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Agräıments

Aquesta tesis no hagués estat possible sense l’intervenció de l’atzar. Èsser sempre
tan il·lustre i afable com, ja per definició, d’imprevisible bonhomia. Què és el que fa
que una tesis rutlli com un rellotge que funciona bé? Encert en les decisions? Potser.
Serietat? Déu ens n’atorgui! Treballar dur? No està malament. Tanmateix, aquesta
llista podria ser tan extensa com una tesis, o fins i tot, com la Santa i sagrada b́ıblia,
el Quijote, o els Pilars de la Terra (el maligne els tingui en compte). Però com que
la tesis no va sobre un llistat de virtuts de les que, sense cap mena de dubte, n’estan
folrats tots els doctorands d’aquest centre, amb la comptada excepció de cap d’ells,
em limitaré a finalitzar tal llistat amb un element que, de fet, ja ha estat apuntat:
l’atzar, el gran oblidat. Ja no es tracta de que haguem arribat a bon port, es tracta de
la immensa (i de moment impossible de modelar) casúıstica que em va dur a acabar
sent professor i doctorand, quan la gent de baixa casta com un humil servidor està
cridada a un dest́ı molt menys avantatjós. Des d’aquell moment en el que en Marçal
Rossinyol i l’Eduard Vàzquez van precaritzar el seu futur amb una beca de pigmeus
ingressos, fins al moment en el que el grup Color i Textura, va dipositar coses en
mi, han hagut de passar un grapat de coses. Aix́ı doncs, només m’agradaria emetre
un exaltat crit a favor de la sort i del tarannà de les persones de bon cor, si és que
això tingués algun sentit en aquest paràgraf. Juntament amb l’atzarós amic, caldria
fer referència, i fer-ho per sincera i profunda deferència, que no és poca cosa, al meu
director de tesis: el molt excel·lent Doctor Ramon Baldrich, a qui, val a dir, la fortuna,
(i entenem-la com una medieval manera d’anomenar l’atzar), va deparar certs mals de
cap derivats de la gestió duta a terme per a aquest redactor d’agräıments (i de coses
en general que ara tampoc venen a tema). De totes maneres, li estic profundament
agräıt per la confiança dipositada en la meva persona, la qual, sense comptar amb
rebut ni similar, podria haver estat com un xec de molts calers al portador que en
comptes de al seu destinatari original acabés en mans d’un Sabadellenc, o, pitjor
encara, d’algú de Barcelona. Juntament amb en Ramon, em veig obligat (literalment,
doncs temo les represàlies més que un claustrofòbic un ascensor de l’eixample), a
esmentar a la molt il·lustre Doctora Maria Vanrell. Dona, śı, però tanmateix jefa.
Amb ella, més enllà de tesis, també he viscut uns anys d’interessentiśısima (notis, per
favor, el doble superlatiu), docència en Intel·ligència Artificial. Un camp que, més
enllà de ser interessant, queda molt bé quan ho dius a les amistats i derivats.

És moment, doncs, de creuar el bassal, si es que es vol fer una de les rutes més
estúpides per anar a Holanda que s’hagin vist en temps. D’aquell páıs provingué,
tal dia com avui, el molt excepcional Doctor Joost van de Weijer, amb qui he tingut
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fructificants publicacions i conversacions en magnes quantitats. En aquell llunyà páıs
on la pluja cau i el fum emana dels alvèols dels turistes, (si es que no estan copsant
amb l’esma just per a respirar l’anar i venir de dracs gegants, fades i nans petits) vaig
tindre la fortuna, deia (i és que no pot deixar d’aparèixer la fortuna), de treballar
amb el molt honorable Professor Theo Gevers i amb el molt prohom Doctor Marcel
Lucassen, gent que em va donar un enfocament sobre la recerca que em va obrir coses.
Aprofito per a demanar disculpes per l’extensió excessiva de la frase anterior.

Ara, si se’m permet, tornaré a vindre a aquell planeta anomenat Catalunya (i
dic això amb el cor a la mà i una llàgrima regalimant pel meu immund rostre de
galifardeu), per a esmentar a la resta de persones del meu grup , sense les quals no
seriem un grup, doncs la absència de tothom, a excepció d’un mateix, o en el cas
extrem, també d’un mateix, crearia un grup d’una o cap persones respectivament, i
això té tant de grup com quelcom que no en té ni rastre de tal cosa (aqúı demanaria
un esforç al lector per a posar la seva pròpia metàfora, i és que Bolonya ens ha
ensenyat que cal ser interactius i fer parçonera a la gent). De res. Aix́ı d’entrada,
no podŕıem oblidar, deu nos guard de tal baixesa, d’esmentar a la resta dels molt
superlatius doctors del grup: Xavier Otazu, Robert Benavente, Alejandro Pàrraga i
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molta sort des de les ferèstegues terres Londinenques on em trobo actualment en un
sentit no literal. En Javier Vázquez (la vida ara és menys funesta) i en Fahad Shahbad,
els propers en caure sota el jou de la tesis. Com no, la Sheyda Beighpour i la Naila
Murray (visca l’eye-tracking!), amb qui sumem ja una pila de dones (arribarem a
Europa?), Jordi Roca (visca!), Jaime Moreno, David rojas, Ekain Artola i Ahmed
Mounir.

Obviarem el fet de que ara aqúı he de posar una llista de gent del Centre de Visió
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Acabo, i és que allò que comença bé ha d’acabar d’una manera o altre, excepte, es
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Resum

Keywords: Segmentació, saliency, color.

La segmentació d’imatges té com a objectiu el partir una imatge en un conjunt de
regions no sobreposades anomenades segments. Tot i la simplicitat d’aquesta definició,
la segmentació d’imatges esdevé un problema molt complex. La pròpia definició de
segment és encara poc clara. Quan demanem a un humà que segmenti una imatge,
aquesta persona segmenta emprant diferents nivells d’abstracció. Alguns segments
poden ser formats per una sola textura ben definida, mentre que d’altres correspo-
nen a un objecte en l’escena que conté diverses textures i colors. Per aquesta raó,
la segmentació d’imatges es divideix en bottom-up and top-down. La segmentació
bottom-up es caracteritza per ser independent del problema espećıfic a tractar, és a
dir, que tracta propietats generals de les imatges, com les textures o la il·luminació.
La segmentació top-down, és especifica per a un problema, cercant entitats en l’escena
tals com objectes coneguts.

Aquesta tesi està centrada en la segmentació bottom-up. Començant amb l’anàlisi
de les mancances dels mètodes actuals, proposem un mètode anomenat RAD. El nos-
tre mètode millora les principals mancances d’aquells mètodes que usen les propietats
f́ısiques de la llum per a realitzar la segmentació. RAD és un mètode topològic que
descriu la reflectància d’un material.

Després, tractem un dels principals problemes de la segmentació: adaptació no
supervisada al contingut de la imatge. Per a aconseguir un mètode no supervisat
utilitzem un mètode de saliency també presentat en aquesta tesi. Aquest mètode
calcula la saliency de les transicions cromàtiques d’una imatge mitjançant un anàlisi
estad́ıstic de les derivades de la imatge. El mètode de saliency s’utilitza per a con-
struir la nostra proposta final de segmentació: spRAD, un mètode no supervisat de
segmentació.
El model de saliency ha estat validat mitjançant un experiment psicof́ısic aix́ı com
computacionalment, millorant un mètode actual de saliency.

spRAD també millora els mètodes actuals de segmentació, com queda palès pels
resultats obtinguts en una base de dades de segmentació àmpliament utilitzada.
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Abstract

Keywords: Image segmentation, saliency, color.

Image segmentations aims to partition an image into a set of non-overlapped re-
gions, called segments. Despite the simplicity of the definition, image segmentation
raises as a very complex problem in all its stages. The definition of segment is still
unclear. When asking to a human to perform a segmentation, this person segments at
different levels of abstraction. Some segments might be a single, well-defined texture
whereas some others correspond with an object in the scene which might including
multiple textures and colors. For this reason, segmentation is divided in bottom-up
segmentation and top-down segmentation. Bottom up-segmentation is problem in-
dependent, that is, focused on general properties of the images such as textures or
illumination. Top-down segmentation is a problem-dependent approach which looks
for specific entities in the scene, such as known objects.

This work is focused on bottom-up segmentation. Beginning from the analysis
of the lacks of current methods, we propose an approach called RAD. Our approach
overcomes the main shortcomings of those methods which use the physics of the
light to perform the segmentation. RAD is a topological approach which describes a
single-material reflectance.

Afterwards, we cope with one of the main problems in image segmentation: non
supervised adaptability to image content. To yield a non-supervised method, we use
a model of saliency yet presented in this thesis. It computes the saliency of the
chromatic transitions of an image by means of a statistical analysis of the images
derivatives. This method of saliency is used to build our final approach of segmenta-
tion: spRAD. This method is a non-supervised segmentation approach.

Our saliency approach has been validated with a psychophysical experiment as
well as computationally, overcoming a state-of-the-art saliency method.

spRAD also outperforms state-of-the-art segmentation techniques as results ob-
tained with a widely-used segmentation dataset show.
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Chapter 1

Introduction

In this chapter we introduce color image segmentation. First, we draw the main
lines of this dissertation. Afterwards, we briefly introduce the problem of image
segmentation and we analyze the concepts of bottom-up and top-down segmentation.
Next, we present a brief analysis of image saliency as the second main field of this
thesis. Subsequently, we present the motivations and objectives of this work and the
structure of the chapters and sections that can be found in this dissertation.

1.1 Thesis scope

The main focus of this dissertation is bottom-up image segmentation. We propose
a model to cope with the problems derived from shadows and highlights in common
segmentation methods. Current segmentation approaches are focused either on the
feature space (histogram) or on the image. These methods do not model a surface
reflectance, therefore presenting some inconsistencies when shadows or highlights are
present in the scene. Our proposal is inspired by the dichromatic reflection model
[171], which proposes a simple mathematical model to describe a surface reflectance
from the shadows to the highlights. Nonetheless, this proved to be a model too rigid,
which fails to describe the interaction of light with a surface in real scenes. To solve
this problem, we apply a creaseness operator to the image histogram followed by a
ridge extraction process. The resulting ridges are a simplification of the image his-
togram where the dominant structures (mountains) do actually represent different
material reflectances. These ridges are used to cluster the histogram. A representa-
tive color for each cluster is computed and remapped into the original image, thus
performing the segmentation. The ridge extraction process has been designed to sim-
plify a manifold, but although it is not explicitly meant to follow common illumination
changes as described by the dichromatic reflection model. To improve its behaviour
in the framework of segmentation, statistical information of illumination changes in
real images is included.

This dissertation also presents a multi-scale image saliency method, validated by

1
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means of a psychophysical experiment. Image saliency has been used to overcome
one of the main challenges encountered in images segmentation so far, namely, non-
supervised adaptability to image content. Segmentation coarseness varies depending
on the image content or on the requirements of the specific application in which
segmentation is to be applied. Current segmentation algorithms commonly have a
set of parameters which can be tuned for adapting its segmentation coarseness to a
given problem. Nonetheless, such tuning proves itself insufficient when some grade of
adaptability is expected for any image, i.e., in general for purpose segmentation. Dif-
ferent images display diverse scenarios, with representative objects at different scales,
either indoor or outdoor, and so on. This makes general purpose segmentation a
challenging problem. A way to automatically set the parameters of a segmentation
method is therefore needed. Image saliency can be applied for this purpose. It is
assumed that salient objects and regions in the scene ought to be properly segmented
in a correct segmentation. A saliency method, validated and improved in this work,
is used for the non-supervised parameter tuning. The saliency method proposed is
an extension of color boosting proposed by van de Weijer, Gevers and Bagdanov [198].

