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Abstract

Hierarchical conditional random fields have been suc-
cessfully applied to object segmentation. One reason is
their ability to incorporate contextual information at dif-
ferent scales. However, these models do not allow multiple
labels to be assigned to a single node. At higher scales in
the image, this yields an oversimplified model, since mul-
tiple classes can be reasonable expected to appear within
one region. This simplified model especially limits the im-
pact that observations at larger scales may have on the CRF
model. Neglecting the information at larger scales is unde-
sirable since class-label estimates based on these scales are
more reliable than at smaller, noisier scales.

To address this problem, we propose a new potential,
called harmony potential, which can encode any possible
combination of class labels. We propose an effective sam-
pling strategy that renders tractable the underlying opti-
mization problem. Results show that our approach obtains
state-of-the-art results on two challenging datasets: Pascal
VOC 2009 and MSRC-21.

1. Introduction

Object class image segmentation aims to assign prede-
fined class labels to every pixel in an image. It is a highly
unconstrained problem and state-of-the-art approaches fo-
cus on exploiting contextual information available around
each pixel. Similarly to [24], we distinguish three scales of
context: the local, mid-level and global scales. The local
scale, defined at the pixel or super-pixel level, is typically
represented by local image features such as color and tex-
ture. Mid-level scales also consider labels and features of
neighboring regions, and the global scale considers the en-
tire image. One of the most successful trends in object class
image segmentation poses this labeling problem as one of
energy minimization of a conditional random field (CRF)
[20, 6, 22]. In this paper we also adopt this framework but
focus on the crucial point of how to efficiently represent and
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combine context at various scales.

Representing the image at the global scale has been in-
tensively studied in the field of image classification [23,
13, 21, 3, 18]. The image is generally represented by his-
tograms over visual words, and these representations are
further enriched to incorporate, for example, spatial rela-
tionships [13]. Though local regions may also be described
by a bag-of-words defined over local features such as color,
texture or shape, the complex representations that have con-
siderably improved image classification performance can-
not be expected to improve local region classification. The
reason is that these regions lack the complexity encountered
at larger scales. Therefore, in contrast to existing CRF-
based methods [17, 8, 22] we propose to adapt the classi-
fication method to the scale of the region. In particular, we
use methods investigated by the image classification com-
munity to improve classification at the global scale. An ad-
ditional advantage is that for training at the global scale we
only require data labelled with a whole-image label. This
type of label information is more abundantly available than
the more expensive, hand-segmented ground-truth required
for learning at the local and mid-scale scales.

Verbeek and Triggs [22] proposed to use global scale in-
formation to improve estimation at local scales. However,
they use the same image representation regardless of scale.
The use of image classification results was also used by
Csurka et al. [3] to reduce the number of classes to con-
sider in an image. In addition to image classification, shape
priors have been investigated in order to guide the segmen-
tation process [10]. Bounding boxes obtained from detec-
tion classifiers have been used as well as a prior for the seg-
mentation [14]. Finally, Li ez al. [15] employ the user tags
provided by Flickr as an additional cue to infer the presence
of an object in the image.

As mentioned before, CRFs are theoretically sound
models for combining information at local and mid-level
scales [20, 11]. A smoothness potential between neighbor-
ing nodes models the dependencies between regions. How-
ever, since nodes at the lowest scale often represent small
regions in the image, labels based only on their observations
can be very noisy. Generally the final effect such CRFs is



merely a smoothing of local predictions. To overcome this
problem, hierarchical CRFs have been proposed in which
higher level nodes describe the class-label configuration of
the smaller regions [17, 8, 24]. One of the main advantages
of this approach is that mid-level context is based on larger
regions, and hence can lead to more certain estimations.

A drawback of existing hierarchical models is that to
make them tractable they must be oversimplified by allow-
ing regions to have just a single label [17], or in a more
recent paper, an additional free label which basically can-
cels the information obtained at the larger scales [8]. Even
though these models might be valid for the lower mid-level
scales close to the pixel level, they do not model very well
the higher mid-level scales. At the highest scales, far away
from pixels, they impose a rather unrealistic model since
multiple classes appear together. The free label does not
overcome this drawback because it does not constrain the
combinations of classes which are not likely to appear si-
multaneously in one image. To summarize: the requirement
to obtain tractable CRF models has led to oversimplified
models of images, models which do not properly represent
real-world images.

