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We describe an equivalence of categories between the category of mixed Hodge structures and a category of
equivariant vector bundles on a toric model of the complex projective plane which verify some semistability
condition. We then apply this correspondence to define an invariant which generalizes the notion of R-split
mixed Hodge structure and give calculations for the first group of cohomology of possibly non smooth or non-
complete curves of genus 0 and 1. Finally, we describe some extension groups of mixed Hodge structures in
terms of equivariant extensions of coherent sheaves.
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1 Introduction

The purpose of this note is to give a geometric equivalent of the notion of mixed Hodge structure. A mixed
Hodge structure is, roughly speaking, the data of a vector space endowed with three ordered filtrations which
are in a certain relative position called opposed. There are two equivalent ways to associate to it an equivariant
vector bundle on the projective plane. One can apply, on a toric model of P2 , the general correspondence due
to Klyachko [10], which gives an equivalence of categories between the category of equivariant vector bundles
on a toric variety and certain sets of filtrations on vector spaces. On the other hand, one can adopt the Rees’s
philosophy of associating a graded ring to a ring filtered by a chain of ideals. Starting with a trifiltered vector
space, we construct, for each pair of filtrations, a Rees module whose associated coherent sheaf on the standard
affine open set of the projective plane is locally free and equivariant for the natural action of a 2-dimensional
torus. The descriptions agree on the intersections of the affine planes, which yields an equivariant locally free
sheaf on P2 , called the Rees bundle associated with the trifiltered vector space. This construction, together with
its inverse, yields an equivalence of categories.

This equivalence still holds when one enriches the structure of the objects involved. The geometric translation
for the filtrations to be opposed is a strong semistability condition for the corresponding vector bundles. It is
worth noting that no new vector bundle on the projective plane arises in this way since these bundles are instanton
bundles in the sense of [13]. We do not deal with this last point here.

The idea of performing the construction of Rees bundles, which involves the three filtrations underlying a
mixed Hodge structure, has a double origin: Simpson’s construction of mixed twistor structures associated to the
Hodge and the conjugate filtrations on the projective line in [20], [21], and Sabbah’s construction of Frobenius
manifolds in [18], where families of vector bundles on P1 associated to the Hodge and weight filtrations of a
variation of mixed Hodge structure are involved.

The motivation for handling the three filtrations simultaneously is twofold. A Rees bundle on P2 takes into
account the relative position of the Hodge filtration and its conjugate and, on the other hand, it captures all the
extension data of the mixed Hodge structure contained in the weight filtration.
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Beyond his theoretical interest, the translation of the notion of mixed Hodge structure into the language of
coherent sheaves aims at being the first step towards an understanding of limits of variations of Hodge structure
in terms of compactification of moduli spaces of sheaves. The next step, namely a correspondence between
variations of mixed Hodge structures and families of Rees bundles, will be the subject of a forthcoming paper.

This paper is organised in six parts. In Section 2, we recall equivalences between categories of equivariant
coherent sheaves and categories of sets of filtrations. The core of this work is Section 3, where we translate
geometrically special structures with which the filtrations are endowed. Section 4, in which we define the R-split
level, is a direct application of Section 3 to filtered vector spaces arising from Hodge theory. Some computations
of R-split levels are done in Section 5, and Section 6 deals with extensions of mixed Hodge structures.

2 Filtrations and equivariant sheaves

Let k be an algebraically closed field and let V be a finite-dimensional k-vector space endowed with n decreasing
filtrations F •

1 , F •
2 , . . . , F •

n . The object (V, F •
1 , F •

2 , . . . , F •
n ) is called a n-filtered vector space. A filtration F • of

a vector space V is said to be complete if there exists two integers m,n such that Fm = V and Fn = {0}. All
the filtrations we shall consider will be complete.

A morphism f : (V, F •
1 , F •

2 , . . . , F •
n ) → (V ′, G•

1 , G
•
2 , . . . , G

•
n ) between two n-filtered vector spaces is a

morphism of vector spaces f : V → V ′ which is filtered, or compatible with the filtrations, namely, for any
integers i and p, f

(
Fp

i

)
⊂ Gp

i .
We shall denote by Cnf iltr the category whose objects are finite-dimensional n-filtered vector spaces and

whose morphisms are filtered morphisms. We will particularly focus on the case n = 3.

2.1 Equivariant sheaves on toric varieties

We denote by P2
k a toric model of the projective plane and by T the algebraic torus which acts on it. The starting

point of the correspondence we shall establish is the

Theorem 2.1 ([10], [14], [16]) There is an equivalence of categories between the category of finite-dimensional
vector spaces endowed with 3 complete decreasing filtrations, C3f iltr , and the category whose objects are equiv-
ariant vector bundles of finite rank and whose morphism are equivariant morphisms, Bun

(
P2

k/T
)
.

Although independently proven in [15] by using Rees’s construction, which we shall detail further on, this
theorem is a direct application to the projective plane of Klyachko’s previous correspondence, generalized by
Perling, between equivariant vector bundles on toric varieties and certain sets of filtrations of vector spaces (see
[10, Theorem 2.2.1] and [16, Theorem 5.19]).

In order to establish in the next section the parallel with the Rees construction on the projective plane the
author used in [15], we briefly describe this correspondence with the formalism derived in [16]. Let XΔ be a toric
variety associated to some fan Δ (we refer to [8] for notations and basic facts on toric varities), namely, here,
a normal reduced and separated scheme of finite type over Spec(k) which contains an algebraic torus T as an
open dense subset such that the action of the torus on itself by multiplication extends to an action of the algebraic
group T on XΔ . We denote by M the character group of the torus, which we identify with ZdimT . Let E be an
equivariant quasicoherent sheaf over XΔ . Then, on each affine T-invariant open subset Uσ , σ ∈ Δ, the action
induces a decomposition of the module of section into T-eigenspaces

Γ(Uσ , E) =
⊕

m∈M

Γ(Uσ , E)m .

The structure of the semigroup of M associated with σ, σM , induces a preorder on M by setting
m ≤σM

m′ iff m′ − m ∈ σM . The module structure over the coordinate ring of Uσ , k[σM ], yields maps
Γ(Uσ , E)m → Γ(Uσ , E)m ′ by multiplication by the character χ(m′ − m) provided m ≤σM

m′. The vector
spaces Γ(Uσ , E)m together with the morphisms given by the characters form a directed family of vector spaces
with respect to the preorder which is called a σ-family in [16].

Each σ ∈ Δ furnishes such a family and, reciprocally, a set of σ-families associated with all σ ∈ Δ gives
a system of sheaves which glue to form an equivariant sheaf on XΔ , provided they fulfill certain compatibility
conditions. Such a set of σ-families is referred to as a Δ-family. This construction provides an equivalence of
categories between equivariant quasicoherent sheaves over XΔ and Δ-families [16, Theorem 5.9.]
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It turns out that if E is coherent and torsion free, the eigenspaces Γ(Uσ , E)m are finite-dimensional and all
the morphisms involved in the corresponding Δ-family are injective, which allows us to express it in terms of
(increasing) filtrations of a certain vector space. Moreover, equivariant reflexive sheaves, and hence locally free
sheaves on toric curves or surfaces, correspond to vector spaces with complete filtrations associated with each
ray in Δ, namely with each cone of dimension 1 of the fan Δ [16, Theorem 5.19].

2.2 Rees construction

Let (V, F •
1 , F •

2 ) be an object of C2f iltr . The k[x, y]-submodule of the k[x, y]-module k[x±1 , y±1 ]⊗k V generated
by the elements of the form x−py−q .v, where v ∈ Fp

1 ∩Fq
2 , is called the Rees module associated with (V, F •

1 , F •
2 )

and is denoted by R(V, F •
1 , F •

2 ). Since one can always find a splitting of a 2-filtered vector space which is
compatible with both filtrations, R(V, F •

1 , F •
2 ) is free. Hence, the associated coherent sheaf by the functor ∼

on A2
k = Spec k[x, y] is locally free. It is the subsheaf of j∗(V ⊗ OU ) generated by the sections of the form

x−py−q .v, where v ∈ Fp
1 ∩ Fq

2 and j : U = Spec k[x±1 , y±1 ] → Spec k[x, y] is the inclusion map.
Moreover, the comodule action of k[s±1 , t±1 ] on R(V, F •

1 , F •
2 ), given by the morphism

R(V, F •
1 , F •

2 ) −→ k[s±1 , t±1 ] ⊗k R(V, F •
1 , F •

2 ) defined by xpyq .v 	−→ tpsq ⊗ xpyq .v

allows us to endow the corresponding locally free sheaf with an action of the torus G2
m = Spec k[s±1 , t±1 ].