Summarizing, in this dissertation we present a non-supervised model of image seg-
mentation (spRAD) and a model of image saliency evaluated with both psychophysics
and segmentation. Our segmentation schema is able to model a surface reflectance
in a more flexible way than the dichromatic reflection model. Furthermore, the in-
clusion of saliency information makes spRAD a non-supervised segmentation method.

It is our believe that computer vision and psychophysics, as presented in this
dissertation, are two fields which have been increasingly drawing nearer to each other.

Psychophysics and multidisciplinarity in computer vision

The link between computer vision and Psychophysics is getting stronger. Nonetheless,
it is still difficult to find articles about psychophysics in computer vision, whereas is
easier to find articles of computer vision in conferences and journals more related with
psychophysics and perception.

We will mention several articles of psychophysics in this dissertation which are
required to understand what ’segmentation’ means in computer vision.

We have referred to another technique which is included in this thesis, namely,
saliency. Actually, saliency is a phenomena which can be hardly understood without a
solid psychophysical experimentation and fundamentals behind. Not in vain, the most
well-known and accepted algorithms of saliency are strongly based on psychophysical
experimentation and biological evidences.

Initially, image segmentation algorithms were shinny based on perceptual mech-
anisms, and were mainly mathematical theories based on learning or, directly, ad
hoc algorithms tested and optimized on a certain set of images. Computer vision
is becoming nowadays a more interdisciplinary and wider field. Machine learning,
mathematics and physics, are now combined with psychology, psychophysics and neu-
roscience. More and more, biologically-inspired and psychophysical experiments are
being introduced in computer vision algorithms. For instance, in addition to the
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work about saliency and psychophysics detailed in Chapter 4, we have also performed
during this thesis (although out of the scope of this dissertation, and therefore not
included) an experiment with an eye-tracking to aid in damage painting restoration.
That is, a multidisciplinary work which combine computer vision, psychophysics and
experts on damage painting restoration.

In this thesis we follow this train of thoughts and we use a multidisciplinary
approach to validate our proposals, although it is, indeed, a thesis on computer vision.

Organization of this chapter

Firstly, section 1.2 we present a discussion about image segmentation, which will
be further extended with a state of the art in chapter 2. A discussion about top-
down and bottom-up segmentation is presented in section 1.3, and extended with
a state of the art in top-down segmentation in section 1.4. Afterwards, in section
1.5 we introduce image saliency and present a brief state of the art on this field.
Subsequently, in section 1.6 we explain the main objectives and contributions of this
thesis. The organization of the thesis is presented in section 1.7.

1.2 Image segmentation

Computer vision aims to build computational tools to analyze and understand images
as well as actions in video sequences. Such a comprehensive understanding of scenes
requires coping with the problem from many different points of view. An example
of what, generically, computer vision aims to yield is depicted in Fig. 1.1. In the
first image (Fig.1.1a) we can see an example of different materials/textures which
computer visions aims to automatically detect. Another level of recognition is object
detection and classification. In this case, the idea is to detect objects which are
commonly formed by multiple and complex parts, such as the aeroplane showed in
1.1b. In these cases, it is necessary to include top-down information to guide the
algorithms in finding specific objects. The best methods for object classification and
detection are presented regularly in the PASCAL challenge [56]. In the PASCAL
challenge the participants have to detect 20 classes1 in real scenes both outdoor and
indoor. Furthermore, this complex task can be much more difficult if we are focused
on the real aim of computer vision, namely, to be able to analyze a scene as a human
being would do so. An example of what we can expect in this case in presented
in Figs.1.1c,d. Both images have been downloaded from the labelMe dataset [164],
which is an open tool of online image labelling. In this web site there is a collection
of images which can be labelled by every one who desires it. Hence, there are no
restrictions as in the PASCAL dataset. For instance in the indoor scene showed in
Fig. 1.1c we can see how people segmented the corridor, the walls, the stair and even
the advertisements of the wall. The outdoor scene showed in Fig.1.1d shows an even
more interesting scene. In this case, in addition of the objects present in the scene
such as trees, cars, windows and so on, there is a person which is related with another

1The 20 classes are: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car,
motorbike, train, bottle, chair, dining table, potted plant, sofa, tv/monitor
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level of recognition: action recognition. For instance, we can see a person who is
crossing the street. Additionally, we can see that this person is doing it correctly,
that is, across the zebra crossing.

a) b)

c) d)

Figure 1.1: Examples of complex scene/object classification extracted from La-
belMe [164] and PASCAL dataset [56].

It is clear that detecting a certain (known and well-analyzed) material seems
easier than detecting if a person is having a suspicious behavior. Nevertheless, in
both cases we need to exactly know where the material or the person is. That is, to
get the segment of the image which contains such element. This Thesis is focused
on this issue, namely, Image Segmentation [154] [182] [225] [34] [113] [126]. It can be
focused in detecting parts of the image which share certain characteristics, which do
not necessarily correspond with a physical object, or to detect concrete objects on
the image. It is what makes the main difference between top-down and bottom-up
segmentation [202] [17] [212] [86] [24] [118].

1.3 Top-down and bottom-up image segmentation

The information used in computer vision is classified in two main families: bottom-up
information and top-down information. A bottom-up system consists in the piecing
of little systems to give rise to bigger systems. Hence, the information used in this
approaches is very detailed. By the other side, in a top-down approach, the overview
of the system is firstly formulated. In computer vision, it means that bottom-up infor-
mation uses cues which are rather simple and problem-independent. Thus, bottom-up
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information is supposed to perform well independently of the nature of the problem.
By the other hand, top-down information is commonly included in a problem depen-
dent paradigm where, commonly, some learning is required.

The question about whether image segmentation is actually a pure bottom-up
process or not has been treated in several articles, mainly those related with psy-
chophysics. An interesting work regarding this issue was presented in 1997 by Vecera
and Farah [202]. They point out that there is a paradox in this discussion: ”One
could also argue a priori for bottom-up image segmentation because interactive im-
age segmentation seems to pose a paradox: If the purpose of image segmentation is
to group locations of an object in order to recognize that object, then how can object
information be used to guide this process, since, presumably, the object hasnt been
recognized until completion of the segmentation?”.

The authors of this article present a brief dissertation about this issue by analyzing
some previous works. Afterwards, they present four experiments from which stands
out that there is indeed a top-down influence in segmentation. Nowadays, this theory
is well accepted and no further discussed. It is actually easy to find a great collection
of article oriented to the addition of top-down information in image segmentation [17]
[212] [86] [24] [118].

Indeed there is no such a paradox. Whereas we can easily find a fairly big number
of authors who either implicitly or explicitly suggest that bottom-up mechanisms can
not be influenced or biased by top-down processes, we know that it can be hardly the
case. At least, not in practice. Actually, this misunderstanding causes some conflicts
in current terminology. A good example of it is the definition of saliency. In existing
literature, we can see articles talking about saliency as a pure problem-independent,
bottom-up mechanisms, then leaving concepts such as guidance or attention as a pure
top-down processes. Nevertheless, it is well known that actually attention affects the
bottom-up saliency map. Phenomena that has been modelled in several approaches as
in [36]. Hence, we know for interesting works as the one presented by Carrasco, Ling an
Read [27], that indeed attention alters appearance, that is, the commonly considered
pure bottom-up information. In this sense, Knudsen has recently suggested in a great
survey about attention [107], four elements which involves attention, namely, working
memory, top-down sensitivity control, competitive selection, and automatic bottom-
up filtering for salient stimuli. The specific influences of pure bottom-up features in
attention and saliency are analyzed by Itti in [91].

All this confusion can be cleared up by knowing the fact that in perception there
is not the so-called zero-moment. That is, that our brain can not be turned on all of a
sudden having no information at all inside. High order cortical areas are influencing
all the time the basic bottom-up operations coming from the retina. Hence, visual
processing therefore involves countercurrent streams of information [75]. Furthermore,
this influence of high-order was initially found just at high-levels of the visual path.
Nonetheless, nowadays we know that such influence also occurs in the earliest stages.
It is even possible to go one step further in this direction. There is not just an
interaction of top-down information because our brain has been non-stop working
and it bias somehow bottom-up information as arriving. There is also the fact that
our brain predicts what we can found in a specific environment or task [112]. Therefore
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knowing in advance which kind of features or stimuli we are expected to be looking
for before find them. When such a prediction is not present in our brain, it may turn
in problems such as dyslexia and schizophrenia. For a further explanations about this
interesting issue we encourage to read [75] and for an interesting analysis of top-down
cues commonly used in a computational framework, [195].

1.4 Image segmentation: current status

In this section we describe the current status in image segmentation by briefly de-
scribing the main techniques of top-down and bottom-up image segmentation.

1.4.1 Bottom-up segmentation

We classify bottom-up image segmentation methods as:

1. Image-based segmentation.

Exploit the spatial information contained in the image, named spatial coherence
[95].

• Deformable models.

• Graph-based approaches.

• Region growing and edge detection.

• Split and merge.

• Topological methods.

• Other methods.

2. Feature-based segmentation.

These methods are focused on the photometric information of an image repre-
sented on its histogram [5] [221].

• Histogram thresholding.

• Clustering Techniques.

Hard Clustering.

Fuzzy Clustering.

3. Physics Based methods.

These methods use the knowledge about the physical formation of the scene
(light, surfaces reflectance), to perform the segmentation.

• Segmentation based on the dichromatic reflection model.

• Spatial transformations.

4. Hybrid methods.

Hybrid techniques combine methods of the previous categories.
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Due to its importance in this dissertation, we present a comprehensive state of the
art in bottom-up image segmentation in chapter 2, where each of these categories is
detailed.

What we are concerned in this section is about the current status of these methods.
The most meaningful recent advances in segmentation belong to image-based and

feature-based methods. Therefore, methods most commonly used in current articles
of segmentation belong to these two categories. Concretely, the most widely used
method of feature-based segmentation is the Mean Shift [39] whereas the Efficient
Graph-based Segmentation method [58] is the most used among all the image-based
methods.

Regarding physics-based techniques, they have been basically stacked in last years
and no meaningful advances have been presented. These methods are mainly exten-
sions of the dichromatic reflection model of Shafer [171]. Whereas this model is a
good theoretical framework, its application on real images has demonstrated to yield
poor results. The main reason is that it is a too rigid model and its not capable
of adapting to the artifacts of the images, mainly caused by acquisition conditions,
clipping and image compression.

Each of the categories described above (feature, image and physics based) have its
own potential advantages. A concerning of this dissertation is to find a way to exploit
each of these advantages by proposing a hybrid segmentation method as a combina-
tion of all of them. Thus, in this dissertation we present a bottom-up segmentation
method which is inspired in the dichromatic reflection model. It is performed an
analysis on the feature space to find shapes similar to the ones described by this
model. It is done with a ridge-based analysis of the histogram. The method pro-
posed, called RAD, outperforms state of the art segmentation techniques as detailed
in chapter 3. The method proposed is therefore a feature-based segmentation tech-
nique. This method is further complemented with an statistical analysis to include
physical knowledge, making a hybrid (feature plus physics) method. This method is
called pRAD and is also presented in chapter 3. Finally, we include image spatial
coherence using a saliency model presented in chapter 4. By means of this model,
we yield a full hybrid (feature plus physics plus image) segmentation method which
outperforms existing bottom-up methods.

Due to the importance of segmentation in this dissertation we present a separated
state of the art in image segmentation in Chapter 2.

