further assumptions.

2.1. Pixel-based Color Constancy

Two well-known and often used algorithms are based on
the Retinex Theory proposed by Land [22]. The White-
Patch algorithm is based on the White-Patch assumption,
i.e. the assumption that the maximum response in the RGB-
channels is caused by a white patch. The second algo-
rithm, the Grey-World algorithm [5] is based on the Grey-
World assumption, i.e. the average ref lectance in a scene is
achromatic. Another type of algorithms are gamut-based
methods, originally proposed by Forsyth [15]. Gamut-
based algorithms use more advanced statistical information
about the image, and are based on the assumption, that in
real-world images, one observes, under a given illuminant,
only a limited number of different colors. Even though
the White-Patch, Grey-World and gamut mapping are com-
pletely different algorithms, they all have in common that
they estimate the illuminant using only the pixel values in
an image.

2.2. Edge-based Color Constancy

Recently, pixel-based methods are extended to incorpo-
rate derivative information (i.e. edges) and higher-order
statistics, resulting in the Grey-Edge [24] and the derivative-
based gamut mapping [19].

The Grey-Edge actually comprises a framework that in-
corporates zeroth-order methods (e.g. the Grey-World and
the White-Patch algorithms), first-order methods (e.g. the
Grey-Edge), as well as higher-order methods (e.g. 2nd-
order Grey-Edge). Many different algorithms can be cre-
ated by varying the three parameters:

(
∫

∣

∣

∣

∣

∂nfσ(x)

∂xn

∣

∣

∣

∣

p

dx

)

1

p

= ken,p,σ, (2)

where n is the order of the derivative, p is the Minkowski-
norm and fσ(x) = f ⊗ Gσ is the convolution of the image
with a Gaussian filter with scale parameter σ. Good re-
sults are obtained by using instantiation e1,1,σ , i.e. a simple
average of the edges at scale σ also called the Grey-Edge
method [24].

Another extension of pixel-based methods to incorporate
derivative information involves the gamut mapping. This
method has been extended to include not only pixel val-
ues, but also linear combinations of pixel values, e.g. image
derivatives. The use of image derivatives has some advan-
tages over using pixel values directly as certain effects that
cause a failure of the diagonal model, like scattered light,
have little effects on the derivative of an image. It is shown
that the derivative-based gamut mapping suffers less from
these degrading conditions [19]. Therefore, in addition to
the Grey-Edge method, the derivative-based gamut map-
ping method is used as a different type of color constancy
method to assess the influence of different edge types.

3. Photometric Edge Types
Edges can be categorized into several types based on

their reflectance such as material edges, shadow/shading
edges and specular edges [12, 16, 18, 23]. Material edges
are edges between two different surfaces or objects. Shad-
ing edges are edges that are caused by the geometry of an
object, for instance by a change in surface orientation with
respect to the illumination. Shadow edges are cast shad-
ows, caused by an object that (partially) blocks the light
source. Specular edges are edges that are caused by high-
lights. Besides these main edge types, several other types
exists. However, two derivations will be discussed and ana-
lyzed in this paper.

First, a shadow edge can be either a sudden change of
intensity, e.g. caused by the geometry of an object, or it
can be somewhat differently colored. When the latter is the
case, then the sudden gradient is not only an intensity gra-
dient but it also contains a faint color gradient at the same



time. Hence, a shadow edge can be divided into an inten-
sity shadow edge and a colored shadow edge. When we re-
fer to shadow edges in general, the union of these two edge
types is implied. Furthermore, in real-world images, inter-
reflection is an important aspect. Interreflection is the effect
of light reflected from one surface onto a second surface.
This effect changes the overall illumination that is received
by the second surface, and hence the color of this surface.
In this paper, interreflection edges are the fifth edge type
that is analyzed.

3.1. Reflectance-based Edge Classification

Classification of edges into different types can be done
using a set of photometric variants and quasi-invariants
[23]. To this end, the derivative of an image, fx =
(Rx, Gx, Bx)T , is projected on three directions called vari-
ant directions. By removing the variance from the deriva-
tive of the image, a complementary set of derivatives is con-
structed called quasi-invariants.