In this paper we present a new CRF for object class im-
age segmentation that addresses the problems mentioned
above. Our model is a two-level CRF that uses labels, fea-
tures and classifiers appropriate to each level. The lowest
level of nodes represents superpixels labeled with single la-
bels, while a single global node on top of them permits any
combination of primitive local node labels. A new consis-
tency potential, which we term the harmony potential, is
also introduced which enforces consistency of local label
assignment with the label of the global node. We propose an
effective sampling strategy for global node labels that ren-
ders tractable the underlying optimization problem. Exper-
iments yield state-of-the-art results for object class image
segmentation on two challenging data sets, namely Pascal
VOC2009 and MSCR-21.

2. Consistency Potentials for Labeling Prob-
lems

In this section we present a CRF that jointly uses global
and local information for labeling problems. Although sev-
eral labeling approaches have used this idea in the past
[17, 12, 10], they differ in the definition of the relationship
between the local and global parts. Let G = (V, £) be the
graph that represents our probabilistic model, where the set
V is used for indexing random variables, and £ is the set
of undirected edges representing compatibility relationships
between random variables. We use X = {X; } to denote the
set of random variables or nodes, where ¢ € V. Let C rep-
resent the set of maximal cliques, i.e. the set of maximal
complete subgraphs. Then, according to the Hammersley-

Clifford theorem, the probability of a certain configuration
can be written as the normalized negative exponential of an
energy function E(x) = ) . ¢c(Xc), Where @, is the po-
tential function of clique ¢ € C. The optimal labeling x*
is obtained by inferring the Maximum a Posteriori (MAP)
probability, or, equivalently, by minimizing the global en-
ergy:

x* = argm}inE(x). (1)

In our approach, in order to relate global and local in-
formation, we designate one random variable for the global
node and one for each local node. Thus, V = Vg U Vy,
where Vg = {g} is the index associated with the global
node, and V;, = {1,2,..., N} are the indexes associated
with each local node. All of these random variables take
a discrete value from a set of labels £ = {l1,l,...,lp}.
Analogously, we define two subsets of edges: £ = EgUEL.
The set of global edges g connects the global node X,
with each of the local nodes X;, for ¢ € V. The set of
local edges &, is the pairwise connection between the local
nodes.

The energy function of graph G can be written as the
sum of the unary, smoothness and consistency potentials,
respectively:

Z¢($i)+ Z wL(l’i,l’j)—l— Z wg(mi,mg). 2)

eV (4,J)€€L (i,9)€€c

The unary term ¢(x;) depends on a single probability
P(X; = z;]0;), where O, is the observation that affects
X; in the model. The smoothness potential ¢, (x;, x;) de-
termines the pairwise relationship between two local nodes.
It represents a penalization for two connected nodes having
different labels, and usually depends also on an observation.
The consistency potential ¥ (x;, z4) expresses the depen-
dency between the local nodes and the global node.

Some authors used the graphical model G as the basic
structure to be repeated recursively in a hierarchical graph
[17, 12]. In this paper we review the Potts and the robust
PN _based consistency potentials, which were used in a hi-
erarchical CRF for segmentation. Then, we define a new
one that we call harmony potential. Figure 1 briefly illus-
trates the characteristics of the different CRF models com-
pared in this paper.

Potts Potential. In the basic graph used to build the tree
structured model of Plath et al. [17]', the consistency po-
tential is defined as a Potts model:

Ve, xg) = YTl # 4], 3)

where T[] is the indicator function and ~} is the cost of
labeling x; as [. Since this potential encourages assigning

! Although the model of Plath ef al. [17] does not have a smoothness
term, we can understand its basic graph as a specific instance of G.
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(a) Ground truth (b) No global potential

(c) Potts
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(d) Robust PN -based (e) Harmony potential

Figure 1. Example of the penalization behavior of four different CRF models for a labeling problem with labels {blue, green, orange},
where (a) is the ground-truth. (b) Without consistency potentials only the smoothness potentials penalize discontinuities in the labeling. (c)
The Potts consistency potential adds an extra penalization (indicated in red) for each label different from the global node. (d) The Robust
PY _based potential, when the global node takes the “free label”, does not penalize any combination of labels. (¢) The harmony potential,
which allows combinations of labels in the global node, correctly penalizes the orange labeling if the global node takes label {blue, green}.

the same label as the global node to all the local nodes, this
potential is unable to support any kind of heterogeneity.
Robust P -Based Potential. Ladicky et al. [12] show that
the robust PV potential defined in [8] can be understood
as the sum of the pairwise connections between global and
local nodes. In this case, the global node has an extended
label set L¥ = £ U {ir}, where [, which stands for “free
label”, means that any possible label in £ can be assigned
to local nodes with cost:

ifex,=Ilporzx, =ux;
0 ifzy=lpore,
7t otherwise, where | = x;

v = { @
The model is recursively used to build up a hierarchical
graph for object segmentation.