Note that, once endowed with the action of the affine group G2
m , the affine variety A2

k is isomorphic to the
affine toric variety associated with the (convex) cone σ in NR = N ⊗Z R generated by the rays ρ0 = (1, 0) and
ρ1 = (0, 1), where N = Z2 . Consider now the pair of increasing filtrations (F 1

• , F 2
• ) of V canonically associated

with (F •
1 , F •

2 ) by letting, for each p ∈ Z, F i
p = F−p

i , i ∈ {1, 2}. The bifiltered vector space (V, F 1
• , F 2

• )
corresponds to the data of a family of complete filtrations associated which each ray in σ.

Lemma 2.2 The locally free sheaves on A2
k associated with, on the one hand, the σ-family, and, on the other,

the Rees module which corresponds to the bifiltered vector space (V, F •
1 , F •

2 ), are isomorphic as equivariant
sheaves for the action of G2

m .

P r o o f. Remark that both locally free sheaves are respectively isomorphic to
(⊕

mi ∈C χ(mi).k[σM ]k(mi )
)∼

and
(⊕

mi ∈C k[x, y](−mi)k(mi )
)∼

, which are isomorphic; here C is the finite set of characters mi of the torus

such that k(mi) = dimkGr
F 1

•
〈mi ,ρ0 〉Gr

F 2
•

〈mi ,ρ1 〉V = dimkGr
−〈mi ,ρ0 〉
F •

1
Gr

−〈mi ,ρ1 〉
F •

2
V 
= 0, where 〈 , 〉 refers to the

canonical pairing between N and its dual lattice M . The fact that the actions of the torus coincide provides the
result.

Consider now the fan Δ in NR generated by the rays ρ0 , ρ1 and ρ2 = (−1,−1). The associated toric variety
is the projective plane P2

k . Let T be the group acting on it and let (V, F •
0 , F •

1 , F •
2 ) be an object of C3f iltr .

When associating with it the corresponding vector space endowed with increasing filtrations, one gets a Δ-family
of complete filtrations asscociated with each ray in Δ which corresponds to an equivariant locally free sheaf
on P2

k .
On the other hand, one can perform the above Rees construction for each pair of filtrations (F •

i , F •
j ), i < j.

This yields an equivariant sheaf on each standard affine open set A2
ij = Spec k

[
ui

ul
,

uj

ul

]
, i < j, {i, j, l} =

{0, 1, 2}, of the projective plane P2
k = Proj k[u0 , u1 , u2 ]. According to Lemma 2.2, since the σ-families associ-

ated with each pair of filtrations form a Δ-family, these locally free sheaves glue together and give an equivariant
locally free sheaf isomorphic to the one yielded by the Klyachko-Perling correspondence. Following [15], we
shall call it the Rees bundle associated with (V, F •

0 , F •
1 , F •

2 ) and denote it by ξ(V, F •
0 , F •

1 , F •
2 ).

Remark 2.3 For each pair of integers (i, j) as above, the torus action on the Rees bundles provides a canonical
isomorphism between the fiber over the intersection of the globally invariant divisors Pij = P1

i ∩ P1
j , where

P1
l refers to the toric divisor associated with ρl , l ∈ {0, 1, 2}, whose equation is ul = 0, and the bigraded

vector spaces which corresponds to the filtrations F •
i and F •

j , ξ(V, F •
0 , F •

1 , F •
2 )Pi j

∼=
⊕

p,q Grp
F •

i
Grq

F •
j

∼=⊕
p,q Grp

F •
j
Grq

F •
i
. So, the total space of the Rees bundle may be considered as a space of deformation of the

vector space V into the bigraded pieces the filtrations give.
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3 Geometric characterization of opposed filtrations

3.1 Opposed filtrations and semistability

Filtrations involved in Hodge theory are in a specific relative position.

Definition 3.1 ([3]) Two filtrations F •
1 , F •

2 on a vector space V are n-opposed if

Grp
F •

1
Grq

F •
2
V = 0 unless p + q = n.

Three ordered filtrations (F •
0 , F •

1 , F •
2 ) on V are opposed if

Grp
F •

1
Grq

F •
2
Grn

F •
0
V = 0 unless p + q + n = 0.

Remark that three ordered filtrations (F •
0 , F •

1 , F •
2 ) on V are opposed if and only if, for each integer r, F •

1 and
F •

2 induce −r-opposed filtrations on Grr
F •

0
V .

Remark 3.2 Recall that, by Zassenhaus’s lemma (see [3, 1.2.1]), the objects Grp
F •

1
Grq

F •
1
V and Grq

F •
2
Grp

F •
1
V

are canonically isomorphic. We emphasize the fact that a triple of opposed filtrations is ordered. Indeed, in
Grp

F •
1
Grq

F •
2
Grn

F •
0
V , F •

1 and F •
2 play a symmetrical role but neither F •

0 and F •
1 nor F •

0 and F •
2 do.

A bigrading of a 2-filtered vector space (V, F •
1 , F •

2 ) is a direct sum decomposition V =
⊕

p,q V p,q which

verifies Fp
1 =

⊕
(p′,q ′),p′≥p V p′,q ′

and Fq
2 =

⊕
(p′,q ′),q ′≥q V p′,q ′

. A 2-filtered vector space always admits a
bigrading.

We now introduce the notion of P1
0-semistability which is the geometric equivalent for the Rees bundles to

the property to be opposed for the corresponding triples of filtrations. Let E be a coherent sheaf on a smooth
projective variety. The slope of E is the ratio

μ(E) = deg(E)/rk(E)

if rk(E) > 0, and is defined to be μ(E) = 0 otherwise. A coherent sheaf E is μ-semistable if for every coherent
subsheaf F ⊂ E we have

μ(F) ≤ μ(E).

Let j : P1
0 ↪→ P2

k be the inclusion morphism.

Definition 3.3 A locally free sheaf E on P2
k is P1

0-semistable if j∗E , its restriction to the line P1
0 , is

μ-semistable as a locally free sheaf on the projective line.

Like locally free sheaves on the projective line split into a sum of line bundles, a locally free sheaf on P2
k is

P1
0-semistable if and only if its restriction to P1

0 is the direct sum of line bundles of the same slope.
Since j∗ induces a monomorphism from H2

(
P2

k ,Z
)

to H2
(
P1

0 ,Z
)

and the degree is functorial, the
P1

0-semistability is a stronger notion than the μ-semistability. Let E be a coherent sheaf on P2
k , we thus have

E is P1
0-semistable =⇒ E is μ-semistable.

Let ω ∈ H2
(
P2

k ,Z
)

be the cohomology class of a hyperplane.

Proposition 3.4 Let ξ(V, F •
0 , F •

1 , F •
2 ) be the Rees vector bundles on P2

k associated with a trifiltered vector
space whose filtrations are opposed, (V, F •

0 , F •
1 , F •

2 ) ∈ C3f iltr,opp . Then,

(i) ξ(V, F •
0 , F •

1 , F •
2 ) is P1

0-semistable,

(ii) c1(ξ(V, F •
0 , F •

1 , F •
2 )) = 0, and,

(iii) c2(ξ(V, F •
0 , F •

1 , F •
2 )) = 1

2

∑
p,q (h

p,q − sp,q )(p + q)2ω2 ,

where, for each pair of integers (p, q), hp,q = dimkGrq
F •

2
Grp

F •
1
Gr−p−q

F •
0

V and sp,q = dimkGrq
F •

2
Grp

F •
1
V .