The projection of the derivative on the shadow-shading
direction is called the shadow-shading variant and is defined
as:

Sx =
(

fx · f̂
)

f̂ , (3)

where f̂ = 1√
R2+G2+B2

(R,G,B)T indicates the direction
of the variant and the dot indicates the vector inner prod-
uct. The shadow-shading variant is that part of the deriva-
tive which could be caused by shadow or shading. What
remains after subtraction of the variant from the derivative
is called the shadow-shading quasi-invariant:

Sc
x = fx − Sx. (4)

The quasi-invariant Sc
x is insensitive to shadow-shading

edges, hence contains only specular and material edges.
Using the same reasoning, a specular variant and quasi-

invariant is obtained:

Ox =
(

fx · ĉi
)

ĉi, (5)
Oc

x = fx − Ox, (6)

where ĉi is the specular direction. The specular quasi-
invariant is insensitive to highlight edges.

Finally, the shadow-shading-specular variant and quasi-
invariant can be constructed by projecting the derivative on
the hue direction:

Hx =
(

fx · b̂
)

b̂, (7)

Hc
x = fx − Hx, (8)

where b̂ is the hue direction. Hc
x does not contain specular

or shadow-shading edges.
These quasi-invariants can be used for edge clas-

sification [23]. If little of the energy of an edge is di-
rected towards the shadow-shading-specular direction, then

this edge is classified as a material edge. An edge is clas-
sified as shadow edge if more energy is directed towards the
shadow-shading direction than towards the specular direc-
tion. Finally, if more energy is in the specular direction than
in the shadow-shading direction, then this edge is classified
as specular edge.

4. Performance using Different Edge Types
In this section, the aim is to analyze which edge types

have the most influence on the accuracy of the illuminant
estimation. To this end, a spectral data set is used first
to generate different edges types under controlled circum-
stances. On this data set, the two different edge-based color
constancy algorithms are evaluated i.e. the Grey-Edge and
the derivative-based gamut mapping approach . Then, the
quasi-invariants are used to classify edges in real-world im-
ages into material and shadow edges, extending the experi-
ments from a controlled setting to real-world scenarios.

To evaluate the performance of color constancy algo-
rithms, the angular error ε is widely used [21]. This measure
is defined as the angular distance between the actual color
of the light source el and the estimated color ee:

ε = cos−1(êl · êe), (9)

where êl · êe is the dot product of the two normalized vec-
tors representing the true color of the light source el and the
estimated color of the light source ee. To measure the per-
formance of an algorithm on a whole data set, the median
angular error is reported.

4.1. Spectral data

The first experiments are performed using the spectral
data set introduced by Barnard et al. [4]. This set consists
of 1995 surface reflectance spectra and 287 illuminant spec-
tra, from which an extensive range of surfaces (i.e. RGB-
values) can be generated using eq. (1). For these experi-
ments, the following types of surfaces are created:

• Material surface mi:

mik =

∫

ω

ek(λ)c(λ)si(x, λ)dλ. (10)

• Intensity shadow surface pi:

pik =

∫

ω

ek(λ)

φ
c(λ)si(x, λ)dλ. (11)

• Colored shadow surface qi:

qikk′ = pik + η

∫

ω

ek′(λ)c(λ)si(x, λ)dλ, (12)

• Specular surface hik:

hik = mik + γ

∫

ω

ek(λ)c(λ)dλ, (13)



• Interreflection surface rijk:
rijk = mjk + θmik, (14)

where the subscript i and j denote different surface
reflectance spectra and k and k′ denote different illuminant
spectra. Furher, φ and γ are random variables uniformly
distributed between 1 and 4, and η and θ are random vari-
ables uniformly distributed between 0 and 0.25.

Since the focus is on edge-based color constancy, the fol-
lowing transitions (i.e. edges) between surfaces are gener-
ated:

• Material edge: mik − mjk.
• Intensity shadow edge: mik − pik.
• Colored shadow edge: mik − qikk′ .
• Specular edge: mik − hik.
• Interreflection edge: mik − rijk.

Note that these edges can be considered to be step edges.
In real-world scenes, transitions are likely to be more grad-
ual. However, for the purpose of this analysis, these edges
are used to give a best-case assessment of algorithm perfor-
mance.