This potential enforces labeling consistency when the

vast majority of local nodes have the same label and, un-
like the Potts model, does not force a certain labeling when
the solution is heterogeneous. However, in the heteroge-
neous case, not applying any penalization is not always the
best decision. When a particular subset of labels £ C L
appears in the ground-truth and z, = [p, the robust P"-
based potential will not penalize any assigned label not in
the subset /.
Harmony potential. In this work we introduce a new con-
sistency potential, which we call the harmony potential.
The harmony potential generalizes the robust PV -based po-
tential, which is itself a generalization of the Potts poten-
tial. As in music harmony describes pleasant combinations
of tones when played simultaneously, here we employ this
term to describe likely combinations of labels.

Let £ = {ly,ls,...,lp} denote the set of class labels
from which local nodes X; take their labels. The global
node X, instead, will draw labels from P(L), the power
set of L, defined as the set of all subsets of L. In this con-
text it is intended to represent all possible combinations of
primitive labels from £. This expanded representation ca-
pability is what gives the harmony potential its power, al-
though its cardinality 2!*! renders most optimization prob-
lems over the entire label set for the global node hope-

lessly intractable. In the sequel, we propose a ranked sub-
sampling strategy that effectively reduces the size of the la-
bel set that must be considered.

P(L) is able to encode any combination of local node
labels, and the harmony potential subsequently establishes
a penalty for local node labels not encoded in the label of
the global node. The harmony potential is defined as:

Ve(wi, xg) = Y Tlxi ¢ z4). &)

Notice that we apply a penalization when z; is not encoded
in x4, but not when a particular label in x, does not appear
in the z;.

Analyzing the definition of the robust P -Based poten-
tial in Eq. (4), we see that [ is essentially a “wildcard”
label that represents any possible label from L. Setting
zg = L € P(L) in the harmony potential in Eq. (5) sim-
ilarly applies no penalty to any combination of local node
labels, since I € x, = L for anylocal label I. In this way the
harmony potential generalizes the robust P™V-Based poten-
tial by admitting wildcard labels at the global node, while
also allowing concrete and heterogeneous label combina-
tions to be enforced by the global node.

However, the use of the power set P(L) as the global
node label set is also the main drawback of the harmony
potential. In most interesting cases optimizing a problem
with 212 possible labels is intractable. In the next section
we describe how to select the labels of the power set that
are the most likely to appear in the optimal configuration.

The incorporation of global information through the har-
mony potential is novel with respect to existing techniques
exploiting image-level priors such as [19]. While such tech-
niques rely on the image classification scores, our prob-
abilistic framework incorporates the uncertainty of classi-
fication with the selected labels of local nodes in a joint-
probabilistic manner.



3. Ranked subsampling of P (L)

We have shown that the harmony potential can be used to
specify which labels are likely to appear in the local nodes,
and it also gives rise to a model with which we can infer
the most probable combinations of local node labels. This
in turn allows us to establish a ranking of subsets that prior-
itizes the optimization over the 2!/ possible labels for the
global node.

Optimizing for the best assignment of global label z
implies maximizing P(¢ = x;|O). This is very difficult in
practice due to the 2/4| possible labels and the lack of an
analytic expression for P(¢ = z;|O). Instead of working
directly with this posterior, we base the selection of which
labels are better to use for inferring a solution on the proba-
bility that a certain label ¢ € P (L) appears in x*, given all
the observations O required by the model. This is done by
the following approximation of the posterior:

P(¢ C a%|0) o P(£ C 2)P(O}¢ C 7). 6)