The calculation of the second Chern class in the above proposition will be useful in the next section. We
shall denote by T (V )•, or by T • when the context is clear, the trivial filtration of V given by T (V )0 = V
and T (V )1 = {0}, and by F [k]• the k-shifted filtration associated with F • defined by, for each integer p,
F [k]p = Fk+p .
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P r o o f. When one restricts a Rees bundle to a divisor P1
i , i ∈ {0, 1, 2}, one obtains the graded pieces associ-

ated with the filtration F •
i . So, the restrictions of the Rees bundles ξ

(⊕
r

(
Grr

F •
0
V, T

(
Grr

F •
0
V

)
[−r]•, F •

1 , F •
2
))

and ξ
(
V, F •

0 , F •
1 , F •

2
)

to P1
0 are isomorphic (here we have used the same notations for the filtrations induced

by F •
1 and F •

2 on the graded pieces). The second one is trivial since we have a grading compatible with all the
filtrations, hence ξ(V, F •

0 , F •
1 , F •

2 )|P1
0
∼= Odimk V

P1
0

, which proves (i) and (ii).
To prove (iii), we proceed in several steps in order to reduce the computation of the Chern classes to those of

lines bundles. Let π : P̃2
k → P2

k be the blowing-up of the projective plane at P12 and let E be the exceptional
curve. P̃2

k is the toric variety associated to the fan ΔE obtained by adding to Δ a ray ρE in σ0 generated by
n(ρE ) = (1, 1) in N . We denote by σ′

0 and σ′′
0 the 2-dimensional cones obtained from σ0 . The toric divisor

associated to ρE is the projective line E. Consider now the ΔE -family of complete filtrations associated to each
ray in ΔE , (V, F •

0 , F •
1 , T (V )•, F •

2 ). Let ξE (V, F •
0 , F •

1 , T (V )•, F •
2 ) be the corresponding locally free sheaf on

the toric surface P̃2
k .

Here we compare π∗ξ(V, F •
0 , F •

1 , F •
2 ) to ξE (V, F •

0 , F •
1 , T (V )•, F •

2 ). By construction, both coincide on
P̃2

k \ E. Since it is equivariant, locally free and of finite rank, according to the above-mentioned correspon-
dence, π∗ξ(V, F •

0 , F •
1 , F •

2 ) corresponds to a ΔE -family, which is of the form (V, F •
0 , F •

1 , G•, F •
2 ) because of its

description in the complementary of E. When one explicits the Rees sheaves on Uσ ′
0

and Uσ ′′
0

corresponding to
the pullback of the restriction of ξ(V, F •

0 , F •
1 , F •

2 ) to the chart A2
0 in P2

k , one gets G• = F •
1 	 F •

2 , where the
convolution is defined by

Gr =
∑

p+q≥r

F p
1 ∩ Fq

2 .

Suppose now that F •
1 and F •

2 are positive, namely F 0
1 = F 0

2 = V ; this can always be realised, without
changing the (no equivariant) isomorphism class of the bundle, by shifting the indices of F •

1 and F •
2 to obtain

F 0
1 = F 0

2 = V and, next, by shifting the indices of F •
0 in order to keep the filtrations opposed. G• is now positive

and, therefore, there is a filtered morphism from (V, T (V )•) to (V,G•). This morphism induces an injective
morphism of equivariant locally free sheaves whose cokernel’s support is included in E

0 �� ξE (V, F •
0 , F •

1 , T (V )•, F •
2 ) �� π∗ξ(V, F •

0 , F •
1 , F •

2 ) �� TE
�� 0. (3.1)

Since, contrary to the starting Rees bundle on P2
k , F •

1 and F •
2 are never involved together on the same globally

invariant affine open set in the construction of ξE (V, F •
0 , F •

1 , T (V )•, F •
2 ), one can cut it off by using F •

0 . Hence,
if V ′ = Fp

0 for some p and V ′′ = V/V ′ is the quotient, on P̃2
k , we have, without changing the notation for the

induced filtrations,

0 −→ ξE (V ′, F •
0 , F •

1 , T (V ′)•, F •
2 ) −→ ξE (V, F •

0 , F •
1 , T (V )•, F •

2 ) −→ ξE (V ′′, F •
0 , F •

1 , T (V ′′)•, F •
2 ) −→ 0.

One can repeat the process until we get vector bundles of the form ξE

(
Grr

F •
0
V, F •

0 , F •
1 , T •, F •

2
)

in which only
two filtrations are involved, and, hence, which splits into a direct sum of line bundles. This gives

ch(ξE (V, F •
0 , F •

1 , T (V )•, F •
2 )) =

∑
r

ch
(
ξE

(
Grr

F •
0
V, T

(
Grr

F •
0
V

)
[−r]•, F •

1 , T
(
Grr

F •
0
V

)•
, F •

2
))

=
∑
r,p,q

dimk

(
Grq

F •
2
Grp

F •
1
Grr

F •
0
V

)
ch

(
ξE

(
k, T [−r]•, T [−p]•, T •, T [−q]•

))
= dimkV − 1

2

∑
p,q

hp,q (p + q)2 ω̃2

since the filtrations are opposed, and, because of the formula c1(ξE (k, T [−r]•, T [−p]•, T •, T [−q]•)) =
(r + p + q)ω̃, we have ch(ξE (k, T [−r]•, T [−p]•, T •, T [−q]•) = 1 + (r + p + q)ω̃ + 1

2 (r2 + 2rp + 2rq)ω̃2

where ω̃ is the pullback of ω in H2(P̃2
k ,Z).

Let us now compute the Chern character of TE . This coherent sheaf is supported on E and do not depend on
F •

0 . Thus, we can rewrite the exact sequence (3.1) using F •
1

(
or F •

2
)

instead of F •
0

0 −→ ξE (V, F •
1 , F •

1 , T •, F •
2 ) −→ π∗ξ(V, F •

1 , F •
1 , F •

2 ) −→ TE −→ 0.
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Both vector bundles ξE (V, F •
1 , F •

1 , T •, F •
2 ) and π∗ξ(V, F •

1 , F •
1 , F •

2 ) split into a sum of line bundles. The Chern
character of the first is given by the above formula

ch(ξE (V, F •
1 , F •

1 , T •, F •
2 )) = dimkV +

∑
p,q

sp,q

(
(2p + q)ω̃ +

1
2
(3p2 + 2pq)ω̃2

)
.

For the second,

ch(π∗ξ(V, F •
1 , F •

1 , F •
2 )) = π∗ch

(⊕
p,q

ξ
(
V, T [p]•, T [p]•, T [q]•

)sp , q

)

= dimkV +
∑
p,q

sp,q

(
(2p + q)ω̃ +

1
2
(4p2 + q2 + 4pq)ω̃2

)
.

This gives ch(TE ) = 1
2

∑
p,q sp,q (p + q)2 ω̃2 , which allows us to conclude since the Chern character is

additive.

Remark 3.5 Since the condition for three filtrations to be opposed is not symmetrical, they do not play the
same role in the formula giving the Chern classes.

Theorem 3.6 The Rees construction establishes an equivalence of categories between the category of finite
dimensional 3-filtered k-vector spaces whose ordered filtrations are opposed and the category of T-equivariant
P1

0-semistable vector bundles of degree 0 on the projective plane:

C3f iltr,opp
�� BunP1

0 -semistable,μ=0
(
P2

k/T
)

�� .

P r o o f. According to the preceding proposition a Rees bundles associated to a vector space endowed with
opposed filtrations is P1

0-semistable and has zero first Chern class.
Reciprocally, suppose we are given a T-equivariant P1

0-semistable degree 0 vector bundle E on P2
k . Let

(V, F •
0 , F •

1 , F •
2 ) be the associated element in C3f iltr . Suppose there exists a triple (r0 , p0 , q0) ∈ Z3 such that

r0 + p0 + q0 > 0 and Grp0
F •

1
Grq0

F •
2
Grr0

F •
0
V 
= {0}. Then, there exists a one-dimensional subvector space V ′ ⊂ V

whose projection on Grp0
F •

1
Grq0

F •
2
Grr0

F •
0
V is not zero. Let (V ′, T •[r0 ], T •[p0 ], T •[q0 ]) be the trifiltered vector space

whose filtrations are defined by Tp [i] = V ′ if p ≤ i and Tp [i] = 0 otherwise. The monomorphism of Rees
k[u0 , u1 , u2 ]-modules induces an injective map of locally free sheaves

0 �� ξ(V ′, T •(r0), T •(p0), T •(q0)) �� E .