1.4.2 Top-down segmentation and object recognition

As pointed out before, the influence of top-down interaction in visual tasks such
as object recognition is accepted. In opposition with the bottom-up features, top-
dow interactions are learned and strongly depend on the subject’s experience. These
influences, thus, change the strategies of search in a way that differs, either gently or
strongly, among subjects. In other words, the internal representations of the world,
acquired by experience, affect our brains strategy for analyzing visual scenes [75].

Another important issue, if we expect to follow a coherent strategy for top-down
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segmentation, is the complexity of the top-down representation of the objects and
scenes in our brain. The Gestalt psychologists stated that ”There are entities where
the behavior of the whole cannot be derived from its individual elements nor from
the way these elements fit together; rather the opposite is true: the properties of any
of the parts are determined by the intrinsic structural laws of the whole”.

Currently, there are evidences that along the visual path, from the primal visual
cortex to the high-order visual areas, neurons become selective to progressively more
complex stimuli [75]. This complexity can therefore reach a whole object, as the
Gestalt school holds. But it can reach even more complex information, namely, the
influence of context. In these cases, we use the information that certain objects tend
to appear in conjunction with some other objects in certain situations [59], a process
called prediction [112]. It means that this top-down influence can appear at different
stages and with different complexity. An interesting study of the earliest stages where
top-down influence can appear can be read in [8]. For instance, there is the basic
conception of attention, as understood in the framework of saliency. Basically, it is a
kind of top-down influence which guides our attention by modifying the precognitive,
bottom-up, saliency maps. We treat this issue below in section 1.5. But attention can
be focused in entire objects [51] [167] and even predicting the apparition of objects in
specific known environments and situations.

Current top-down segmentation and object recognition methods either use these
evidences in different ways or perform an ad-hoc combination of features which have
been seen to be useful for certain classes. Reached this point we have to set a dif-
ference between object recognition and image segmentation. The border between
both is narrow and smooth, nonetheless, it is enlightening the difference made in the
PASCAL challenge [55], where object detection is separated from object segmenta-
tion. For object detection it is just necessary to mention wether a certain object is
present or not in an image, without the necessity to specify its borders. By the other
side, object segmentation is directly related with the presented dissertation, where
the object have to be effectively segmented in the image. A clear description as well
as the relation between both concepts (recognition and segmentation) can be read in
[195]. The relation is simple to explain. For object recognition, a learning procedure
is performed to find those features which better describe a certain class (i.e. horse,
face, car, bike, and so on). For object segmentation the same information can be used,
once learned, to decide which of the segments facilitated by a bottom-up segmenta-
tion method, corresponds with a known object. It stands out the fact that, without
a good bottom-up information, it would be fairly difficult (if not impossible) to cor-
rectly segment an object. These features can be combined or extracted in different
ways to detect or segment an object. Some well-known examples are SIFT [124] or
the textons [177]. For a detailed explanation of the features and techniques involved
in bottom-up segmentation, we refer to Chapter 2.

In current literature we can find a division between those top-down methods which
require a previously labelled set of images for the learning procedure and those which
do not need it.
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Top-down segmentation methods requiring labelled data

The method proposed by Borenstein and Ullman in [17] is an example of a method
which requires previously labelled data for the learning procedure. They propose
to learn those segments more representative of a given class by using two sets of
images: the set C which contains examples of class images, and the set NC which do
not. Then, they divide each image into a large set of rectangular sub-images which
sizes vary from 1

50 to 1
7 of the image size. They compute optimal fragments based

on the Neyman-Pearson decision theory, namely, optimal fragments are defined as
those having maximal frequency within the class. Then, they build a figure- ground,
labelled image. In this image each pixel is mark as figure (class) or ground. Finally,
they use this large set of segments to detect whether an specific class is present or
not in an image and to delineate the borders of the class, that is, to perform the
segmentation.

Another interesting shape-based model is presented in [117]. They learn an Im-
plicit Shape Model (ISM). It does not try to define an explicit model for all possible
shapes a class object may take, but instead define allowed shapes implicitly in terms
of which local appearances are consistent with each other. It is in conjunction with
those approaches which allow the definition of new novel objects by a combination of
class prototypes as in [97]. A further improvement of this method has been recently
presented by Gorelick and Basri in [76]. This model represents shape using two types
of local descriptors. One encodes the boundaries of the shape. The other is a regional
descriptor, which includes a dense local orientation field derived from the shape by
solving a Poisson equation on the shape. It is also added to this representation a
color histogram with each shape. To solve partial matches they use a modification
of the voting scheme proposed in [117]. The main advantage of [76] is that it allows
more objects occlusions than [117]. An example is showed in Fig.1.2 , where we can
see how the approach of Gorelick and Basri in [76] (Fig.1.2 4th column), solves better
the occlusions than the method in [117].

Figure 1.2: An example of the improvement achieved by Gorelick and Basri [76]
(4th column) with respect to the approach presented in [117] (3rd column). From
[76].

Another interesting family of methods are those which use Conditional Random
Fields. An example can be found in [86], which is an extension of a previous work
called multiscale CRF [85]. In this article a CRF in used to try to give a context to
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an image which has been previously segmented in superpixels.
Another approach based on CRF has been presented by Levin and Weiss [118].

In this case CRF is used to consider at the same time bottom-up and top-down
features (bottom-up are again, superpixels of the image). This methodology yields
good results with less segments of the original image. Both methods [86] and [118]
allow occlusions. A recent approach based in CRF is the OBJCUT, presented by
Kumar, Torr and Zisserman in [111]. This method has as a main advantage in relation
with other CRF-based methods that it allows more inter-class variability.

Top-down segmentation methods without labelled data

The most common way of learning object categories is by means of tools like proba-
bilistic Latent Semantic Analysis [88] and Latent Dirichlet Allocation [16] based on a
bag of words approach, which, when applied to images is called visual words [41] and
SIFT -like feature region description [179] [124].

The main problem with visual bag of words is that all the words that describe an
image are placed into a single histogram, therefore loosing all the spatial information.
It means that the fact that those words which describe a class are present in a image
does not necessarily imply that this class is present in the image. Further, with
a simple bag of words approach it is difficult, for the same reason, to segment an
object. Commonly, the borders of the objects are smoothed and irregular and hardly
correspond with the correct borders. This problem has been treated in some rather
recent works. An example is the approach proposed by Russell et al. in [163]. The
authors state that a correct segment (on which correctly draws the object boundary)
will be described by coherent groups (topics), whereas segments overlapping object
boundaries will need to be explained by a mixture of several groups (topics).

In this approach, for a given image a set of subsegmentations (candidate segmen-
tations) are computed using a bottom-up segmentation algorithm. Then, images are
represented using a SIFT descriptor and quantized in about 2000 words using k-means
algorithm. Once the visual words are computed for an image, each image segment is
represented by a histogram of visual words contained within the segment (the bag of
words model). Afterwards Latent Dirichlet Allocation is applied to find image topics.
Then, each segmented its sorted by its similarity within the learned visual words.

Another approach to overcome the main shortcomings of the visual words is pre-
sented by Cao and Fei-Fei [24]. The authors propose what they call spatially coherent
latent topic model (Spatial-LTM). Spatial-LTM represents an image containing ob-
jects in a hierarchical way by oversegmented image regions of homogeneous appear-
ances and the salient image patches within the regions. The main difference with the
approach proposed in [163] is that Cao and Fei-Fei generate the topic distribution at
the region level instead of the word level as in [163]. In other words, Cao and Fei-
Fei use the candidate segments to build a hierarchical representation of the object,
instead of treating each segment as a word as in [163], what makes the methods less
sensitive to segments quality than in [163].

But there are also other techniques for top-down segmentation without labelled
data. An interesting example is presented by Winn and Jojic in [212]. This method
called LOCUS is a shape based model. Concretely, LOCUS define the class informa-
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tion with the broad global shape, the edge model defining the typical edge locations
(with Canny) and (optionally) in a mild prior on the appearance features (color or
texture). Even when the main advantage of this method compared with other shape
based approaches is that it allows a considerable variability in the shape of an object,
it is still required that a given object have to have a similar orientation to be detected.

Another interesting approach is an information based technique for the learning
as presented by Ullman in [195]. The learning procedure is based in the detection
of those features which are more informative for a given class. Furthermore, it is
suggested that single, simple, features such as certain color of a pixel or a corner is
not enough discriminative and several neighboring features have to be combined in
what the author calls fragments. These segments are build if they are more informative
(discriminative) for a given class. Then, for each class a hierarchical classification of
fragments is extracted. This idea of a hierarchical representation actually corresponds
with the HVS as previously commented. A graphical example is showed in Fig.1.3.

Figure 1.3: Hierarchical classification of a class. From its more complex fragments
until the simple features. From [195].

Another method which do not require a training set of labelled images can be
found in [191] where a tree structure is proposed to catch the relatives frequencies of
the features which describe a class.

1.5 Image Saliency

The other main field which we will treat in this Thesis is ’Image Saliency’. As men-
tioned before, the definition of saliency still raises some controversy. Basically, the
problem is if saliency is whether a pure bottom-up mechanism or it involves top-down
mechanisms. A deep analysis of this question was presented by Itti and Koch in
[93]. Again, as happens with image segmentation, the problem of whether we can
conceive ’saliency’ as a bottom-up process or not, just drives to confusion. The ba-
sic pure bottom-up map can be modified by task-dependent top-down information.
This theory, which some articles still discuss, have strong evidences which can be
hardly refuted. An interesting experiment about it was done by Carrasco, Ling and
Read in 2004 [27]. From this work it stands out that top-down alters the bottom-
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up maps. Concretely, they found that attention (task-dependent top-down) boosts
stimulus contrast. By the other side, there is the phenomenon called top-down in-
hibition [36], which is a task-dependent way to do not consider certain information
which is meaningful for the bottom-up saliency. More evidences of the inhibition of
saliency due to attentional and task-dependent information was presented by Cutzu
and Tsotsos in [42]. In this article the authors present evidences about the existence
of a suppressive annulus around the attended item.

Reading existing literature from the fields of psychophysics, perception, compu-
tational neuroscience and computer vision, it stands out that probably the line to
be drawn is between saliency and attention. For some researchers, it is clear that
saliency is pure bottom-up, whereas attention is completely task-dependent, therefore,
top-down. It might be a rather acceptable difference between what is task-dependent
and completely bottom-up, if we accept that one can affect the other. Nevertheless,
it is a generical definition which nobody would accept without some reticences. For
instance, in a publication included in this dissertation it was necessary to mention the
existence of pure bottom-up saliency, as understood in psychophysics and top-down
saliency, as commonly treated in computer vision [199]. This thin border between
these two concepts often appears to be trespassed as in [91] where it is mentioned the
concept of bottom-up up visual attention or in [98] where what is called attention,
is actually computed by means of a saliency map (based in orientation or based in
orientation and color).

In this work, for the sake of clarity, we will refer to attention as a task-dependent
process, whereas saliency will refer to a bottom-up mechanism. This separation
can be found in several articles as in [54], where the authors claim in the abstract
from experimental evidences that ’the results suggest rapid feature analysis mediating
detection, followed by attention-demanding binding for identification and localization’.
Nonetheless, we do not attempt to be strict in this sense, since, as mentioned, some
authors might disagree with such an strict separation. A graphical example of what a
bottom-up saliency map is, is shown in Fig.1.4. The left image is the original image.
The central image is a is a computational pure bottom-up saliency map. The image
on the right is a human saliency map obtained by means of an eye-tracker, a common
technique used to evaluate saliency.