4.2. Different number of edges

In the first experiment, the performance of two edge-
based color constancy algorithms is analyzed with respect
to different edge types. Using the spectral data set, a num-
ber of random surfaces are created, including n material
surfaces, n intensity shadow surfaces, n colored shadow
surfaces, n specular surfaces and n interreflection sur-
faces, resulting in a total of 5n surfaces. Note that to
create these surfaces, the same illuminant is used. Us-
ing these surfaces, n material edges, n intensity shadow
edges, n colored shadow edges, n specular edges and n

interreflection edges are created. Two edge-based color
constancy algorithms are evaluated (the Grey-Edge algo-
rithm and the Derivative-based gamut mapping) by grad-
ually increasing the number of edges. For each value of
n (n = {4, 8, 16, 32, 64, 128, 256, 512, 1024}), the experi-
ment is repeated 1000 times.

In figure 1(a), the median angular error for the Grey-
Edge algorithm is shown differentiated by the five edge
types. Remarkably, the angular error when using intensity
shadow edges is significantly lower than when using mate-
rial edges. As expected, color constancy based on specu-
lar edges results in a close to ideal performance. Further,
the performance using the colored shadow edges and the
interreflection edges is similar to the performance when us-
ing the material edges. The performance of the Derivative-
based gamut mapping, see figure 1(b), shows a similar
trend. Using specular edges results in near-perfect color
constancy, and intensity shadow edges are more favorable
than the other types of edges.

(a) Grey-Edge

(b) Derivative-based Gamut mapping

Figure 1. Median angular error of the Grey-Edge, figure (a), and
the Derivative-based Gamut mapping, figure (b), including a 95%

confidence interval, using several different edge types.

4.3. Gamuts of different edge types

To study the observation why using shadow edges results
in a better performance than when using material and other
types of edges, the distribution of different edge types is
considered. For the ease of illustration of the physical prop-
erties of edge types, the edges are converted to the opponent
color space:

O1x =
Rx − Gx√

2
, (15)

O2x =
Rx + Gx − 2Bx√

6
, (16)

O3x =
Rx + Gx + Bx√

3
(17)

where Rx, Gx and Bx are derivatives of the R, G and B

channels, respectively.
The distribution of edges in opponent color space is

shown in figure 2. From these graphs, it can be derived
that the variation in edge color is much higher for the mate-
rial edges, figure 2(a), than for shadow edges, figures 2(b)
and (c). Further, the intensity shadow edges are more di-



(a) (b) (c) (d) (e)

Figure 2. Gamut in opponent color space of several edge types put under one illuminant which is specified by the fourth axis. Shown
are material edges in figure (a); intensity shadow edges in figure (b); colored shadow edges in figure (c); specular edges in figure (d);
interreflection edges in figure (e).

rected towards the color of the light source (shown by the
fourth axis) than the colored shadow edges. The shape of
the gamut of the color shadow edges, which appears to be
less directed towards the color of the light source than other
edge types, can be explained by the influence of the second
light source. The gamut of interreflection edges, figure 2(e),
is similar to the material edges. Finally, specular edges,
figure 2(d), all align perfectly with the color of the light
source (shown by the fourth axis).

These graphs show that it is beneficial to use edges that
are aligned with the color of the light source. The specu-
lar edges are all distributed on the diagonal representing the
color of the light source, and near-perfect color constancy
can be obtained using these edges. This observation is in
accordance to pixel-based highlight analysis, where high-
lights contain valuable information about the color of the
light source [1, 3]. Shadow edges are distributed denser
around the color of the light source than material edges and
interreflection edges, resulting in a higher performance.

Color clipping. In practice, pixel values are often bound
to a certain maximum value. This effect is called color clip-
ping. Since the specular surfaces have the highest RGB-
values, these surfaces (and consequently the specular edges)
risk to be affected by color clipping. To analyze this effect, a
second experiment is performed where the generated RGB-
values are color clipped at a gradually decreasing value.
The results of this experiment for the Grey-Edge algorithm
are shown in figure 3. The Derivative-based gamut map-
ping reveals a similar trend (not shown here). It can be seen
that the performance using the specular edges immediately
starts to decrease significantly, while the performance of the
material and the shadow edges is not affected until 40% of
the pixels are color clipped. The effects of color clipping
cause the gamuts of the specular edges to shift towards the
intensity axis (O3x), hence the estimate of the illuminant
will be biased towards white. Color clipping is an often oc-
curring phenomena and cannot be prevented in practice.