By the formula given in the proof of Proposition 3.4

c1(ξ(V ′, T •(r0), T •(p0), T •(q0))) = r0 + p0 + q0 > 0,

which contradicts the μ-semistability and hence the P1
0-semistability of E . Moreover,

c1(E) =
∑
r,p,q

dimkGrq
F •

2
Grp

F •
1
Grr

F •
0
V (r + p + q)ω.

The preceding fact proves that there is no positive contribution to the first Chern class of E in this formula.
Every triple (r0 , p0 , q0) such that r0 + p0 + q0 < 0 and Grp0

F •
1
Grq0

F •
2
Grr0

F •
0
V 
= 0 will now give a negative

contribution to the first Chern class which is zero; therefore, such a space does not exist, which proves the
theorem.

3.2 Categories of semistable reflexive sheaves

We recall some facts from [14]. Let Reflμ(X) be the category whose objects are equivariant μ-semistable
reflexive sheaves on a nonsingular algebraic variety X (we refer to [9] for the basic properties about reflexive
sheaves). Let F be a coherent sheaf on X and consider the canonical morphism to its double dual ν : F → F∗∗.
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The sheaf F∗∗ is reflexive. It is called the reflexive sheaf associated to F and is canonically isomorphic to it when
F is reflexive. The kernel, cokernel, image and coimage of a morphism in the category of reflexive sheaves is de-
fined to be the reflexive sheaf respectively associated to the kernel, cokernel, image and coimage of the morphism
in the category of coherent sheaves. Let f : E → F be a morphism in Reflμ(X). In fact, the kernel of f when
considered as a morphism of coherent sheaves is already reflexive. Associated to f we have exact sequences

0 �� Ker(f) ∼= Ker(f)∗∗ �� E �� F ��

������������ Coker(f) ��

ν

��

0

Coker(f)∗∗ �� 0,

(3.2)

where the horizontal sequence is exact in the category of coherent sheaves and the other is exact in Reflμ(X).
Suppose now X is endowed with the action of an algebraic group G and denote by Reflμ(X/G) the subcat-

egory of Reflμ(X) whose objects and morphisms are G-equivariant.

Theorem 3.7 ([14]) Reflμ(X/G) is an abelian category.

This category is clearly additive. In order to prove that it is exact, in [14], we use the fact that μ-semistability
allows us to exhibit an isomorphism between the image and the coimage of a morphism in the complement of a
subvariety of codimension at least 2. Since reflexive sheaves are normal, this provides an isomorphism between
them.

Remark 3.8 It should be noted that since cokernels in both categories might not agree, Reflμ(X/G) is not a
sub-abelian category of the category of equivariant coherent sheaves on X in general.

Since reflexive sheaves on curves and surfaces are locally free, when considering the action of the trivial group,
we recover the classical result (see [17] for example)

Corollary 3.9 The category of μ-semistable vector bundles on a nonsingular curve or surface is abelian.

In [14], Theorem 3.1, it was shown that even if one imposes a stronger condition of semistability than
μ-semistability, namely the P1

0-semistability, the category of degree 0 semistable equivariant sheaves on P2
k

is abelian.

Proposition 3.10 ( [14]) The category of T-equivariant P1
0-semistable vector bundles of degree 0 on the

projective plane BunP1
0 -semistable,μ=0

(
P2

k/T
)

is abelian.

Thus, by Theorem 3.6, we recover, in a geometric way, Deligne’s result in [3, Theorem 1.2.10].

Corollary 3.11 The category C3f iltr,opp of finite dimensional trifiltered k-vector spaces whose ordered filtra-
tions are opposed is abelian.

3.3 Real structures

From now onwards, we shall work on C. Consider the antiholomorphic involution of P2
C , τ : (u0 , u1 , u2) 	→

(u0 , u2 , u1). The divisor P1
0 is globally invariant by τ .

Let E be an OP2
C

-module. We define the sheaf τ∗(E) by letting, for each Zariski open set U ,

τ∗E(U) = E(τ(U)).

It is canonically endowed with an OP2
C

-module structure by setting, for each e ∈ τ∗E(U) and each f ∈ OP2
C
(U),

f.e = τ∗(f)e.

A τ -equivariant coherent sheaf on the complex projective plane is the data of a coherent sheaf E and of a mor-
phism of OP2

C
-modules f : E → τ∗E such that τ∗(f) ◦ f = idE .

A Tτ -equivariant coherent sheaf is a coherent sheaf that is both T and τ -equivariant. Tτ -equivariant sheaves
are naturally associated with finite dimensional trifiltered complex vector spaces (VC , F •

0 , F •
1 , F •

2 ) with underly-
ing real structure, namely such that VC is of the form VC = VR ⊗R C for some real vector space VR , and whose
second and third filtrations are conjugated to one another, which means that for each integer p, Fp

2 = Fp
1 (here we
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take the conjugate with respect to the underlying real structure on VR ). We denote by C3f iltr,opp,R the category
whose objects are of this form and whose morphisms are morphisms of real vector spaces which induce filtered
morphisms when passing to the complex structure. There is a forgetful functor from C3f iltr,opp,R to C3f iltr,opp

which consists in forgetting the real structure.

Theorem 3.12 The Rees construction establishes an equivalence of categories:

C3f iltr,opp,R
�� BunP1

0 -semistable,μ=0
(
P2

C/Tτ
)

�� .

Moreover, the category C3f iltr,opp,R is abelian.

P r o o f. One immediately verifies that there is a one-to-one correspondence between τ -equivariant objects and
triples of filtrations whose filtrations are conjugate. Since the functor τ∗ is exact, τ being an homeomorphism,
the second statement is a direct consequence of the fact that BunP1

0 -semistable,μ=0
(
P2

C/T
)

is abelian.

3.4 Framing

When one wants to compare filtrations on a fixed vector space, situation which arises, for example, when one
deals with variations of mixed Hodge structure, one needs a stronger notion of equivalence between filtered
vector spaces and sheaves than that of equivalence of categories.

Fix a finite-dimensional vector space V0 and consider the category of triplets of complete filtrations of V0 ,
C3f iltr,opp,V0 . Its objects are of the form ((V, F •

0 , F •
1 , F •

2 ), ϕ), where (V, F •
0 , F •

1 , F •
2 ) ∈ C3f iltr,opp and

ϕ : V
∼→ V0 is an isomorphism, and its morphisms are morphisms in C3f iltr,opp which commute with the

isomorphisms to V0 .
Consider now the category of framed Rees bundles, BunP1

0 -semistable,μ=0,V0

(
P2

C/T
)
, whose objects are pairs

(E , ψ), where E ∈ BunP1
0 -semistable,μ=0

(
P2

C/T
)

and ψ : E(1:1:1)
∼→ V0 is a framing, and whose morphisms are

the morphisms in the category of sheaves which commute with the framings. We immediately verify that:

Corollary 3.13 For each finite-dimensional vector space V0 , there is a natural one-to-one correspondence
between the isomorphism classes of objects in C3f iltr,opp,V0 and in BunP1

0 -semistable,μ=0,V0

(
P2

C/T
)
.

4 Mixed Hodge structures and equivariant sheaves

In this section, we apply the correspondence stated in the preceding section to filtered vector spaces arising from
Hodge theory. We first recall some definitions and results about mixed Hodge structures.

Definition 4.1 A pure R-Hodge structure of weight r is a triple (HR , F •, F •) consisting of a finite dimen-
sional R-vector space HR and two decreasing filtrations of HC = HR ⊗R C, the Hodge filtration F •, and its
conjugate filtration with respect to the underlying real structure F •, such that F • and F • are r-opposed.

Definition 4.2 A R-mixed Hodge structure is a quadruple (HR ,W•, F
•, F •) which consists of a finite di-

mensional R-vector space HR , an increasing filtration of this real vector space W• called the weight filtration,
and two filtrations F • and F • of HC = HR ⊗R C, conjugate to each other with respect to the underlying real
structure, such that F • and F • induce a pure Hodge structure of weight r on each quotient GrW

r = Wr/Wr−1

or, equivalently, such that the three ordered filtrations (W•, F
•, F •) of HC are opposed (here the weight filtration

is viewed as a filtration of HC ).