Regarding what is considered attention, namely, a top-down task, it is defined in
[98] as: ’Visual attention is the ability of a vision system, be it biological or artificial,
to rapidly detect potentially relevant parts of a visual scene, on which higher level
vision tasks, such as object recognition, can focus’. Attention needs indeed to have a
map of features, which will be the saliency map, to decide, among all these features,
which of them are relevant for an specific task. There is a considerably amount of
experiments related with this. For instance the one presented in [48], which follows a
classical paradigm of experimentation.

An outline of the experiments of attention presented in [48] is shown in Fig.1.5.
In Fig.1.5a, it is shown an experiment where the subjects should report the number
of black letters appearing in the stimuli which is flashed briefly enough to avoid eye
movements. In this case, the experiment is designed to find evidences of the limited
capacity of processing information. It was found that the probability of reporting
the target letter N is much lower with two accompanying targets (the panel on the
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Figure 1.4: Example of bottom-up image saliency obtained from [153]. Left image:
original image. Center image: Computational map of bottom-up saliency. Right
image: Human saliency map obtained with an Eye-Tracker.

left of Fig.1.5a) than with none (central panel in Fig.1.5a). Another experiment is
outlined in Fig.1.5b. In this case it was thought to find a difference between pure
bottom-up discrimination and top-down. Effectively, when the target differs from the
rest in simple low-level features such as in the example showed in Fig.1.5b left, it is
much more faster to detect than those cases when the target differs in more complex
feature (Fig.1.5b right). This kind of experiments where a target (expected to be
salient) appears among a set of distracting targets, are used because they represent
in a simplified way a real situation. In a real cluttered scene, we would expect to have
a target combined with several distracting (not-interesting) targets.

Following a similar procedure it has been determined several low-level features
which are involved in visual attention, such as contrast [48], color [98], motion [165],
rarity based on information theory [132] or much more recently, the adaptive idea of
surprise as detailed in [92]. Other interesting studies aim to figure out the influence
of time in saliency, as in [187]. Comprehensive and interesting surveys on the features
involved was presented by Wolfe and Horowitz in 2004 [216] and in 2007 by Knudsen
[107]. Wolfe and Horowitz define 5 categories of features depending on its confidence
[216]:

• Undoubted attributes: Color, Motion, Orientation and size (including length
and spatial frequency).

• Probable attributes: Luminance onset (flicker), Luminance polarity, Vernier
offset, Stereoscopic depth and tilt, Pictorial depth cues, shape, line terminator,
closure, topological status and curvature.

• Possible attributes: Lightning direction (shading), glossiness (luster), expan-
sion, number and aspect ratio.

• Doubtful cases: Novelty, letter identity (over-learned sets in general and al-
phanumeric category.
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a)

b)

Figure 1.5: Outline of the experiments of attention presented in [48]. a) Subjects
should report the number of black letters appearing in the stimuli which is flashed
briefly enough to avoid eye movements. b) Subjects should report the mismatching
element.

• Probable non-attributes: Intersection, optic flow, color change, three-dimensional
volumes (such as geons), faces (familiar, upright, angry and so on, your name,
semantic category (e.g. animal, scary).

note that some of these features are bottom-up (as color) whereas some others are
top-down (as faces).

As stated before, we consider saliency as a bottom-up mechanisms which can be
further biased by top-down information. Evidences of the formation of this bottom-
up map in the V1, are presented in [120][227] and [109]. The influence of bottom-up
features in visual attention are studied in [53] and [91]. The former presenting an
experiment in a dataset of labelled images (called LabelMe [164]). The experiment is
designed to answer the question ’How do we decide which objects in a visual scene are
more interesting? ’. They sate that whereas an initial intuition would be to answer
the question with high-level features, it is indeed a high influence of low-level features.
An analysis of some features which are commonly involved in the formation of the
bottom-up saliency map was presented by Parkhurst and Niebur in [158]. Basically,
current models of saliency use color, contrast and orientation as main features [94]
[215] [213] [144] [128] [121]. Unlike that these features are nowadays accepted, it was
a large controversy with the role of color in visual saliency. Some important works
pointed that color was actually not salient. For instance in the work of 1994 titled
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’Abrupt luminance change pops out; abrupt color change does not ’ [188], or also in 2001
[194] among others as [74]. It was basically due to an error in the experimentation,
as pointed out by Snowden in [181].

Another question about the formation of the saliency map, was whether the fea-
tures involved are computed separately or in a parallel way. The results presented
by Nothdurft in [147] and by Krummenacher, Muller and Heller, [110] show that
there is a parallel computation of these features. A more recent work [109] sates
that not all the combinations of features are equally useful. In this work it is found
that contrast+motion and contrast+color increase the saliency of a feature, whereas
color+motion does not. The method of saliency presented in this Thesis computes
color and orientation in a parallel way as these works state.

In the next section we briefly describe the main models of visual saliency by
dividing them into bottom-up and bottom-up plus top-down models.

1.5.1 Models of saliency

It has been reported many different models of saliency based on different features
and points of view. In this section, we basically enumerate the main models of image
saliency by splitting them in pure bottom-up models and top-down guided models.

Bottom-up saliency

Doubtlessly, the most relevant model of bottom-up saliency is the one introduced
by Itti and Koch in [94]. This model has a public available version implemented in
Matlab [207]. Further it has been also extended to dynamic scenes by means of neural
networks as detailed in [45].

Itti and Koch model is based on the basic model of Koch and Ullman’s [108]. An
schema of the model is depicted in Fig.1.6. It is shown a kind of structure followed
by several saliency methods. First, a set of features in the image are computed. The
set of features can vary depending the method. Afterwards, there is a competition
among all feature maps in order to find the most salient locations for each individual
feature, yielding the conspicuity maps. Afterwards, all these maps are combined in a
single representation using a Winner-Take-All network, which leads to the finding of
the most salient location.

An schema of the model of Itti and Koch is presented in Fig.1.7. In this case
the bottom-up features computed are color, orientation and intensity. These features
are generated at nine spatial scales. Further, these features are computed in a center
surround-schema due to biological reasons [43] [26]. It is shown that typical visual
neurons are most sensitive in a small region of the visual space (the center), while
stimuli presented in a broader, weaker antagonistic region concentric with the cen-
ter (the surround) inhibit the neuronal response. After the center-surround calculus,
maps at multiple scales are combined in a single one following the classical schema of a
pyramid of Gaussians [78]. More specifically, the center is a pixel at scale c ∈ {2, 3, 4},
being the surrounding the corresponding pixel at scale s = c + δ (δ ∈ {3, 4}. Finally,
the combination of maps is obtained by interpolation to the finer scale and point-by-
point substraction. Finally, by means of a Winner-Take-All neural network [193] they
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Figure 1.6: Saliency model of Koch and Ullman [108], extracted from [93]. The
model is based in a number of features such as color or orientation represented in
parallel. Afterwards a combination of the features in performed using a winner-take-
all process which yields the most conspicuous location.

combine all the maps into a single map which will be used to guide attention in a
bottom-up way. The model of Itti and Koch can be considered nowadays as a refer-
ence methodology and is probably the most used saliency method. Some subsequent
bottom-up saliency methods use the methodology proposed by Koch and Ullman in
1985 [108] but modifying certain aspects such as the features computed, the previous
steps or the post-processing.

An interesting approach which was focused in a further correspondence between
the model and the Human Visual System (HSV), was proposed by Le Meur et al. in
[115]. The authors point out that the main drawbacks of the Itti and Koch model
are:

1. Several normalization steps are applied before and after the fusion step.

2. Each channel is normalized independently to a common scale in order to be
independent of the feature extraction mechanisms.
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Figure 1.7: Saliency model of Itti and Koch [94], extracted from [94].

3. There are strong links between the visual sensitivity and the viewing distance.
However, this has been overlooked.

Le Meur et al. propose a computational framework for visual saliency which
copes with numerous properties of the HSV. They propose an schema divided in
three aspects of the HSV: visibility process, perception and perceptual grouping. An
schema of the method is showed in Fig.1.8.

The first part, namely, the visibility process is made to perform a coherent
normalization to solve the first drawback of the Itti and Koch model. It simulates
the limited sensitivity of the HVS. Firstly, it changes the chromatic representation of
the image to the Krauskop color space. Afterwards they apply a contrast sensitivity
function which also is a mechanism of the HSV. A visibility threshold is computed
which determines at which scales a component is visible. The early visual features
computed are based on spatial frequencies and orientations. Finally, they compute a
masking which is a way to change the visibility threshold depending on the context.

The second part of the model, that is, the perception aims to determine the
achromatic components required to compute the saliency map. First, it is reinforced
the saliency of an achromatic structure if there is a high chromatic contrast in this
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Figure 1.8: Bottom-up saliency model as suggested by Le Meur et al. in [115] from
which it has been extracted. A three-level schema is proposed which is inspired in
the HVS. The three parts are: visibility process, perception and perceptual grouping.

area in the original image. Afterwards a center-surround suppressive interaction is
applied.

Finally the last part, called perceptual grouping , refers to the capability of the
HSV to group several features to build a high-order structure. To simulate such a
capability the authors use a contour grouping technique.

Finally, the saliency map is computed by directly summing the output of the dif-
ferent achromatic channels.

Another model which is based in the Itti and Koch saliency model was presented
by Liu et al. in 2007 [121]. The authors pose the problem of saliency as a problem
of image segmentation2. In the same article a public available dataset consisting in
20.000 images for a quantitative evaluation of saliency is also presented. The method
is based on a supervised learning using a Conditional Random Field which correctly
combine the low-level features proposed which are a multicontrast schema based on a

2The relation between saliency and segmentation is one of the main conclusions of this Thesis.
Chapter 6 is focused on this issue, where it can be seen the relevance of saliency to evaluate image
segmentation.
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Pyramid of Gaussian [78]. A center-surround histogram is performed to detect those
areas/objects which have a high contrast in its surrounding. As a global feature, the
authors propose to use a color spatial-distribution. An object is expected to be more
salient if it has a color which is not wider distributed in the image.

Another model of bottom-up saliency was introduced by Ma and Zhang in [128].
The method is based on local contrast analysis. The authors said that in image
processing, techniques share a sort of common properties, namely, color, texture and
shape. The authors claim that these three main properties have a common principle
behind: the contrast. They compute contrast by means of a Gaussin difference.
Therefore, being computed at a single scale given by the size of the Gaussian. They
compute all images at the same scale by resizing them, turning in a pure ad hoc
step hard to justify. Afterwards, they convert the image to CIE Luv space and
compute the contrast image. With this procedure they generate the saliency map.
Afterwards, a fuzzy-growing procedure is performed in order to find the saliency areas.
In this article, the authors also define three levels of attention analysis: attended view,
attended area and attended points.

Besides features such as color, contrast and orientation, there is also a common
feature in saliency, which is actually used the method of Liu et al. [121], that is,
rarity or information. It is expected that a feature which barely appears in the image
to be salient. In other words, as more rare the feature is, more its saliency. This
characteristic is exploited in many different ways, as the theory of surprise, which
quantifies how data affects a natural or artificial observer, by measuring the difference
between posterior and prior beliefs of the observer. The work presented by Itti and
Baldi in [92] describe a Bayesian definition of surprise. The same idea of rarity is
also used by Kadir, Zisserman and Brady in [100], which is an extension of a previous
work of Kadir and Brady [99]. They compute the rarity or surprise of features such as
contrast or color with the Shannon’s entropy formulation at multiple scales. For each
scale they compute the PDF of the features and detect the most representative scales,
that is, those which are more informative (more surprise). Another method which
uses Shannon’s theory is presented by Bruce and Tsotsos in [22]. In this case, the
computation is done by means of a Neural circuit which is claimed to have similarities
with the circuitry existent in the primate visual cortex. Finally, a graph-based schema
to compute the rarity of a feature was proposed in [83]

Another work based on rarity is presented in this Thesis. Our proposal is based
on Color Boosting, introduced in [198]. Our approach was presented in [199] and
will be deeply analyzed in this Thesis. Our proposal detects the most rare chromatic
transitions (color plus contrast) in a multiscale framework.