This approximation allows us to effectively rank possible
global node labels, and thus to prioritize candidates in the
search for the optimal label x. This is done by picking the
best M’ < 2|£1 subsets of £ that maximize the posterior in
Eq. (6). The posterior P(¢ C z;|O) establishes an order
on subsets of the (unknown) optimal labeling of the global
node z that guides the consideration of global labels. We
may not be able to exhaustively consider all labels in P (L),
but at least we consider the most likely candidates for =
The two terms of Eq. (6) are:

*
g°

e Prior: P(¢ C z). We can approximate this proba-
bility from the ground-truth of the training set Z: it is
approximated by a histogram of the number of models
where the set ¢ appears encoded in the ground-truth,
ie. )

P(LC o)~ 4 > T Ct], (7)

I,eT

where K is the normalization factor, and té is the
ground-truth label of the global node for the training
image I; € 7.

Note that this prior has the advantage that it incorpo-
rates semantic co-occurrence of classes: buses do not
occur with televisions, though they do occur quite of-
ten with cars.

e Likelihood: P(O|¢ C z}). Due to the high dimension-
ality of O, the estimation of the likelihood is indeed
challenging. To overcome this problem, we propose
the following approximation:

POl C zg) = P(Oy|l C xy), ®

where O, are the only observations that influence the
global node in the model. Notice that Eq. (8) only takes
into account the observations of the global node indi-
vidually, and discards any relationship between it and
the other random variables. In order to facilitate the
computation of this probability, we can design a func-
tion that computes P(Oy|¢ C ;) using probabilities
that only involve labels in £. In our case, we propose
to choose the most pessimistic likelihood given that a
single label [y, € £ is encoded in x:

P(O4|t C ry) ~ min {P(Og\lk € x;)} 9)
k|l el

in {P(l € z5|0g)} . 10
o min {P(l; € 2(|0p)}.  (10)
Observe that Eq. (10) follows from the assumption that
labels in £ are equiprobable. Since x, tends to cor-
respond to the ground-truth, P(lx € z}|Oy4) can be
estimated as the probability that label [, appears in

the ground-truth knowing the global observation, i.e.
P(Zk S Xg\Og).

It can be easily shown that if (1,05 € P(L), with
{1 C {5, and assuming the approximations in Eq. (7) and
Eq. (10), then

P(t, C #]0) > P(t, C 71|0). (1)

This property can be exploited to select the best M’ labels
with the maximum computed P(¢ C x;|O) by any branch-
and-bound-like algorithm. If the branching is done by in-
crementing the number of encoded labels of each candidate
label, then Eq. (11) can be used to massively prune away
large sets of candidates.

4. Joint Classification and Segmentation

Now that we have described the general structure of
the graphical model G, in this section we address how
we specialize it to solve the problem of joint segmenta-
tion and classification of images. For more implementation
specificities we refer the reader to Section 5.1. The local
nodes X represent the semantic labeling of superpixels (i.e.
groups of pixels) obtained with an unsupervised segmenta-
tion method. Since all pixels inside a superpixel take the
same label, an oversegmentation of the image is required in
order to avoid having two different objects in the same su-
perpixel. We establish a smoothness potential between local
nodes that share a boundary in the unsupervised segmenta-
tion. The global node X represent the semantic classifi-
cation of the whole image. It is connected by the harmony
potential to each local node X;.

The unary potentials ¢(x) are derived from classifica-
tion scores obtained using a bag-of-words representation
over the region represented by the node. We differentiate



between the computation of the unary potentials of the lo-
cal nodes ¢y, (zy), where i € Vr, and of the global node
pc(zg).
Local Unary Potential. The unary potential of the local
nodes is:

or(x;) = —prKwr (x;)log P(X; = x;]0;),  (12)

where p 7, is the weighting factor of the local unary poten-
tial, K; normalizes over the number of pixels inside super-
pixel 4, and wy (x;) is a learned per-class normalization.
P(X; = ;]0;) is the classification score given an ob-
served representation O; of the region, which is based on
a bag-of-words built from features of superpixel ¢ and those
superpixels adjacent to it. These classifiers are trained for
each label independently of the others.

The aim of wy,(z;) is to calibrate the confidence in the
output of each classifier. One of the main drawbacks of
learning independent classifiers for multi-class problems
is that at some point we have to merge the classification
scores. Since each classifier is trained independently, it is
not taken into account the bias between classes. This effect
is more noticeable when the number of training samples of
each class is unbalanced. In the learning stage, we find the
wr,(x;) that properly normalize each class. We found this
to significantly improve results.