We shall denote by R-MHS the category whose objects are R-mixed Hodge structures and morphisms are
morphisms between real vector spaces whose associated morphisms between complex vector spaces are compat-
ible with the filtrations.

In the same way, we can define the category of complex mixed Hodge structures, denoted by C-MHS, by
only requiring the objects to consist of a finite dimensional complex vector space endowed with three ordered
opposed filtrations, the first being increasing and the other decreasing. An element H ∈ C-MHS corresponds to a
quadruple (HC ,W•, F

•, F̂ •). Morphisms in C-MHS are morphisms of complex vector spaces compatible with
the filtrations.

When a definition or a result concerns both categories, we do not specify any of them.
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Definition 4.3 The length of a mixed Hodge structure is the length of the largest interval [a, b] such that
GrW

r 
= 0 for each r ∈ {a, b}. In particular, mixed Hodge structures of length 0 are pure Hodge structures.
The level of a mixed Hodge structure is the length of the largest interval [a, b] such that GrF

p 
= 0 for each
r ∈ {a, b}.

A bigrading of a mixed Hodge structure H is a direct sum decomposition HC =
⊕

p,q Hp,q of the underlying
complex vector space which verifies Wr =

⊕
k+ l≤r Hk,l and Fp =

⊕
k≥p,l H

k,l .

Following Deligne, one obtains an analogue of the Hodge decomposition for mixed Hodge structures:

Lemma 4.4 ([3]) Let H ∈ R-MHS be a mixed Hodge structure. Then, there exists a unique bigrading of H ,
denoted by {Ip,q}p,q , such that

Ip,q ≡ I
q,p

mod Wp+q−2 .

The following notion is important when one considers degenerations of mixed Hodge structures (see [11]).

Definition 4.5 A R-mixed Hodge structure H is said to be R-split if for each p, q the Ip,q vector spaces
defined in Lemma 4.4 verify Iq,p = Ip,q .

A C-mixed Hodge structure H is said to be split if there is a bigrading HC =
⊕

p,q Hp,q compatible with the

third filtration, namely such that F̂ q =
⊕

k,l≥q Hk,l .

When a R-mixed Hodge structure H is R-split, the Ip,q spaces furnish a bigrading of HC which is compat-
ible with the third filtration, so a R-split mixed Hodge structure is split when considered as a C-mixed Hodge
structure.

By Lemma 4.4, every mixed Hodge structure whose length is lower than 2 is R-split. In particular, every pure
Hodge structure is R-split.

4.1 Vector bundles associated with mixed Hodge structures

We associate to each mixed Hodge structure H in R-MHS (resp. C-MHS) an object in C3f iltr,opp,R

(resp. C3f iltr,opp ). For this purpose, in the trifiltered vector space a mixed Hodge structures provides, we substitute
the weight filtration W• by its associated decreasing filtration W •.

Then, to each object in C3f iltr,opp,R (resp. C3f iltr,opp) associated with a mixed Hodge structure H corresponds
a Rees bundle on the toric complex projective plane, denoted by ξP2 (H), as described in the preceding section.

Definition 4.6 The vector bundle ξP2 (H) is called the Rees vector bundle associated to the mixed Hodge
structure H .

As a direct outcome of Theorems 3.6 and 3.12 we get

Theorem 4.7 The category of complex mixed Hodge structures C-MHS is equivalent to the category of
T-equivariant P1

0-semistable vector bundles of degree 0 on the projective plane

C-MHS �� BunP1
0 -semistable,μ=0(P2/T)�� .

The category of real mixed Hodge structures R-MHS is equivalent to the category of Tτ -equivariant
P1

0-semistable vector bundles of degree 0 on the projective plane

R-MHS �� BunP1
0 -semistable,μ=0(P2/Tτ )�� .

As a consequence, we recover the following fact [3, Theorem 1.2.10] in a geometric way:

Corollary 4.8 ([3]) The category of real and complex mixed Hodge structures are abelian.

4.2 Short exact sequences

Let 0 �� A
i �� H

π �� B �� 0 be an exact sequence in the category of mixed Hodge structures.
Here we study the possible failure of exactness of the corresponding sequence of vector bundles when considered
as a sequence in the category of coherent sheaves.
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The associated exact sequence in BunP1
0 -semistable,μ=0(P2/Tτ ) is

0 �� ξP2 (A) i �� ξP2 (H) π �� ξP2 (B) �� 0.

By construction, ξP2 (B) is the reflexive sheaf associated with the cokernel of i in the category of coherent
sheaves, Coker(i), whose singularity set is included in P12 . Indeed, the singularity set is at least 2-codimensional,
so included in the set of fixed points of the action, and the restriction of Coker(i) to P1

0 is locally free. The support
of the cokernel T of the canonical morphism Coker(i) → Coker(i)∗∗ = ξP2 (B), which is injective, is therefore
included in P12 . In the category of coherent sheaves we thus have the exact sequence

0 �� ξP2 (A) i �� ξP2 (H) π̃ �� ξP2 (B) �� T �� 0. (4.1)

4.3 New Hodge numbers and R-split level

The fact that the Rees bundle associated with a cokernel in the category of mixed Hodge structures is not a
cokernel in the category of coherent sheaves is showing beneath the behaviour of some integers denoted by sp,q

which are similar to the Hodge numbers hp,q ; recall that the Hodge numbers are defined by, for a mixed Hodge
structure H ,

hp,q
H = dimC Grp

F Grq

F
Gr−p−q

W HC = dimC Grp
F Gr−p−q

W HC = dimC Grq

F
Gr−p−q

W HC .

The integers sp,q measure in some sense the relative position of the filtrations but are not additive contrary to
the Hodge numbers.

Definition 4.9 Let H be a mixed Hodge structure. We let

sp,q
H = dimC Grp

F Grq

F
HC .

We make the identification H4(P2 ,Z) = Z.

Definition 4.10 Let H be a mixed Hodge structure. We define the R-split level of H to be the integer

α(H) = c2(ξP2 (H)).

Remark 4.11 The definition makes sense for C-MHS too. The term split level would be, however, more
appropriate for objects in this category.

A Tate Hodge structure of weight k, denoted by T 〈k〉, is the unique Hodge structure of rank 1 and of pure
type (k, k). Since Rees bundles associated with mixed Hodge structures are of degree 0, one easily verifies that
for each mixed Hodge structures H,H ′ and each k ∈ Z:

(1) α(H ⊕ H ′) = α(H) + α(H ′),
(2) α(H∗) = α(H), where H∗ = Hom(H,T 〈0〉) in the category of mixed Hodge structures,

(3) α(H ⊗ H ′) = dimCH ′
C α(H) + dimCHC α(H ′),

(4) α(H ⊗ T 〈k〉) = α(H).

The following formula gives an explicit formula for the R-split level. It is a direct consequence of
Proposition 3.4.

Proposition 4.12 The R-split level is expressed by

α(H) =
1
2

∑
p,q

(p + q)2(hp,q
H − sp,q

H

)
.

The categories of mixed Hodge structures involved here are abelian, hence we can define extension groups,
which, endowed with Baer summation, are abelian (see below, Section 6 and [1] for details).
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Theorem 4.13 The R-split level is sub-additive that is, for A and B two mixed Hodge structures in R-MHS
(resp. C-MHS) and H ∈ Ext1R-MHS(B,A) (resp. Ext1C-MHS(B,A)),

α(H) ≥ α(A) + α(B).

P r o o f. The exact sequence given by the extension leads to the exact sequence (4.1) in the category of coher-
ent sheaves. Thus, we have c2(ξP2 (H)) + c2(T ) = c2(ξP2 (A)) + c2(ξP2 (B)). Since the support of T is at least
2-codimensional, c2(T ) ≤ 0 (see [7], Chapter 2, Formula (2.8)), what allows us to conclude.