Finally, some other approaches of saliency are aimed to exploit other characteris-
tics such as motion, as the method presented by Guironnet et al. in [80].

In the next section we briefly analyze top-down saliency.
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Top-down saliency

It has been commented that there is some misunderstanding with the concepts of
saliency and attention. Basically, the line which splits both concepts in some works is
whether there are top-down features and mechanisms involved or not. In this section
we briefly describe some approaches which propose different ways to include top-down
information in image saliency and image attention.

Probably, the most important method of top-down saliency or attention was the
work entitled Guided Search: An Alternative to the Feature Integration Model for
Visual Search presented by Wolfe in 1989 [215]. The theory was revised 5 years later
by the same author in what he called Guided Search 2.0 [213]. First, the called feature
maps are computed (pure bottom-up feature maps). They can guide attention in a
bottom-up way, if a feature is relevant enough on its environment. Nevertheless, they
will not guide attention to a desired item if the low-level features of that item are
not unusual. Here, is when the top-down mechanisms appear, which are achieved by
means of direct user interaction, when looking for an specific target.

We have already introduced a method which, can be considered as top-down in
the second step. The method is the one introduced by Liu et al. in [121]. They use
a learning process which uses high-level information, that is, human-labeled images.
Concretely, they present a dataset with 20.000 images. 15.000 of them were labelled by
3 subjects, whereas 5.000 images considered to have a high consistency were labelled
by 6 additional subjects. This information was used for a learning procedure based
on a CRF which yields the best way to combine bottom-up saliency maps.

An interesting approach of top-down attention was presented by Lee, Buxton
and Feng in 2005 [116]. This approach proposes a dynamic way to include top-
down information to bottom-up saliency. A schema of the method is depicted in
Fig.1.9. First, they compute a set of low-level feature to generate the bottom-up
map. The feature computed are color, aspect ratio, symmetry and ellipse. These
features are combined in a single overall bottom-up map. Afterwards, a top-down
map is computed. In the article they use just color as a high-level feature whereas,
as the authors explain, the model is not limited to this single feature. They combine
both maps by means of what they call interactive spiking neural network, which finds
the consistency between both maps.

A model of the influence of the task in attention was proposed by Navalpakkam
and Itti in [144]. They propose a schema where the same features are shared between
top-down maps and bottom-up ones. First, there is the initial phase, called eyes
closed. In this moment, the system receive a keyword which will guide the high-level
search. Those features which correspond with the entity or object to be found are
computed and it is translated in the task-relevant map which could, for instance, give
a great relevance to the center of the scene. In a second phase called computing, the
system receives the image and the bottom-up features are computed. These low-level
map can be biased by the information contained in the task-relevance map. In the
third phase, attending, an object recognition module determines the correspondence
of the most salient location with the keyword introduced. In the last phase, updating,
the task-relevance map is updated with the new information. Thus, it is a hierarchical
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Figure 1.9: Schema of the model of top-down attention proposed in [116] when
applied to face recognition. The main parts are the bottom-up map and the top-down
map, which are combined with an interactive spiking neural network to generate the
integration map. Extracted from [116].

schema of attention.

Finally, we stand out the fact that the inclusion of high-level information to visual
saliency has facilitated the apparition of some interesting applications such as object
recognition [176], or image retrieval [168] [114].

1.5.2 Image saliency evaluation

The evaluation of models of image saliency has been improving with the populariza-
tion of eye-tracking devices, which can be currently acquired for a fairly affordable
prices. With an eye-tracker it is possible to generate a saliency map from a a hu-
man subject. An example of a human-based saliency map is showed in Fig.1.4. A
straight comparison can be carried having a human map and a computational map.



22 INTRODUCTION

Following this methodology we can find several works to evaluate saliency models.
But eye-tracking can be used not just to validate an specific model as in [22][90], but
to determine the influence of specific features in bottom-up saliency. Some interesting
examples are the works presented by Parkhurst and Niebur[158], by Tatler, Baddeley
and Gilchrist [187] or by Ouerhani et al. in [153]. A Behavioral analysis of some
methods implemented for a robot and using eye-tracking was presented by Shic and
Scassellati in [174].

When no eye-tracker is available it is possible to evaluate the feasibility of an
specific feature by performing some psychophysical experiment as in our approach
of image saliency [199] or as the experiment already referred in the introduction of
saliency [48]. Another ways to evaluate saliency can be comparing models in a certain
application such as robots [174], object recognition [176], or image retrieval [168] [114].

Finally, it has been published in 2007 a dataset consisting in 20000 images for
image saliency evaluation, the dataset is further commented in chapter 4.

1.6 Objectives and contributions of this thesis

1.6.1 Main objectives of this work

Overcoming the Dichromatic reflection model

As explained in section 1.4, physics based segmentation methods have experienced no
meaningful advances in last years, even though they are a good theoretical framework
for bottom-up image segmentation. One objective, and further, one of the main moti-
vations of this work is to overcome the main shortcomings of the dichromatic reflection
model [171]. This is a parametric model of the behavior of the light when reflected
in a specific body and how it can be detected in the image histogram. It has good
theoretical foundations but some limitations when applying on real images. The main
problem is that it is a parametric model which turns into a too rigid methodology to
find the expected structures as representative of an object. Basically, these structures
are expected to follow two main orientations, whereas in real images, due to acquisi-
tion conditions, clipping, compression and some other effects, they have unexpected
shapes. To overcome this problem, we were aimed to find a non-parametric operator
to find these structures which correspond with material reflectances. Thus, we took
the main idea of the dichromatic model, that is, that a material reflectance in a real
scene is present in the histogram as an elongated object which is found to form a ridge-
like structure. Ridges are extracted by means of the MLSEC-ST creaseness operator
[123][122], which will be explained in detail in chapter 3. This operator jointly with a
ridge extraction procedure was able to extract the structures representative of a ma-
terial reflectance in a more flexible fashion than with the dichromatic reflection model.

Hybrid segmentation method

Bottom-up segmentation methods are classified in three main categories [180][34][126]:

• Feature-based: when performing the segmentation in the histogram domain.
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• Image-based: when using the spatial coherence of the image, that is, relation-
ships between pixels where its spatial position in the image is considered.

• Physics-based: are those which use physical properties of the light to perform
the segmentation.

The method initially presented in this work to overcome the main shortcomings of
the dichromatic reflection model is a feature-based segmentation method inspired in a
physics based one. Nevertheless, our initial proposal does not consider the properties
and strengths that might come from image based approaches. Ideally, we want to
define a model of segmentation which might consider all the main contributions of
each segmentation category, yet avoiding as far as possible its weaknesses.

Non-supervised evaluation

A segmentation method has to adapt to image content. Some images present mean-
ingful objects at different scales, some images are indoor, some other outdoor, and so
on. Each image requires a level of coarseness in the segmentation, what implies to
fit the segmentation parameters to each image. In can be done either interactively or
automatically. Needless to say that facilitating a method to do it automatically is the
best option. Hence, an important objective of this thesis is to propose a method to
automatically evaluate a segmentation in order to decide among a set of segmentations
which adapts better to a given image or problem.

Main contributions of this work

Regarding the first objective, namely, to find a methodology to overcome the main
shortcomings of the classical dichromatic reflection model, we have successfully pro-
posed an alternative which has demonstrated to outperform state-of-the-art segmen-
tation methods. The method presented is called RAD.

The second objective, that is, to propose a hybrid segmentation method, has
been also performed by means of an statistical approach and a learning procedure
to force the ridges (feature-space) to follow those directions expected for the dichro-
matic model (physics-based). Additionally, we have included the spatial coherence of
the image (image-based) with a multiscale approach based on saliency. The result-
ing method, spRAD, outperforms the segmentation method initially proposed (RAD).

Non-supervised evaluation has been achieved by means of image saliency. A new
method of image saliency has been proposed. This method outperforms the Itti [94]
saliency model. The non-supervised evaluation performed using this new model of
saliency also outperforms sate-of-the-art evaluation methods.

As a results of the evaluation we have proposed a general schema to evaluate image
segmentation which can be also used to combine a set of segmentations of the same
image to compose a combined segmentation image which is demonstrated to clearly
outperform state-of-the-art segmentation techniques, including RAD and its further
improvements.
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1.7 Organization

• In chapter 2 we draw the state of the art in image segmentation. We classify
segmentation methods in four main categories, namely, feature-based, image-
base and physics-based and hybrid methods. Additionally, we briefly describe
the main techniques and error measures of segmentation evaluation.

• In chapter 3 we present a segmentation method called RAD. It is focused on
segmenting a single material reflectance (including shadows and highlights) by
means of a topological analysis of the color histogram. RAD is able to overcome
the main shortcomings of the dichromatic reflection model.

• In chapter 4 we detail a saliency method based on the information of the image
chromatic derivatives. This saliency measure forms the basis of the our final
proposal for image segmentation.

• In chapter 5 an extension of RAD in presented. Firstly, we add physics based
statistics to our model. Afterwards, we include our saliency measure to form
the final proposal of image segmentation called spRAD.

• In chapter 6 we further use our saliency measure for unsupervised segmentation
evaluation.

• In chapter 7, we draw the conclusions of the present dissertation along with a
discussion on image segmentation.

• In appendix A, we describe the most commonly used color spaces.



Chapter 2

Survey and State of the art in
Image Segmentation

In this section we draw the state of the art in image segmentation. We classify
segmentation methods in three main categories, namely, feature-based, image-base
and physics -based segmentation methods. We also describe the main advantages and
shortcoming of these different approaches and we also describe the main methods of
each category. Finally, we briefly describe a category of methods, called hybrid
methods, which combine techniques of the three main categories. In addition to the
segmentation algorithms, in this chapter we briefly describe the main techniques and
error measures of segmentation evaluation which is, as the segmentation itself, still
an open issue.

2.1 State of the art in image segmentation

Due to its relevance as a preprocessing step in several computer vision applications,
image segmentation has been widely studied and, consequently, there exist several
different methods covering a broad spectrum of points of view. The main surveys on
Image Segmentation can be found in [154] [182] [225] [34] [113] [126].

An initial classification of segmentation techniques was presented by Skarbek and
Koschan in [180]. This work draws the basis of the current classifications of segmen-
tation methods. Concretely, the authors propose a classification as follows:

1. Pixel based segmentation.

• Histogram thresholding.

• Clustering in colour space.

• Fuzzy clustering in colour space.

2. Area based segmentation.

25
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• Region growing.

• Split and merge.

3. Edge based segmentation.

• Local techniques.

• Global techniques.

4. Physics based segmentation.

• Inhomogeneous dielectrics.

• General approaches.

This initial division in four main categories has been modified as in [34] and [126].
Hence, current authors classify first techniques (pixel-based), as feature space analysis
methods, since they perform the segmentation in the histogram space. Furthermore,
area-based and edge-based methods work directly in the image space. For this reason,
this methods are currently classified as image-based segmentation methods. Hence,
we can classify segmentation methods as follows:

1. Image-based segmentation.

Exploit the spatial information contained in the image, named spatial coherence
[95].

• Deformable models.

• Graph-based approaches.

• Region growing and edge detection.

• Split and merge.

• Topological methods.

• Other methods.

2. Feature-based segmentation.

These methods are focused on the photometric information of an image repre-
sented on its histogram [5] [221].

• Histogram thresholding.

• Clustering Techniques.

Hard Clustering.