Often, object classifiers are trained to differentiate ob-
jects from one class from any other class. However, the
harmony potential will already take care of penalizing the
coexistence of objects from classes which are not likely to
be in that image. Hence, the superpixel classifiers do not
need to be so general, and can be specialized on discrimi-
nating between a certain object class and just those classes
of objects which appear simultaneously in the same image.
This means that the negative examples of the training set
are just the superpixels of another class in the same image.
In that way, the training data does not need to contain the
variability encountered in the whole dataset.

In our implementation we have no nodes representing
mid-level scales in the image. To also benefit from the con-
text at the mid-level we investigated extending the represen-
tation at the local scale with mid-level context information.
Fulkerson et al. [5] have shown that a single bag-of-words
extracted not only inside of the superpixel, but also in the
area adjacent to it, is able to better describe the superpixel.
In this paper, we propose to consider two different bag-of-
words: one for the superpixel and another for the region
adjacent to it, in order to finally concatenate both descrip-
tors. In that way, despite doubling the dimensionality of
the descriptor, our method is able to be more discriminative
than [5], specially at boundaries. In table 1 results of these
two strategies are summarized, showing that concatenating
mid-level information yields a 3% gain on the Pascal VOC
2009 dataset.

Distance (inpixels) [ 0 [ 10 | 50 | 100
Summation [5] | 20.0 | 24.7 | 25.5 | 24.1
Concatenation | 20.0 | 26.5 | 27.6 | 27.7

Table 1. Results on the validation set of Pascal VOC 2009 for dif-
ferent mid-level context sizes (in pixels). See [4] for evaluation
criteria details. Effect of the size of the area adjacent to the super-
pixel to build the bag-of-words, before per class normalization is
applied.

Global Unary Potential. The global unary potential is de-
fined as:

bc(rg) = —powa(zg) log P(X, = 24|0y), (13)

where u¢ is the weighting factor of the global unary poten-
tial, and wg(x4) is again a per-class normalization like the
one used in the local unary potential. The main difference
comes from the computation of P(X,; = x4|0,), which is
the posterior:

P(Xg = 14[Og) o P(Og|Xy = 24) P(Xy = z4). (14)

The prior P(X, = z4) can be approximated by the fre-
quency that label x, appears in the ground-truth image of
the training-set, i.e. Y, .y T[x, = t}]. Since learning
P(O,4|X, = z,) for each combination of labels is unfeasi-
ble, we employ the same approximation here as in Eq. (9)
and Eq. (10), where we use the most pessimistic likeli-
hood knowing which combinations of labels are present and
which not:

P(Oy4| Xy =124) x min{ min {P(lp ¢ X4|04)},
k"‘lkéwg

min {P(l; € Xg|Og)}} , (15)
kllp€xy

where P(l, ¢ X410,) = 1 — P(ly, € X,4|04). P(ly €

X4|Oy) is the classification score given the representation

O, of the whole image, which is based again on a bag-of-

words. The per class normalization factor wg () is deter-

mined by the most pessimistic Iy, i.e. the [, which gives the

minimum of Eq. (15).

Smoothness Potential. The smoothness term is given by

Q/JL(ZL’i,l'j) = ALKUG(CU)T[;LQ 7é ZL’j] (16)

where Ay, is the weighting factor of the smoothness term,
K;; normalizes over the length of the shared boundary be-
tween superpixels, and ¢;; = ||¢;—¢;|| is the norm of the dif-
ference of the mean RGB colors of the superpixels indexed
by 7 and j. In our case, instead of relying on a predefined
function to relate the smoothness cost with the color differ-
ence between superpixels, we use a learned set of parame-
ters 6 as modulation costs. Thus, unlike other approaches,



we discretize in several bins the possible values of ¢;; and
the parameter 6(c;;) is learned in order to establish a more
accurate potential.

Harmony Potential. We take into account the classification
score of the whole image P(X, = z,4]Oy) to define the
penalization applied by the consistency potential in Eq. (5):

'Yf = = A¢Ki(Ymin + WG(xg) 10gP(Xg = $g|og)) (17)

where A\ is the weighting factor of the consistency term,
K; normalizes over the number of pixels contained in the
superpixel ¢, and 7,4, is the minimum penalization applied
which is set to 1.