In particular, it means that if A → H (resp. H → B) is an injective (resp. surjective) morphism of mixed
Hodge structures we have α(H) ≥ α(A) (resp. α(H) ≥ α(B)).

Since every mixed Hodge structure can be written as a successive extension of pure Hodge structures whose
R-split level is 0, we have:

Corollary 4.14 For each H ∈ R-MHS, α(H) ≥ 0.

Moreover, the R-split level generalizes the notion of R-split mixed Hodge structure:

Proposition 4.15 A mixed Hodge structure is R-split if and only if its R-split level is 0.

P r o o f. If H is a R-split mixed Hodge structure, its associated Rees vector bundle is a direct sum of the Rees
bundles associated with its direct summands Ip,q , which are endowed with (complex) mixed Hodge structures by
the induced filtrations. Since the length of these mixed Hodge structures is 0, the associated bundles are trivial
and so is their direct sum, hence α(H) = 0.

The converse is a consequence of the fact that the moduli space of holomorphic bundles on P2 , trivial on
the line at infinity P1

0 , with a fixed trivialization there, and with second Chern class zero is reduced to a point
(see [6]). Let H be a mixed Hodge structure whose R-split level is 0. By the proof of Proposition 3.4, ξP2 (H)
can be endowed with a trivialization on P1

0 , and hence, by the cited result, is trivial. Then, the fact that ξP2 (H) is
Tτ -equivariant yields a decomposition into Ip,q spaces with the required property.

4.4 Mixed Hodge structures and instantons bundles

By a result of Donaldson [6], there is a natural one-to-one correspondence between the moduli space of rank r
holomorphic bundles on P2 , trivial on the line P1

0 and with a fixed framing here, whose second Chern class is
n and the framed moduli space of instantons on the sphere S4 = R4 ∪ {∞} which parametrizes anti-self-dual
connections on a principal SU(r)-bundle of charge n modulo gauge transformations γ with γ∞ = id.

Remark now that once we have chosen an isomorphism V0
∼→

⊕
r Grr

W V0 , a mixed Hodge structure on V0 ,
(H,ϕ), where ϕ : HC

∼→ V0 is an isomorphism (see Section 3.4), canonically yields a Rees bundle ξP2 (H)
which is framed on P1

0 , namely a Rees bundle with an isomorphism ξP2 (H)|P1
0

∼→
⊕

r Grr
W V0 ⊗OP1

0
which is

uniquely determined by the starting choice. Thus, we have

Theorem 4.16 To each isomorphism class of framed mixed Hodge structure H corresponds a unique isomor-
phism class of instanton on S4 whose charge is the R-split level of H , α(H).

This description of mixed Hodge structures in terms of Yang-Mills instantons through the description of [6],
which uses the ADHM construction, will be the subject of a forthcoming paper. Note that the Rees bundles
associated with mixed Hodge structures are instantons in the sense of [13].

5 Examples of calculation of the R-split level

In this section, we first collect general considerations about the R-split level and next we explicit it when associ-
ated to the mixed Hodge structures on the cohomology of some algebraic curves.

According to Deligne [3], [4], the cohomology groups of algebraic varieties, here separated schemes of finite
type over C, are endowed with natural mixed Hodge structures. For X such an algebraic variety, we will consider,
for each integer l, the R-split levels of the lth group of cohomology

αl(X) = α((Hl(X,C),W•, F
•, F •)).

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 284, No. 4 (2011) / www.mn-journal.com 537

For certain varieties these invariants are trivial. The mixed Hodge structures of length lower than 2 are indeed
R-split. It is the case for pure Hodge structures and hence for the Hodge structures on the cohomology groups of
smooth projective algebraic varieties or of compact Kähler varieties. The lengths of the mixed Hodge structures on
the cohomology of weighted projective spaces (see [5]) and of varieties with logarithmic singularities (see [22])
are lower than 2; these mixed Hodge structures are therefore R-split.

The construction of mixed Hodge structures is functorial. Let X be an algebraic variety, let π : X ′ → X be
a resolution of singularities, let j : X → X be a compactification and let S = X \ X . By [3], [4], we can find
a compatible smooth compactification j : X ′ → X ′ and a morphism π : X

′ → X making the square below
cartesian:

X ′ j ��

π

��

X
′

π

��
X

j �� X S.
i

��
i

����������

By [4, Proposition 8.2.6], π induces an epimorphism of mixed Hodge structures on the cohomology, and
j induces a monomorphism. Thus, we have, for each integer l,

αl(X) ≥ αl(X ′) and αl(X) ≥ αl(X).

Let us focus our attention on curves. The curve X ′ is now the normalization of X . The mixed Hodge structures
on 0th and second cohomology groups are pure [4, Proposition 8.1.20]. Let us describe it on the first cohomology
groups, which is given by the hypercohomology of the complex[

OX
d→ π∗Ω1

X
′(logS)

]
.

The weight and Hodge filtrations on H1(X,C) = H1
([
OX

d→ π∗Ω1
X

′(logS)
])

are respectively described by

Lemma 5.1 ([4, Lemme 10.3.11])

(1) W 1(H1(X,R))= Im(H1(X,R)→H1(X,R)) and W 0(H1(X,R))= Ker(H1(X,R)→H1(X
′
,R)).

(2) The spectral sequence defined by the naive fitration of
[
OX

d→ π∗Ω1
X

′(logS)
]

degenerates into the Hodge
filtration of H∗(X,C).

In order to compute the R-split level of the mixed Hodge structures on the cohomology groups, we shall
compute the period matrix, which gives the coordinates of F 1H1(X,C), using the preceding lemma, and then
look at the intersection between the sub-vector space this matrix determines and its conjugate with respect to the
underlying real structure.

5.1 Curves of genus 0

We consider a first non trivial example: a non-complete nodal curve of genus 0. Let (m1 ,m2 , p1 , q1) be four
distinct points of P1

C and let X be the non-complete singular curve obtained by gluing p1 and q1 together and
removing the mi (for a justification of the identification of the points see [19], Chapter IV, Part 3). Here we have
S = m1

∐
m2 . Let u be a coordinate on P1

C\{∞}. One easily verifies that

Lemma 5.2 F 1H1(X,C) is generated by the 1-form ω =
( 1

u−m 1
− 1

u−m 2

)
du.

Since the mixed Hodge structure on the first cohomology group of such a curve is an extension of a Tate
Hodge structure of weight 1 by a Tate Hodge structure of weight 0 (see Section 6.1), we have h0,0 = h1,1 = 1
and the remaining Hodge numbers are zero. Since s1,0 + s1,1 = h1,0 + h1,1 = dimCF 1H1(X,C), s1,0 = s0,1

by symmetry and
∑

p,q sp,q = rkCH1(X,C), the R-split level is completely determined by the integer s1,1 .
To know s1,1 we have to compute the dimension of the intersection of the subspace F 1 with its conjugate with
respect to the real structure inherited from H1(X,R). The Hodge filtration induces a filtration on the dual of the
first cohomology group using the isomorphism

H1
DR (X,C) ∼= H1

Betti(X,C) ∼= H1(X,C)∗ = (H1(X,R) ⊗ C)∗.
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Let us choose a basis γ0 , γ1 of H1(X,R). Let γ0 be a positively oriented loop whose homology class is nonzero
in X but vanish in X ∪ m1 and γ1 be the loop formed by a path from p1 to q1 in X ′ by identifying these points.

We can now compute the coordinates of the Hodge filtration with respect to this basis:

〈w, γ0〉 =
∫

γ0

w = 2πi, and, 〈w, γ1〉 =
∫

γ1

w =
[

log

(
u − m1

u − m2

)]q1

p1

= log(q1 , p1 ,m1 ,m2),

where (q1 , p1 ,m1 ,m2) is the cross-ratio of the four points. Since the action of PGL(1) on P1
C is transitive on

the triples of points, we can always suppose that m1 = 0,m2 = 1, p1 = ∞. X is hence completely determined
by q1 ∈ C \ {0, 1} and will be denoted by Xq1 . Thus, the period matrix is

(
2πi log

(
q1

q1 −1

))
. The intersection

of F 1 with its conjugate is nonzero if and only if 1
2πi log

(
q1

q1 −1

)
is real that is if and only if q1 belongs to the real

line Re 1
2

of complex numbers whose real part is 1
2 . So, when q1 ∈ Re 1

2
, we have s1,1 = 1. Otherwise s1,1 = 0.