Fuzzy Clustering.

3. Physics-based methods.

These methods use the knowledge about the physical formation of the scene
(light, surfaces reflectance), to perform the segmentation.

• Segmentation based on the dichromatic reflection model.
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• Spatial transformations.

4. Hybrid methods.

Hybrid techniques combine methods of the previous categories.

This classification put in concordance the different categorizations which can be
found in existing literature. For instance, in [113] we find a division in three cate-
gories: Stochastic Techniques instead of Feature Space methods Structural Tech-

niques instead of Image Based methods and Hybrid Approaches. Therefore, in
[113] Physics Based methods are not described and a new division of Image Based
techniques is done. It does not imply a misclassification, but the fact that segmen-
tation techniques differ depending the framework. Just as [154] makes a survey of
gray-scale segmentation and [113] do it on medical image methods, a survey of seg-
mentation methods in the motion framework can be found in [226] and is also treated,
briefly, in [40]. Whereas medical image segmentation methods are quite related with
this state-of-the-art, motion segmentation has its own techniques and will not be
described in this chapter.

Another example of classification is the work presented on [34], where the au-
thor divide segmentation techniques in six different points: Histogram Trhesholding
(which includes clustering methods), Region based (region growing, region splitting
and merge), Edge Detection,Fuzzy Techniques, Physics based and Neural Network ap-
proaches. Other reviews of colour segmentation are [126], [62], [5] or [40]; a survey on
intelligent interactive segmentation methods, e.g., oriented to user intervention, can
be read on [149].

2.1.1 Image-based segmentation

Image-based segmentation methods are those which use image’s spatial coherence to
perform the segmentation, namely, the relationship existing between pixels in the im-
age domain. These methods mainly aim to detect the borders of the objects/surfaces
in the scene. Several different methods have been proposed, which we classify in six
subcategories.

Deformable models

Deformable models are one of the first techniques specifically proposed for image
segmentation. These have been studied and improved among the last years. [138].
Deformable models are further split in parametric active contours and geometric ac-
tive contours. One of the early methods of parametric active contours with acceptable
results was the snakes proposed in 1988 by Kass, Witkin and Terzopulos [102]. A
snake is an energy-minimizing spline guided by external constraint forces and influ-
enced by image forces that pull it toward features such as lines and edges. Snakes are
active contour models: they lock onto nearby edges. Deformable models include the
already mentioned snakes as well as all those methods which deal with active con-
tours. An extensive survey of them can be found in [13]. Since the original and simple
method proposed in [102] was too affected by local irregularities, initialization, and
local minima in the energy minimization function, subsequent methods have been
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focused on the addition of new cues to guide the active contours towards a better
convergence to meaningful borders. Well known techniques are the geodesic active
contours, as proposed Caselles, Kimel and Sapiro in [28] or the introduction of a new
external force derived form the image gradient called gradient vector flow as detailed
in [219]. Recently, the combination of active contours with other techniques have been
proposed to solve the problem of local minima in the energy minimization function
as proposed by Bresson et al. in [21]. Another approach to avoid both local minima
and self-crossing contours was suggested by Xu, Ahuja and Bansal in [220], by means
of a combination of a graph cut based methodology to iteratively guide the contour
deformation.

Graph-based approaches

Graph based approaches for image segmentation have been widely studied and several
variations of them have been proposed. Graph-based methods include techniques such
as the intelligent scissors algorithm [143], based on Dijkstra’s shortest path algorithm,
detailed in [6]. These methods treat the image as a graph and the user places several
marks along the desired object boundary. Then, Dijkstra’s shortest path algorithm
is used to find a minimum length path connecting all marks and this path is returned
as the object boundary. The main drawback of this approach is that it is affected
by noise in the images. Other well-known approach is the normalized cuts algorithm
[173]. Graph-cuts algorithms [217] are further analysed in [20]. The shortcomings of
these methods are their difficulty to segment elongated objects and that they tend
end up at local-minima. These problems are treated by Vicente, Kolmogorov and
Rother in [205] and with the proposal of ratio cut as explained in [210]. Finally,
another technique of graph-based segmentation which deserves special attention is
the random walk [77]. Graph cuts and random walk approaches have been combined
in an interesting approach by Sinop and Grady in [178].

In general, the main drawback with the graph-based segmentation algorithms is
that they tend to be excessively time consuming. The efficient graph based segmen-
tation algorithm proposed by Felzenszwalb and Huttenlocher is an example that a
graph-based segmentation algorithm [58] can be fast yielding good results.

Region growing and edge detection

Whereas edge detection techniques could be classified as a category per se we have
chosen to include them together with region growing algorithms for two reasons.
First, the rest of the categories commonly look for the borders of the regions and are,
therefore, edge-detection methods. Second, because gradient information-based edge
detection is commonly a criterion of stability for the region growing procedure [159]
[40] or determinant to define what a region is [61]. Another example was propose in
[62] where the authors use a homogeneity criterion consisting of the weighted sum of
the contrast between the region and the pixel, and the value of the modulus of the
gradient of the pixel.

Region growing methods have in common that they begin with the positioning of
a seed and afterwards, a criterion of growing from these seeds is established in order
to converge to the homogeneous regions in the image [4]. This family of methods
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propose different criteria for stability as explained in [126]. These techniques include
Markov Random Fields or Neural Networks [73] [52] among others [126]. Region
growing techniques strongly depend on the selection of the growing mechanism and
on the initialization of the seeds, which might causes fairly different results form the
same image [62] [175].

Split and Merge

Typical split and merge techniques [33] consist of two basic steps. First, the whole
image is considered as one region. If this region does not satisfy a homogeneity
criterion the region is split into more regions (the number depends on the method)
which are tested in the same way. A common structure used for the split process is the
quadtree representation [19]. Afterwards, in the merging step all adjacent regions with
similar attributes may be merged following other (or the same) criteria. A common
methodology used in the merging procedure is the region adjacency graph [19] [84].
Therefore, in these methods the main characteristic is the criterion used for both split
and merge steps. In this sense, for instance, Dai and Maeda [44] propose a pyramidal
method which uses statistical geometrical features as texture descriptors. Another
common criterion is the color homogeneity as in [101]. Other techniques used are by
means of MRFs or Neural Networks [126][62].

Topological methods

We include among topological methods those approaches which consider the image a
landscape using its intensity values. Among these methods, the most well-known, and
widely used is the watershed algorithm, which aims to find the catchment basins of a
landscape. Vincent and Soille [206] define a catchment basin associated with a local
minimum M as the set of pixels p of the landscape such that a water drop falling at p
flows down along the relief, following a certain descending path called the downstream
of p, and eventually reaches M. The original method proposed in [206] is based on
the gradients of the image and it is too affected by local irregularities. A new version
of the algorithm was presented in [69].The proposed algorithm, is not based on the
gradient vectors of a landscape but on the idea of immersion which is more stable
and reduces over-segmentation. Basically, the flooding process begins on the local
minima and, iteratively, the landscape sinks on the water. Those points where the
water coming from different local minima join, compose the watershed lines. To avoid
potential problems with irregularities [123], a more proper marks instead of the local
minima have to be found as for instance the ridges used in [200]. More segmentation
techniques based on watershed can be found in [170], [29] and [82], where a learning
procedure based on the borders drawn in the Berkeley benchmark [135]. Finally, a
recent evaluation of watershed-based algorithms can be found in [29].

The second group of algorithms inside the category of topological methods is
those which treat the borders of the borders as ridges and, therefore, perform a ridge-
extraction algorithm. A good example of these methods can be found in [183]. One
of the best methods of ridge extraction was the MLSEC-ST algorithm introduced
by Lopez et al. in [123]. The same author presented an extensive study of ridge
extraction algorithms in [122].
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Other methods

There is a set of methods which can be hardly classified as a single category. The
most clear among all of them are the ones which combine two or more of the previous
categories of image-based segmentation methods. For instance, a method which uses
a the watershed algorithm to merge the regions of the image [84] or a method which
combines edge detection and nCuts [131]. Finally, we include to this category Neural
Network approaches [52] and Markov Random Fields [18] [14] [103] approaches.

2.1.2 Feature-based segmentation

Feature-based segmentation methods are those which perform the segmentation in
the image’s histogram. Feature-based methods can be further split in three main
categories: histogram thresholding, clustering and fuzzy clustering.

Histogram thresholding

Histogram thresholding techniques assume that there exist a threshold value that iso-
lates all pixels representative of an object in a scene. Early methods in segmentation
use this idea, as summarized in [182] and [154]. Nonetheless, this idea has been ex-
ploited in many different ways. For instance, with the idea of the probability density
functions [81]. A compilation of such techniques can be found in [169]. The main
shortcoming of these methods is that they are affected by local minima and irregu-
larities. It has been treated by means of a segmentation in the CIE Luv space plus
a k-means-based postprocessing [127] or with the fuzzy thresholding, as proposed in
[190]. More recently, the histogram thresholding has been integrated with the Parzen
window technique to yield a more adaptive thresholding [209]. Finally, as in the pre-
vious categories, Neural Network approaches are also used for histogram thresholding
[47].

Hard Clustering techniques

Hard clustering techniques divide the histogram space in a set of well-defined clusters
or regions. Probably the most used and well-know technique of hard clustering is the
k-means algorithm. Its main limitations are that the number of clusters has to be
known before the segmentation. This issue is treated in [162] and for the ISODATA
algorithm, as explained in [186]. After the k-means algorithm and its variation, the
other widely-used algorithm of hard clustering is the Mean shift [64], proposed as a
segmentation method in [39] [37]. This method is based on probability density func-
tions. Basically, it looks for the modes of the landscape and afterwards an iterative
process is proposed to find its basis of attraction, that is, the clusters of the histogram
obtained from the local maxima. As happened with the image-based techniques, here
we also find some interesting approaches based on topological features. For instance, a
watershed-based algorithm in the CIE Luv space [170] or with a watershed plus ridge-
extraction algorithm called RAD, as proposed in [200].Another common methodology
of hard clustering is composed by the spectral clustering methods, which are based
on the Karhunen-Loeve transformation [49] [145]. A comprehensive survey of spec-
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tral clustering methods can be found in [204]. Some other well-known techniques of
pattern recognition can be used, as for instance, a k nearest neighbors based segmen-
tation as explained in [60]. These approaches require to determine well-discriminative
features.

Fuzzy Clustering techniques

In these approaches, a membership functions have to be obtained in order to perform
a fuzzy classification of the feature space [185]. For instance, the fuzzy version of
k-means belongs to this category. This method is called fuzzy c-means and it was
proposed by Bezdek and Ehrlich in [11]. In this fuzzy version of k-means, the grade of
belonging to a class is weighted by the distance of each point to the center of the class.
These segmentation methods have been evolved to several variations. For example,
a version which considers not just distance but orientation [166] or, more recently,
the proposal of the possibilistic c-means, which propose a normalization among all
distances [155]. As happened with the k-means, the initialization of the method can
affect the results. This issue is analyzed and treated in [105]. An extension of fuzzy c-
means which has turned in a segmentation method per se is the Gath-Geva algorithm,
originally proposed in [68]. It combines a basic fuzzy c-means algorithm with the
fuzzy maximum likelihood estimation, based on density criteria. It is proposed as
a method much more adaptive to different cluster’s shapes than the fuzzy c-means
algorithm, which is one of the main drawbacks of both k-means and fuzzy c-means.
This method has been further extended in different ways, for instance, by the addition
of an expectation maximization methodology, as suggested in [3]. Another big family
of fuzzy-clustering techniques are the mixture models [1] [129] which are a way to look
for areas of high density. The fuzzy membership is also treated by means of neural
networks, as in [203] or [119]. Finally, a fairly recent analysis of clustering techniques
can be found in [5].