Learning CRF Parameters. Learning the several parame-
ters of the CRF potentials is a key step to attain state-of-the-
art results on the labeling problem. We learn the parameters
of the different potentials by iterating a two-step procedure
until convergence. In the first step, we train the weight-
ing factors of the potentials A\, A, pr, (tg, while in the
second step we learn the local and global per class normal-
ization wr, (1) and wg(1). These two sets of parameters are
quite decoupled, and this division reduces the size of the pa-
rameter space at each step. New samples are obtained with
a simple Gibbs-like sampling algorithm, where we vary a
single parameter at a time.

5. Experiments

We evaluate our method on two of the most chal-
lenging datasets for object class segmentation: the Pascal
VOC 2009 Segmentation Challenge [4] and the MSCR-21
Dataset [20]. VOC 2009 contains 20 object classes plus
the background class, MSCR-21 contains 21 classes. The
Pascal dataset focusses on object recognition, and normally
only one or few objects are present in the image, surrounded
by background. On the other hand, the MSCR-21 contains
fully labeled images, where the background is divided in
different regions, such as grass, sky or water. After giving
the most relevant implementation details, we discuss the re-
sults obtained on both datasets.

5.1. Implementation

Unsupervised Segmentation. Regions are created by over-
segmenting the image with the quick-shift algorithm using
the same parameters as Fulkerson et al. [5]. Asitis stated in
that paper, the results of this segmentation preserve nearly
all the object boundaries. By working directly on the super-
pixels level instead of the pixel level, the number of nodes
in the CRF is significantly reduced, typically from 10° to
102 per image. Therefore the inference algorithm converges
drastically faster.

Local Classification Scores P(X; = z;|O;). We extract
patches over a grid with 50% of overlapping at several
scales (12, 24, 36 and 48 pixels of diameter). These patches

are described by shape features (SIFT) and by color features
(RGB histogram). In the case of MSCR-21 the location fea-
ture is also added, using a 5 x 5 grid. In order to build
a bag-of-words representation, we quantize with K-means
the shape features to 1000 words and the color features to
400 words.

We use a different SVM classifier with intersection ker-
nel [16] for each label to obtain the classification scores.
Each classifier is learnt with a similar number of positive
and negative examples: around a total of 8.000 superpixel
samples for MSCR-21, and 20.000 for VOC 2009 for each
class.

Global Classification Scores P(X, = z,|O,). In the case
of VOC 2009, the global classification score is based on a
comprehensive image classification method. We use a bag-
of-words representation [23], based on shape SIFT, color
SIFT [21], together with spatial pyramids [13] and color
attention [18]. Furthermore, the training of the global node
only requires weakly labeled image data, and can therefore
be done on a large set of 7054 images. In the case of MSCR-
21, we use a simpler bag-of-word representation based on
SIFT, RGB histograms and spatial pyramids [13]. In both
methods, we use an SVM with x2 kernel as a classifier.
Inference. The optimal MAP configuration x* can be
inferred using any popular message passing or graph cut
based algorithm. In all the experiments we use a-expansion
graph cuts® [9]. The global node uses the M’ first most
probable labels obtained in the ranked subsampling. We set
M’ to a value such that no significant improvements are ob-
served beyond it. We set M’ = 100 for all experiments. The
average time to do MAP inference for an image in MSCR-
21 is 0.24 seconds and in VOC 2009 is 0.32 seconds.

CRF Parameters. Regarding the smoothness potential, we
use seven bins to discretize ¢;;, where for each c;; bin we
respectively set §(c;;) = {200, 100, 80, 20, 10, 5, 0}.

In MSCR-21 we do the learning of the CRF parameters
over a 5-fold cross-validation of the union of training and
validation sets. The parameters obtained are A\g = 10, Ay, =
0.7, ur, =7, pe = 50. In the case of VOC 2009, we use the
available validation set to train the CRF parameters. The
parameters are A\g = 10, A, = 0.2, up, = 5, ug = 11.
Since the background class always appears in combination
with other classes, we do not allow the harmony potential
to apply any penalization to the background class.

5.2. Results

MSCR-21. In Table 2, our results are compared with other
state-of-the-art methods. Furthermore, we show the results
without consistency potentials and those obtained with ro-
bust PN -based potentials.

2Qur implementation uses the min-cut/max-flow libraries provided by
Boykov and Kolmogorov [1].