To conclude, from an analytical approach, it can be de-
rived that using specular edges for edge-based color con-
stancy results in a close to ideal performance, because the
specular edges align with the color of the light source. How-
ever, in practice, color clipping eliminates the advantages of
specular edges and causes a significant decrease in perfor-
mance. Shadow edges contain more variation than spec-
ular edges but are still aligned with the color of the light
source. Consequently, the performance of edge-based color
constancy using shadow edges degrades slightly. However,
as material edges vary even more, their performance de-
grades even more. Although, interreflection edges vary less
than material edges, they are not aligned with the color of
the light and hence their performance is the worst. Hence,
shadow edges are the preferred type of edges for accurate
color constancy.

5. Weighted Grey-Edge Algorithm
In the previous section, it was shown that using shadow

edges results in a more accurate performance than material
edges. Therefore, in this section, the weighted Grey-Edge
algorithm is proposed based on physics principles. For now,
assume the original edge-based framework of eq. (2) to
be reduced to the first-order Grey-Edge with a Minkowski-
norm of 1, leading to a simplified version of eq. (2):

∫

|fx(x)|dx = ke, (18)

where fx(x) is the derivative of image f at a certain scale.
Then, the weighted Grey-Edge algorithm is given by:

∫

|w(fx)
κfx(x)|dx = ke, (19)

where w(fx)
κ is a weighting function that assigns a weight

to every value of fx. The power κ can be used to enforce
the differences between high weights and medium weights.
For now, we take κ = 1. Alternative values can be used
depending on the data set.



(a) Material edges (b) Shadow edges (c) Specular edges

Figure 3. Mean angular error using material edges, shadow edges and specular edges, for different clipping values.

5.1. Weighting schemes

The experiments of the previous section on a controlled
data set are extended to a real-world data set. The real-world
data set that is used for this experiment consists of 15 clips
with a total of 11, 346 images and is widely used for eval-
uation of color constancy algorithms. For all images, the
ground truth is known from a grey sphere that was mounted
on top of the camera, and this sphere was masked during the
experiments.

First, several weighting schemes are proposed, based on
the photometric edge types discussed in section 3. Using
these quasi-invariants, an edge is classified as shadow edge
if there is more energy in the shadow-shading variant Sx

than in the specular variant Ox. However, since the shadow-
shading variant Sx measures the amount of energy that is
directed towards the shadow-shading direction, this variant
can also be used directly to assign higher weights to shadow
edges. If all derivative-energy is in the shadow-shading di-
rection, then this indicates that there is a high probability
that the current edge is in fact a shadow edge. On the other
hand, if no energy is in this direction, then the current edge
is likely to be a different type of edge. Hence, the ratio of
the energy in the shadow-shading direction versus the to-
tal amount of energy can directly be used as a weighting
scheme to weight shadow edges more than other types of
edges:

ws,shadow(fx) =
|Sx|
|fx|

, (20)

where Sx is the shadow-shading variant.
Using the shadow-shading invariant would result in

higher weights for specular and material edges, and con-
sequently lower weights for shadow edges:

ws,spec.+mat.(fx) =
|Sc

x|
|fx|

, (21)

where Sc
x is the shadow-shading invariant.

Instead of using the shadow-shading variant and quasi-
invariant, the other variants and quasi-invariants can be

used. For instance, if the specular variant is used, then spec-
ular edges are assigned higher weights. By using the specu-
lar quasi-invariant more emphasis is put on the shadow and
material edges:

ws,specular(fx) =
|Ox|
|fx|

(22)

ws,shad.+mat.(fx) =
|Oc

x|
|fx|

, (23)

where Ox and Oc
x are the specular variant and quasi-

invariant, respectively. The material edges can be empha-
sized by using the shadow-shading-specular variant and in-
variant:

ws,shad.+spec.(fx) =
|Hx|
|fx|

(24)

ws,material(fx) =
|Hc

x|
|fx|

, (25)

where Hx and Hc
x are the shadow-shading-specular variant

and quasi-invariant, respectively.
Results. The proposed soft weighting schemes are eval-

uated on the complete set of 11, 346 real-world images
[8]. Results of the different soft weighting schemes, using
κ = 1, are shown in table 1(a). Differences between using
shadow-shading weighting scheme ws,shadow or the specular
weighting scheme ws,specular are small. However, assigning
higher weights to material edges (i.e. using ws,material) re-
sults in a considerably worse performance.