2.1.3 Physics-based segmentation

Physics-based segmentation methods are those which model the physical behaviour
of the light in the scene. They are further classified in two main categories.

Segmentation based on the Dichromatic Reflection Model

The main contribution to these techniques was done by S.A. Shafer in 1985 with the
introduction of the dichromatic reflection model (DCM) [171]. DCM, has been the
basis of several segmentation techniques [7] [106], which limitations regarding different
materials (metals and inhomogeneous dielectrics) geometry and non Lambertian sur-
faces have been also treated [136] [137] [151]. An interesting approach where a fuzzy
reasoning has been included in the DCM model can be found in [223].Furthermore,
physical formation of the scene has been also the inspiration of some other approaches,
including our approach, pRAD [200]. Thus, DCM explains under a theoretical point
of view the sort of shapes that a single surface can form in the histogram due to illumi-
nation interactions. The fact that these shapes do not correspond with the common
feature-based clustering techniques such as Mean Shift [64] [39] which can not give the
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elongated shapes described by the DCM. Some other proposals to find these struc-
tures are, for instance, with an statistical approach based on b-splines fitting in the
HSV [104], or by means of a generalized Hough transform method, gradient descent
method, and eigenvectors method as suggested in [146].

Spatial transformations

In addition to these approaches we include within physics-based approaches those
models of color spaces proposed to cope with shadows and highlights. The first
good proposal for this aim, was the Ohta space [148] proposed in 1980 which is a
linear transformation of the RGB space that has been used in several approaches for
images segmentation. Other interesting proposals for color spaces robust to, or that
deal with, shadows and highlights, comprises an eigen color representation [2], an
illuminant independent log-opponent representation [10] or an specific model to deal
with color distortion [150].

2.1.4 Hybrid segmentation

There is a set of segmentation methods which can not be classified in one of the above
detailed categories since they are a combination of two or more of them. Typical hy-
brid methods are those which add image spatial constraints to some feature-based
segmentation techniques such as k-means [157] or more recently with fuzzy c-means
[38] [23]. The JSEG segmentation method [46] is a two-step schema following a similar
idea. First, a clustering of the color space is performed. Afterwards, a criterion of good
segmentation is applied using the spatial coherence of the image. Another schema
proposes that a good segmentation region should be formed by strongly connected
pixels with homogeneous colors [130]. A criteria to combine color homogeneity with
the texture in the image space by means of Gabbor filters is proposed in [32]. A similar
idea, with the addition of a Markov Random Field model is proposed in [103]. An ap-
proach to combine image edges and color features by means of a Bhattacharyya-based
Gradient Flow approach is proposed in [141]. Finally, in this thesis we also present
a hybrid segmentation method, which combines RAD (feature-based) segmentation
with image’s spatial coherence in a context of saliency.

2.1.5 Discussion

Bottom-up segmentation methods handle the problem in different ways. More ro-
bustness is expected from those methods that combine the main strengths of each
category while minimizing its weaknesses.

The main strengths of each method are:

• Image-based approaches: since these methods exploits the image spatial co-
herence, the borders of the segments tends to better coincide with an objects
borders. Spatial coherence is lost in the other segmentation categories.

• Feature-based approaches: methods belonging to this category segment in a
more consistent way than image-based approaches the colors appearing on the
image, which are expected to represent objects or parts of the objects.



2.2. State of the art in segmentation evaluation 33

• Physics-based approaches: these methods follow a similar aim than feature-
based, although even more robustness to chromatic changes from shadows to
highlight is to be expected.

For the other side, the weaknesses of these categories are:

• Image-based approaches: abrupt illumination changes resulting from shadows
and highlights as well as certain textures might affect these approaches. The
main effect is oversegmentation.

• Feature-based approaches: colors found in the histogram space do not always
correspond with physical objects or surfaces in the image.

• Physics-based approaches: they share the main drawback with physics based
approaches.

Hybrid approaches are expected to combine the strengths of each category. A
good example is Mean shift, which look for certain structures in the histogram space
yet including the image space,

The method presented in this dissertation has been build to include the main
strengths of each of the three categories which, as results hold, improve the perfor-
mance of our approach.

2.2 State of the art in segmentation evaluation

Image segmentation evaluation is still a challenging issue. Some authors argue that
it can be evaluated only in the context of the task in which the segmentation is
done. Moreover, it is also considered an ill-posed problem since there is no consensus
on which is the best segmentation of an image as explained in [172]. After a set
of experiments with 14 subjects, the authors conclude that each subject performs
a different segmentation. Therefore, to answer the question about what a correct
segmentation is, turns in a difficult issue to handle. From this, we can conclude that
a simply hand-made ground truth does not allow comparing several methods, further
than in a specific context where the objects to be segmented are clearly identified.

Consequently, the question is if we can find a performance evaluation method
of general purpose. In this section we analyse the different proposals about image
segmentation evaluation by focusing in three main subjects, namely, ground-truth
generation for supervised evaluation [222], error measures on supervised evaluation
[225] [226] and unsupervised segmentation evaluation [224].

2.2.1 Ground-truth generation for supervised segmentation eval-
uation

If a hand-made benchmark for evaluation is not valid for a general purpose, how
we can validate a method? This is the first question we need to solve. Despite its
relevance for the segmentation field, this issue has not been treated deeply enough
and just some articles about it can be found. Similarly, few useful ground-truths are
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nowadays available for the scientific community. The question rising is, can we yield
a real and useful general purpose segmentation benchmark or we rather have to give
a specific solution to any framework?

As we have told before, it feasible to generate a hand-made ground truth to validate
a method in a concrete context such as human skin segmentation or in some industrial
applications. In these cases, we know what a good segmentation is. But, what
happens when we want to know if a segmentation method is good enough to be
applied, a priori, in any context? The works presented in [172], [135] and [70] suggest
a possible solution.

These kind of psychophysical works, (also named psychovisual [172]) start with
the idea that even the human subjects used in experiments do not coincide in the
segmentations done, as shown in Figs. 2.1 and 2.2. Nonetheless, either in [172] and
[135] the authors conclude that even though the segmentations are not the same,
all of them share some characteristics and can be combined in some way to find a
ground truth of general purpose. In [135] the authors argue that a given segmentation
of an image is, in fact, a refinement of another one or vice versa. Following this
reasoning, the segmentation showed in figure 2.1c is a refinement of 2.1b, and 2.1d
is a refinement of 2.1c. Evidently, all these segmentation have to be considered as
a correct segmentation since all of them have been performed by a human subject.
This dataset, called the Berkeley segmentation dataset and benchmark, proposed in
[135] has become a standard in the evaluation of image segmentation. Nonetheless
its main limitation is that its variability is fairly low, that is, the set of images of this
dataset are all of them quite similar.

a) b)

c) d)

Figure 2.1: Human segmentation example of the Berkeley Dataset. (a)Original
image. (b,c,d)Segmentation of three different human subjects.

In the last years the interest for object recognition techniques has resulted in the
generation of new benchmarks. For instance, the PASCAL challenge which appears
for the first time in 2005 [56]. This is a benchmark for object recognition focused on
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Figure 2.2: More examples belonging to the Berkeley segmentation datset and
benchmark.

several classes. This dataset has been modified and extended year after year. This
dataset is divided in object segmentation and class segmentation. The difference
between both can be seen in Fig. 2.3. These examples belong to the PASCAL
VOC2009.
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Figure 2.3: Examples of PASCAL’s object-class based dataset.
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The object segmentation pixel indices correspond to the first, second, third object
etc. The class segmentation pixel indices correspond to classes in alphabetical order
(1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle, 6=bus, 7=car , 8=cat, 9=chair,
10=cow, 11=diningtable, 12=dog, 13=horse, 14=motorbike, 15=person, 16=potted
plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor) The main drawback of this
dataset is that it is focused on 20 classes and images are not completely valid for
general purpose segmentation, but for object recognition. Nonetheless, a good seg-
mentation is expected to segment these objects in an acceptable way.

Another good example of a large-scale general purpose dataset is the LabelMe
[164], which is a collaborative web-based open annotation tool. In this dataset it
can be found a benchmark consisting on thousands of images where 9 objects have
been labelled. Images for training are partially labelled, whereas images for test are
completely labelled, in opposition with the PASCAL dataset. It is also facilitated
a Matlab toolbox to handle the information contained in the images. The database
consisted of 111490 polygons, with 44059 polygons annotated using the online tool
and 67431 polygons annotated offline. There were 11845 static pictures and 18524
sequence frames with at least one object labeled. Right now, there are 181318 images
of which has been annotated a total of 56830. An example of an image is showed in
Fig.2.4

Figure 2.4: Example of LabelMe’s dataset.

The main drawback with this dataset is that there is no control among the seg-
mentation of the images and fairly incorrect segmentation can be found. Nonetheless,
it is possible to select images from this dataset to generate a benchmark which could
be used instead of the Berkeley one.

An interesting methodology to generate a large-scale general purpose dataset for
image segmentation is presented in [222]. As in the case of LabelMe, the dataset
is continuously growing. At the moment of the publication of [222] it was 636,748
images and video frames. In this dataset a schema composed on three parts for image
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annotation is proposed.

• Scene Level: Global geometry information, scene category (indoor/outdoor),
events and activities

• Object Level: Hierarchical decomposition, object segmentation, sketching and
semantic annotation

• Low-middle Level: Contours types (object boundary, surface norm change or
albedo change), Amodal completions, Layered representation, etc

They propose a hierarchical classification of the image which goes from the scene
level to the details of each object, as showed in Fig.2.5

Another example of dataset are the Caltech-256 presented in [79]. Finally, an
interesting extension of the Berkeley dataset and benchmark is presented in [9], where
the addition of high-level semantics is proposed.

All the datasets mentioned before, are focused on the segmentation of certain
classes of objects or the whole image. Another point of view is presented in [70]. In this
paper, the authors are focused in the most salient object of the image. The authors
argue that the most salient object in a scene is always segmented by each human
subject. Hence, we can expect that a good segmentation method, independently of
its refinement, have to segment correctly the most salient object, which should be
enough to evaluate a segmentation method. The main drawback with this dataset
is that images are presented in a poor resolution and are not suitable for current
segmentations methods which allow a better refinement. An example of the images
proposed in this dataset based on saliency are showed in Fig.2.6.

2.2.2 Error measures for supervised segmentation evaluation

Whereas it might be a rather easy task to evaluate segmentation when a ground-truth
is present, it becomes a difficult task. The main problem is that there is no simple
correspondence between regions in the ground-truth and regions in the segmented
image [152]. Hence, error measures are focused on the quantization of this overlapping
and non-overlapping, in order to facilitate a quantitative measure of a segmentation
method’s performance.

On existing literature we can find three comprehensive surveys on segmentation
evaluation. Two of them, presented by Y.J. Zhang in 1996 [225] and 2001 [226] are
about supervised evaluation. The other, presented by H. Zhang in 2008 is about
unsupervised evaluation [224] and will be commented in the next section. Finally,
another interesting survey can be found in [152].

The schema depicted in Fig.2.7 is followed by [225] and [226].
As showed in this schema, supervised evaluation methods are divided in analytical

methods, goodness methods and discrepancy methods. The author defines analytical
methods as those which compute a set of characteristics of each method. For instance
the amount of a priori knowledge that can be incorporated to a method or wether a
method can be parallelised. Some of these methods are discussed in [225]. Although,
its utility in image segmentation evaluation can be, at least, arguable. Fairly much
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Figure 2.5: Example of Yao’s approach.

useful are goodness and discrepancy methods, the ones that are called empirical in
[225] and [226]. In this review we change the terminology empirical measures for error
measures since they provide a correspondence among two images based on either its
similarity or discrepancy. A survey on error measure can be found in [196] and an
interesting comparison of four of the ones commented here can be found in [221].