We thus obtain:

Proposition 5.3 The R-split level of the first cohomology group of the curve Xq1 is given by{
α1(Xq1 ) = 0 if q1 ∈ Re 1

2
,

α1(Xq1 ) = 1 otherwise.

Note that one can easily generalize the preceding calculation with arbitrary many removed or identified points
on P1

0 .

Remark 5.4 When we consider a family of curves parametrized by q1 ∈ S, where S is a variety, the
R-split level jumps in real dimensions. It reflects the behaviour of the intersection between the vector spaces
given by the family of Hodge filtrations, which is holomorphic, and the family of its conjugate filtrations, which
is anti-holomorphic.

5.2 Curves of genus 1

Let (m1 , . . . ,mk , p1 , . . . , pl , q1 , . . . ql) be k + 2l distinct points of a complete smooth curve of genus 1 and let
X be the curve obtained by gluing pi and qi for each i ∈ [1, l] and removing the mi’s. By Lemma 5.1, the Hodge
numbers of H1(X,C) are h0,0 = l, h1,0 = h0,1 = 1 and h1,1 = k − 1. The original complete smooth curve is
isomorphic to the quotient of C by the lattice Z + τZ, where τ ∈ Z and Im(τ) > 0. Let u be a coordinate on C.
To explicit the mixed Hodge structure on the first cohomology group, we need the following result:

Proposition 5.5 ([12]) The function Ψ : z 	→
∑i=m−1

i=1 λi
d

du log(θ(u−ai))+C, where the {λi}i∈[1,m−1] and

C are complex numbers such that
∑i=m−1

i=1 λi = 1, is ΛZ -periodic with simple poles at the points ai + 1
2 (1 + τ)

and residus λi , where θ is the theta function on the elliptic curve given by ΛZ , θ(u) =
∑

n∈Z exp(π
√
−1n2u +

2π
√
−1nτ).

Hence, we can choose following generators for F 1H1(X,C) (note that they all come from F 1H1(X ′,C)):
ω0 = du and

{
ωi = dlog

(
θ
(
u−mi− 1

2 (1+τ)
)/

θ
(
u−mi− 1

2 (1+τ)
))}

i∈[1,k−1] . Let γ0 , γ1 , . . . , γk , η1 , . . . ηl be

generators of H1(X,R) such that γ0 is the Poincaré dual of ω0 , such that for each j ∈ [1, k] γi is null-homologue
in X ∪mi , and, for each j ∈ [1, l], ηj represents a loop obtained by identifying pj with qj . For i ∈ [1, k − 1], the
integration of ωi along ηj gives

〈ωi, ηj 〉 =
∫

ηj

ωi =
∫ qj

pj

ωi = log

(
θ
(
qj − mi − 1

2 (1 + τ)
)

θ
(
qj − mi+1 − 1

2 (1 + τ)
)/

θ
(
pj − mi − 1

2 (1 + τ)
)

θ
(
pj − mi+1 − 1

2 (1 + τ)
))

,

number which we denote by log(θ(mi,mi+1 , pj , qj )). The k × (k + l + 1)-period matrix is thus given by:

M =

⎛⎜⎜⎜⎝
1 0 . . . . . . . . . 0 | 0 . . . 0
λ1 1 −1 0 . . . 0 | . . . . . . . . .

. . . . . . . . . . . . . . . . . . | . . . log(θ(mi,mi+1 , pj , qj )) . . .

λk−1 0 . . . 0 1 −1 | . . . . . . . . .

⎞⎟⎟⎟⎠ .

As mentioned above, for curves, the number α1 is completely determined by s1,1 .
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Proposition 5.6 The R-split level of the first cohomology group of X is determined by the integer

s1,1 = 2k − rkC

(
M
M

)
.

6 Extentions of Tate Hodge structures and higher extensions

Let us consider extensions in the abelian category of mixed Hodge structures. We will only consider separated
extensions of mixed Hodge structures that is congruence classes of extensions of the type

0 �� A
i �� H

π �� B �� 0,

where the highest weight of A is less than the lowest weight of B. It is shown in [1] that the abelian group
Ext1Z-MHS(B,A) is naturally isomorphic to a generalized torus, the 0th Jacobian of the mixed Hodge structure
Hom(B,A),

Ext1Z-MHS(B,A) ∼= J0Hom(B,A) = Hom(B,A)C/(F 0Hom(B,A) + Hom(B,A)Z), (6.1)

where Hom(B,A)C (resp. Hom(B,A)Z) is the complex vector space (resp. the underlying lattice) of the mixed
Hodge structure Hom(B,A).

One directly translates the proof of (6.1) in [1] to prove that, in R-MHS,

Ext1R-MHS(B,A) ∼= Hom(B,A)C/(F 0Hom(B,A) + Hom(B,A)R ). (6.2)

To understand extensions in C-MHS, one remarks that an extension of B by A is determined by both decreas-
ing filtrations F • and F̂ • on AC⊕BC . Hence (Hom(B,A)C/(F 0Hom(B,A))×(Hom(B,A)C/(F 0Hom(B,A))
is a parameter space for extensions, the first factor (resp. second) corresponding to the choice F • (resp. F̂ •). Now,
the group (Hom(B,A)C/(F 0Hom(B,A)) acts transitively and effectively on the congruence classes. We thus
have

Ext1C-MHS(B,A) ∼= Hom(B,A)C/F 0Hom(B,A). (6.3)

The equivalences of categories stated above yield the isomorphisms

Ext1L-MHS(B,A) ∼= Ext1
BunP 1

0 -sst, μ = 0 (P2
C /TL )(ξB , ξA ),

where L is C or R and TL refers to, respectively, T and Tτ . These isomorphisms give a description of the
extensions of mixed Hodge structures in terms of extensions of equivariant coherent sheaves.

We remark that the description of the mixed Hodge structures in terms of Rees bundles allows us to use the
R-split level to define stratifications of the extensions groups

Ext1L-MHS(B,A) =
⊔

α(A)+α(B )≤α≤αmax

Ext1L-MHS(B,A)α .

Here Ext1L−MHS(B,A)α denotes the extensions whose R-split level is α. As we shall see in the example below,
some strata could be empty. They are not subgroups in general. The upper bound αmax could be explicitly
computed in combinatorial terms of the Hodge filtrations of A and B.

6.1 Extension of Tate’s Hodge structures

Consider now extensions of two Tate’s Hodge structures, namely elements of Ext1L-MHS(T 〈p〉, T 〈q〉), with
L = C or R and p > q. Geometrically, such a group arises when dealing with the first cohomology group of a
non-complete nodal curve of genus 0 (see Section 5.1). By the preceding discussion, these extension groups are,
respectively, C and C/R ∼= R (note that in the category of Z-MHS we get C/Z ∼= C∗). In this section we shall
recover these groups by considering the corresponding extension groups of equivariant sheaves on P2 .
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The R-split level of the mixed Hodge structure associated with an extension class of two Tate’s structures
could be else α = 0, for the class given by the split extension, or α = (p − q)2 for the other classes, depending
on the fact that Fp and F̂ p (or Fp) are collinear, then the only non-zero sk,l numbers are sp,p = sq,q = 1, or not,
then sp,q = sq,p = 1 and the other sk,l are zero (the only non-zero Hodge numbers are hp,p = hq,q = 1). For
non-split extensions, the exact sequence in the category of coherent sheaves associated with the exact sequence
in BunP1

0 -sst,μ=0
(
P2

C/T
)

corresponding by the Rees functor to the extension of mixed Hodge structures is

0 �� ξA
i �� ξH

π �� ξB ⊗ IP1 2
�� 0,

where ξA , ξB are trivial line bundles and IP1 2 is the ideal sheaf corresponding to the zero-dimensional subscheme
of length α, [P12 ].