Figure 2. Qualitative results for the MSCR-21 Dataset.
tials, and(d) harmony potentials. (e) ground-truth images.
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Shottoneral. [19] | 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67

Jiangand Tu[7] | 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13 78 68

Pixel-based CRF[12] | 73 92 85 75 78 92 75 76 8 79 87 96 95 31 81 34 84 53 61 60 15 81 72
Hierarchical CRFeral. [12] | 80 96 86 74 87 99 74 87 86 87 82 97 95 30 8 31 95 51 69 66 09 86 75
w/o Consistency Potential | 70 92 83 67 54 93 66 71 63 64 8 66 39 28 75 42 8 60 26 52 12 74 61
Robust PY Based Potentials | 52 79 74 80 86 80 88 66 65 75 97 88 81 36 8 50 65 85 23 61 35 72 69
Harmony Potential | 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 77 175

Table 2. MSRC-21 segmentation results. The average score provides the per-class average. The global scores gives the percentage of

correctly classified pixels.

The results show that without consistency potentials we
obtain a baseline of only 61% due to the simple features
used, while [12] obtains a considerably better 72%. From
our baseline, the harmony potentials are able to improve by
15%, whereas the robust P -based potentials by 8%. We
believe this improvement is due to the fact that harmony
potentials better model the heterogeneity of images. Our
parameters are optimized on the per-class average score, on
which we obtain state-of-the-art results. The results are es-
pecially remarkable for some of the difficult object classes
such as birds and boats.

In Figure 2 we provide segmentation results for different
potentials. In the first three rows the robust P™V-based po-
tentials are unable to deal with noisy multiclass problems.
By assigning the free label to the global node, no penal-
ization is applied and the behavior is similar to using no
consistency potential at all. The harmony potentials suc-
cessfully exploit the more reliable estimates based on the
whole image to improve classification at the lower scale.
Pascal VOC 2009. In Table 3 the results on the Pas-
cal VOC 2009 datasets are summarized. We only provide
the results of the winners BONN SVM-SEGM [2] and the
method most similar to ours BROOKESMSRC [12], which
obtained state-of-the-art results on MSRC-21. Our method
obtained best results on 6 out of the 20 classes in the Pascal
VOC 2009 challenge.

Our method outperforms the hierarchical CRF method
on all but three classes. Comparing the results of the two
methods on the two datasets, it can be observed that we
outperform the hierarchical CRFs especially for the object
classes in the MSRC-21 data set. Since the PASCAL chal-
lenge only contains object classes, we significantly outper-
form them on this set.

In Figure 3 segmentation results are depicted. The re-
sults show that harmony potentials are able to deal with
multiclass images, partial occlusion, and to correctly clas-
sify the background.

6. Conclusions

We have presented a new CRF model for object class im-
age segmentation. Existing CRF models only allow a sin-
gle label to be assigned to the nodes representing the image
at different scales. In contrast, we allow the global node,
which represents the whole image, to take any combination
of class labels. This allows us to better exploit class-label
estimates based on observations at the global scale. This
is especially important because for inference of the global
node label we can use the full power of state-of-the-art im-
age classification techniques. Experiments show that our
new CRF model obtains state-of-the-art results on two chal-
lenging datasets.



Figure 3. Qualitative results of Pascal VOC 2009. The original image (top) and our successful segmentation result (bottom).
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BONN SVM-SEGM [2] 83.9 64.3 21.8 21.7 32.0 40.2 57.3 494 38.8 5.2 28.5 22.0 19.6 33.6 45.5 33.6 27.3 404 18.1 33.6 46.1 | 36.3
BROOKESMSRC AHCRF [12] 79.6 483 6.7 19.1 10.0 16.6 32.7 38.1 25.3 55 9.4 25.1 133 123 355 20.7 134 17.1 184 37.5 364 | 24.8
Harmony potential 80.5 62.3 24.1 28.3 30.5 32.7 42.2 48.1 22.8 9.1 30.1 7.9 21.5 41.9 49.6 31.5 26.1 37.0 20.1 39.4 31.1 | 34.1

Table 3. Pascal VOC 2009 segmentation results. Comparison with state-of-the-art methods. See [4] for evaluation criteria details. Note
that these results are slightly different than those submitted for Pascal VOC Challenge 2009.
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