Influence of κ. Using the weighting schemes with a
value of κ = 1 already shows that shadow edges are
more valuable than material edges. However, by increas-
ing the value of κ, more weight is assigned to certain
edges, effectively enforcing the differences between high
and low weights. The effects of κ on the different weight-
ing schemes are shown in figure 4. It can be observed that
the shadow-shading weighting scheme benefits, while the
performance of the other weighting schemes degrades. An
optimal performance is obtained for κ = 10, resulting in a
median angular error of 4.2◦.



Weighting scheme Median ε

ws,shadow 4.5◦ −2%
ws,shadow, κ = 10 4.2◦ −9%
ws,spec.+mat. 5.8◦ +26%
ws,specular 4.4◦ −4%
ws,shad.+mat. 5.3◦ +15%
ws,material 5.4◦ +17%
ws,shad.+spec. 4.5◦ −2%

Method Median ε

Grey-World 7.0◦

White-Patch 5.3◦

Shades-of-Grey 5.3◦

Grey-Edge 4.6◦

2nd-order Grey-Edge 4.9◦

Gamut mapping 4.8◦

(a) Several soft weighting schemes (b) Comparison to state-of-the-art

Table 1. Median angular errors on the real-world set containing 1128 images, using several soft weighting schemes in table (a). The
relative performance is with respect to the regular Grey-Edge. In the different weighting schemes, κ = 1 is used unless stated otherwise.
A comparison to state-of-the-art methods is shown in table (b). The soft weighting scheme using the shadow-shading variant ws,shadow with
κ = 10 outperforms all methods on this set.

5.2. Discussion

The analysis of the influence of κ on the performance of
the different weighting schemes corresponds to the findings
of section 4, where it is shown that shadow edges are more
valuable to estimate the illuminant. Intuitively, a higher
value of κ indicates that edges with a high amount of en-
ergy in one specific direction are boosted with respect to
edges with a medium or low amount of energy in that di-
rection. Hence, in figure 4, it can be observed that boost-
ing the edges with a high amount of energy in the shadow-
shading direction is beneficial, while boosting the edges
with a high amount of energy in the specular or material
direction merely degrades performance. The intuition be-
hind these results is the fact that shadow edges in general
are less saturated. Low saturated edges are more affected
by the color of the light source than highly saturated edges,
so shadow edges relatively contain more information about
the color of the light source than non-shadow edges.

Figure 4. Median angular error of the weighted Grey-Edge using
different values for the power κ. Note the change in scale on the
y-axis for errors higher than 5, because of the large difference in
range of error when using the weights based on material edges.

Compared to current state-of-the-art, the weighted Grey-
Edge based on the shadow-shading variant ws,shadow (using
κ = 10) performs better than all other methods, see table 1.
The best-performing pixel-based method is the Grey-Edge
(e1,1,1) with a median angular error of 4.6◦. Note that for
the gamut mapping algorithm, the same implementation as
in [1] is used, with an empirically determined optimal pa-
rameter setting for the current data set. The proposed algo-
rithm using the shadow-shading weighting scheme outper-
forms these methods with a median angular error of 4.2◦,
which is an improvement of 9%. The Wilcoxon Sign Test
[21] has been computed and shows that this difference is
significant with a 99% confidence level.

In figure 5, some example results of the proposed method
are shown. Notice the reduction in angular error in the
scenes where shadows are present.

6. Conclusion
In this paper, an extensive analysis of the influence of

different edge types on the performance of edge-based color
constancy has been presented. First, it has been shown that
shadow edges are more valuable than material edges, both
on spectral data and on real-world data. Then, the weighted
Grey-Edge algorithm is proposed. It has been shown that
using a soft weighting scheme based on the shadow-shading
variant, i.e. assigning higher weights to edges with more
energy in the shadow-shading direction, resulted in the best
performance. All current state-of-the-art methods, includ-
ing pixel-based methods and edge-based methods, have
been significantly outperformed by the proposed weighted
Grey-Edge algorithm, resulting in an improvement of 9%
over the current best-performing algorithm.
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