Let us compute Ext1(ξB ⊗ IP1 2 , ξA ) in the category of coherent sheaves following [7], Chapter 2. The exact
sequence for Ext groups associated with the Extl(ξB ⊗ IP1 2 , ξA ) has E2 terms

Ek,l
2 = Hk (X, Extl(ξB ⊗ IP1 2 , ξA )) =⇒ Extk+ l(ξB ⊗ IP1 2 , ξA ).

This leads to the exact sequence

0 −→ H1(ξB
−1 ⊗ξA

)
−→ Ext1(ξB ⊗IP1 2 , ξA ) −→ H0(Ext1(ξB ⊗IP1 2 , ξA )) −→ H2(ξB

−1 ⊗ξA

)
.

Since for a surface Ext1(IP1 2 ,OP2
C
) = O[P1 2 ] and here H1

(
ξB

−1 ⊗ ξA

)
= H2

(
ξB

−1 ⊗ ξA

)
= 0, we have

Ext1
(
ξB ⊗ IP1 2 , ξA

)
= H0

(
P2

C ,O[P1 2 ]
)

= C. Equivariant extension groups are given by the spectral sequence
with E2 terms

Ek,l
2 = Hk (T, Extl(F ,G)) =⇒ Extk+ l

T (F ,G).

Since reductive groups do not have higher cohomology, we get

ExtnT (F ,G) ∼= Extn (F ,G)T .

The equivariant extensions correspond thus to the sections of O[P1 2 ] which are invariant by the action of the torus,
that is all the sections of O[P1 2 ] , since P12 is fixed by the action. According to [7, Theorem 8, p. 37], an extension
corresponding to an element η is free if and only if the section η generates the sheaf H0

(
P2

C ,O[P1 2 ]
)
, namely, the

natural map OP2
C
→ O[P1 2 ] is onto. Free T-equivariant extensions are hence classified by C∗ (the zero extension

corresponding to the non free split extension). Thus, we recover the stratification

Ext1C-MHS(T 〈p〉, T 〈q〉) ∼= C = {0}α=0 � C∗
α=(p−q)2 .

The extensions in R-MHS correspond to the non-zero τ -invariant sections of O[P1 2 ] , namely the real sections.
We recover in this way the stratified decomposition

Ext1R-MHS(T 〈p〉, T 〈q〉) ∼= R = {0}α=0 ∪ R∗
α=(p−q)2 .

6.2 Higher extensions

Let us now consider the higher extension groups in the abelian category of complex and real mixed Hodge
structures (we refer to [2] for definitions and settings). We compute these groups using, for each integer n > 1,
the isomorphism

ExtnL-MHS(B,A) ∼= Extn
BunP 1

0 -sst, μ = 0 (P2
C /TL )(ξB , ξA ),

where L is C or R.

Proposition 6.1 Let A,B be two elements of L-MHS, with L = C or R. Then, for each n > 1,

ExtnL-MHS(B,A) = 0.
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P r o o f. Let U = P2
C\{P12} and denote by i : U → P2

C the inclusion morphism. We will show it induces
a monomorphism i∗ : Extn

BunP 1
0 -sst, μ = 0 (P2

C /T τ )(ξB , ξA ) → ExtnC oh(U/T τ )(i
∗ξB , i∗ξA ). Let η, η′ be two classes of

n-extensions such that i∗η = i∗η′. We choose a representative for each class which we denote by (H•, f) and
(H ′

•, g) for short, where (H•, f) means that we have the following exact sequence in BunP1
0 -sst,μ=0

(
P2

C/Tτ
)
:

0 �� ξA
f0 �� ξH1

f1 �� . . . �� ξHn

fn �� ξB
�� 0 .

The congruence between i∗η and i∗η′ is given, for each k ∈ [1, n], by a morphism αk : i∗ξHk
→ i∗ξH ′

k
such

that, for each k ∈ [0, n], with α0 = idξA |U and αn+1 = idξB |U , αk+1 ◦ i∗fk = i∗gk ◦ αk . All the morphisms αk

are morphisms between holomorphic vector bundles over P2
C\{P12} and P12 is 2-codimensional. Therefore, by

Hartog’s theorem, they can be extended in an unique way to morphisms α̃k on the whole space. We shall show
that this yield a congruence in the category of bundles in which cokernels have been modified. We therefore have
to show the commutativity of each square. Suppose we have shown the squares are commutative up to level k
(the commutativity 0th is trivially verified). We can suppose fk and gk to be surjective; ξHk + 1

(
resp. ξH ′

k + 1

)
is

then the cokernel of fk−1 (resp. gk−1) in BunP1
0 -sst,μ=0

(
P2

C/Tτ
)
. The following diagrams are commutative

ξHk
��

α̃k

��

Coker(fk−1)
ν ��

βk

��

ξHk + 1 = Coker(fk−1)∗∗

β∗∗
k

��
ξH ′

k
�� Coker(gk−1)

ν ′
�� ξH ′

k + 1
= Coker(fk−1)∗∗,

where β∗∗
k is the canonical morphism between the double duals associated with βk . Since β∗∗

k |U = αk+1 =
α̃k+1 |U , the morphisms β∗∗

k and α̃k+1 coincide on the whole space, which proves the commutativity of the
square in BunP1

0 -sst,μ=0
(
P2

C/Tτ
)
.

Let us now compute the extension groups in the category of coherent sheaves on U . Since i∗ξB is locally free,
we have ExtnC oh(U )(i

∗ξB , i∗ξA ) = Hn (U, i∗(ξ∗B ⊗ ξA )). The long exact sequence of cohomology groups

. . . �� Hn
P1 2

(
P2

C , ξ∗B ⊗ ξA

)
�� Hn

(
P2

C , ξ∗B ⊗ ξA

)
�� Hn

(
U, i∗(ξ∗B ⊗ ξA )

)
�� . . .

and the vanishing of the local cohomology groups yield, for n positive, the isomorphisms Hn (U, i∗(ξ∗B ⊗ ξA )) ∼=
Hn

(
P2

C , ξ∗B ⊗ξA

)
. Let ξC

∼= ξ∗B ⊗ξA be the Rees bundle associated with the mixed Hodge structure C = B∗⊗A.
Let r be the lowest integer such that WrC 
= 0. C can be written as an extension of WrC by C/WrC, whose
length is strictly lower than the length of C, and WrC is a pure Hodge structure. In the category of coherent
sheaves we have two exact sequences

0 �� ξWr C
i �� ξC

π �� Coker(i) �� 0,

and

0 �� Coker(i) ν �� ξC/Wr C
�� T �� 0 ,

where the support of the sheaf T is included in P12 . Using the fact that ξWr C is a direct sum of line bundles of
degree zero, and hence, for n > 0, Hn

(
P2

C , ξWr C

)
= 0, and the long exact sequence of cohomology groups

associated with the exact sequence above we get, for each n > 0, Hn
(
P2

C , ξC

) ∼= Hn
(
P2

C , Coker(i)
)
. Since

Hn
(
P2

C , T
)

= 0 for each n > 0, the long exact sequence of cohomology groups associated with the second
exact sequence

. . . �� Hn−1
(
P2

C , T
)

�� Hn
(
P2

C , Coker(i)
)

�� Hn
(
P2

C , ξB/Wr B

)
�� . . .
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gives, for each n > 1, Hn
(
P2

C , ξC

) ∼= Hn
(
P2

C , Coker(i)
) ∼= Hn

(
P2

C , ξC/Wr C

)
. We can iterate the decom-

position until we have a pure Hodge structure. So, for each n > 1, Hn
(
P2

C , ξC

)
= 0. We thus obtain, with

L = C,R,

ExtnC oh(U/TL )(i
∗ξB , i∗ξA ) ∼= ExtnC oh(U )(i

∗ξB , i∗ξA )T
L

∼= Hn (U, i∗(ξ∗B ⊗ ξA ))T
L

∼= Hn
(
P2

C , ξ∗B ⊗ ξA

)TL

∼= 0,

which completes the proof.

Acknowledgements I would like to thank C. Simpson for his help and encouragement, C. Sabbah and C. Sorger for their
interest in this work and M. Perling for explaining me his correspondence.

References

[1] J. A. Carlson, Extensions of mixed Hodge structures, in: Journées de Gometrie Algébrique d’Angers, Algebraic Geom-
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