The main error measures are the edge-based methods, the global constancy error,
probabilistic rand index, variation of information and other generic and combined
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a) b)

c) d)

Figure 2.6: Salient object. (a,b)Original images. (c)Most Salient object of a). (d)
Most salient object of b).

Figure 2.7: Classification of supervised evaluation methods.

measures.

Edge-based error measures

These measures rank a segmentation by considering the borders of the segments.
Measures of similarity and discrepancy can be found in this category.

These error measures have a low-tolerance to refinement, but are useful to com-
pare segmentations with a similar number of segments.
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Boundary Displacement Error
This method, introduced in [89], evaluates the precision of the extracted region

boundaries [62].
Let B be the estimated boundary and GB the ground-truth boundary. The method

uses two distance distribution signatures from the estimated to the ground truth
borders, denoted by DB

G and viceversa, denoted by DG
B . For two sets of boundary

points B1 and B2, DB2

B1
is a discrete function whose distribution characterizes the

discrepancy, measured in distance, from B1 to B2. The authors define this distance as
the minimum absolute Euclidian distance. DB2

B1
can be established from the distance

histogram from individual x ∈ B1 to B2, which may be estimated through a distance
transformation with respect to B2.

The shape of DB2

B1
defines the degree of similarity between B1 and B2. By means

of the calculus of the standard deviation and the mean of DB2

B1
, it is possible to re-

flect the shape of the signature. Thus, a standard deviation near to zero means good
approximation (without outliers). The same happens with the mean.

Uncertain Image Classification This method introduced by Martin Laanaya
and Arnold-Bos in [134] takes care of both the well-classified and the bad classified
border pixels. The singularity of this error measure is that it do not expect a perfect
matching between segmented image and ground-truth, but is tolerant to some distance
errors. The distance between a ground-truth pixel and a segmented image pixels is
weighted buy a Gaussian. Hence pixels acceptably close are well ranked even when
they do not perfectly coincide. Afterwards a measure of bad-classified pixels (those
which are too far away forming a ground-thrust’s pixels) is proposed. Finally, these
two measures are considered in order to classify a segmentation method. The authors
argue that combining a measure of goodness and badness for the classification is more
robust than just considering one of them.

Global Constancy Error

This method, presented in Martin et al. [135], takes care of the refinement between
different segmentations. Thus, for a given pixel pi, consider the segments (sets of
connected pixels), S1 and S2 that contain this pixel. If one segment is a proper
subset of the other, then pi lies in an area of refinement and the error measure should
be zero. If there is no subset relationship, then S1 and S2 overlap in an inconsistent
manner and the error is higher than zero.

Let \ be the difference between two segments, ‖x‖ the cardinality of the set x
and R(Sn, pi) the set of pixels in the segmentation corresponding to a segment Sn

containing pixel pi. Then, the local refinement error is defined as:

E(S1, S2, pi) =
‖R(S1, pi)\R(S2, pi)‖

‖R(S1, pi)‖
(2.1)

Finally, since this error measure is not symmetric, the authors define the Global
Constancy Error (GCE) and the Local Constancy Error (LCE). GCE forces all local
refinements to be in the same direction whereas LCE allows refinements in different
directions. If n is the number of pixels:
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GCE(S1, S2) =

1

n
min

{

∑

i

E(S1, S2, pi),
∑

i

E(S2, S1, pi)

}

(2.2)

LCE(S1, S2) =

1

n
min {E(S1, S2, pi), E(S2, S1, pi)} (2.3)

As LCE ≤ GCE, the authors propose to use GCE as error measure. The dif-
ference between LCE and GCE is graphically explained in figure 2.8. GCE allows
refinements from (b) to (c) or (d) whereas LCE also accept refinement from both (c)
to (d) and (d) to (c).

a) b)

c) d)

Figure 2.8: Example of refinements accepted. GCE: from b) to c) and d). LCE:
also from c) to d) and d) to c). Consequently, GCE is tougher than LCE.
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The main drawback of this method is that the segmentations to be compared are
expected to have a very similar number of segments.

Variation of information

This technique, introduced by Meila et al. in [139] is a clustering comparison method
based on the information theory.

For a discrete random variable taking K values, uniquely associated to the clus-
tering C, we define H(C) the entropy of the cluster C as follows:

H(C) = −

K
∑

k=1

P (k) log P (k) (2.4)

where P (k) is the probability of a given point to be in the cluster C. The entropy
is always positive and takes value zero when there is just one cluster, i.e., when
there is no uncertainty. This entropy is measured in bits. An uncertainty of one bit
corresponds to a clustering with K = 2 and P = (1) = P (2) = 0.5.

In the calculus of the variation of information is also needed the mutual informa-
tion (MI), which is a measure of the information that one cluster has about another.
Let P (k), k = 1...K and P ′(k′), k′ = 1...K ′ be the random variables associated with
clusterings C and C ′. Then we define I(C,C ′) the mutual information as:

I(C,C‘) =
K

∑

k=1

K′

∑

k′=1

P (k, k′) log
P (k, k′)

P (k)P ′(k′)
(2.5)

Where P (k, k′) is the joint probability distribution function defined. Denote n the
total number of data points:

P (k, k′) =
|Ck

⋂

C ′
k′ |

n
(2.6)

if the probability that a point belongs to Ck in C and to C ′
k′ in C ′. The MI of two

independent random variable is 0 and the MI value increase insofar the uncertainty
increase, but in any case exceeding the total uncertainty. Thus,

I(C,C‘) ≤ min(H(C),H(C ′)) (2.7)

Finally, the Variation of information between two clusters, V I(C,C ′), is defined
as follows:

V I(C,C ′) =

(H(C) − I(C,C ′)) + (H(C ′) − I(C,C ′)) (2.8)

A graphical example is depicted in 2.9.
A further analysis of this error measure can be found in [140]. In the same article,

a brief analysis of the most relevant techniques for clustering comparison can be also
found. a more extensive analysis of clustering-based comparison techniques as well as
a proposal of a new one can be found in [96].
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Figure 2.9: Graphical example of VI.

Probabilistic Rand Index

This measure is a variation of the Rand Index (RI) [161] by including the ability to
allow some kind of refinements in the segmentation [196].

Let S1, S2, ..., Sk be a set of ground truth segmentation images and Stest a seg-
mented image to be compared with the ground truth , we will consider a segmentation
Stest as ’good’ if its labels correspond to the pairwise labels in Si. That is, for any
pair of pixels xi, xj , and their labels ltest

i , ltest
j if these labels correspond to lSk

i ,

lSk
j , the labels on the ground truth for the same pixels, it will be considered a good
segmentation. In [161] it is proposed the RI to compute that as follows:

R(Stest, Sk) =
1

(

N
2

)

∑

i, j
i 6= j

[I(ltest
i = ltest

j ∧ lki = lkj )

+I(ltest
i = ltest

j ∧ lki = lkj ] (2.9)

where I is the identity function and the denominator is the number of possible
unique pairs among N data points.

In [196] it is demonstrated that RI does not allow the possibility of refinement in
the segmentation. To avoid that, the authors propose the Probabilistic Rand Index
(PRI), which combines the desirable statistical properties of the RI with the ability to
accommodate refinements appropriately. The idea is to calculate, given the manually
segmented images S1, ..., SK , the empirical probability of the label relationship of a
pixel pair xi and xj :

pij =
1

K

K
∑

k=1

I(lki = lkj ) (2.10)
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Then, the PR index is defined as follows:

R(Stest, Sk) =
1

(

N
2

)

∑

i, j
i 6= j

[I(ltest
i = ltest

j )pij +

I(ltest
i = ltest

j )(1 − pij)] (2.11)

the measure takes value 0 when there are no similarities and 1 when Stest and
SK are exactly the same. A graphical example with a synthetic image is depicted in
figure 2.10.

Figure 2.10: Extracted from [196]. Each row Φ has (a) an associated input Im-
age, (b) a candidate segmentation SΦ

test test and (c) a set of KΦ available manual
segmentations SΦ

KΦ
.

The main drawback with PRI is that it is not possible to know if a certain score
is good or bad. We can compare the score of two segmentation but we can not know
if the difference is meaningful or not [156]. This is solved with the introduction of the
Normalized PRI, proposed in [197].

NormalizedIndex =
Index − ExpectedIndex

MaximumIndex − ExpectedIndex
(2.12)

The expected value of the normalized index is 0, so we know exactly when a
segmentation is better than average or worse than average.
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Generic and combined measures

Some other methods propose a combination of some properties related with segmen-
tation evaluation.

Other clustering based measures It is the case of the work presented in [96].
In this article a set of measures of clustering comparison are analyzed and formulated.
Basically, the same categories of clustering comparison as the ones described in [140]
are described. This categories are:

1. Distance of clusterings by counting pairs: It counts the four different relationship
existing between a pixel and two clusters one belonging to the reference image
and one belonging to the segmented one

2. Distance of clusterings by set matching: This second class of comparison criteria
is based on matching the clusters of two clusterings.

3. Information-theoretic distance of clusterings:Techniques basically based on In-
formation theory and entropy as the variation of Information index already
explained.

This generic measures are further analyzed and discussed in [96] and [140].

Evaluation based on overlapping matrix Another interesting review can be
found in [152]. Here the authors stand-out that the main drawback of segmentation
evaluation can be handled by considering three different measures:

1. The percentage of Correctly Grouped pixels: aims at accounting for those pixels
which, belonging to a reference region Ri, are put together in a single output
region Rj .

2. The percentage of under-segmentation: represents the amount of pixels of the
image which have been assigned to regions Rj which cover several reference
regions Ri.

3. The percentage of over-segmentation: accounts for pixels of output regions Rj

which split a reference region Ri.

An extensive set of ways to compute these percentages is explained in the same
article. Finally, the authors argue that a combination of such measures can be used
to efficiently rank a set of segmentations.

Symmetric and asymmetric discrepancy measures Another interesting ap-
proach is the one suggested by Cardoso and Corte-Real in [25]. In this case, the
authors present a combination of the following discrepancy measures:

1. Generic discrepancy measure: given by the normalized partition distance be-
tween the reference segmentation and the segmentation under study

2. Asymmetric measure for applications where over segmentation is not an issue
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3. Asymmetric measure for applications where under segmentation is not an issue

4. Mutual partition distance: where mutual refinements can be tolerated.

2.2.3 Non-supervised segmentation evaluation

All previous error measures can be applied just when there is a ground-truth available.
Nevertheless, to have a ground-truth suitable for any problem is just unfeasible. A
ground-truth should be representative of any kind of problem and extensive enough
to validate a segmentation method. As commented in section 2.2.1, the amount of
ground-truth currently available are not well controlled or limited in many aspects.
Due to that, the interest in non-supervised methods for segmentation evaluation has
been increasing. Two surveys of these techniques can be found in [30] and [224].

Non-supervised evaluation is useful for several aspects:

• Rank a set of segmentations as with the supervised measures.

• Automatic selection of parameters.

• Combination (also called fusion) of different segmentation results of the same
image to generate a final segmentation which theoretically takes the strength of
previous segmentation.

Further details on these techniques can be found in [224]. Finally, we will analyze
and compare unsupervised methods in chapter 6.
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Chapter 3

Ridge-based Analysis of a
Distribution (RAD)

The segmentation of a single material reflectance is a challenging problem due to the
considerable variation in image measurements caused by the geometry of the object,
shadows, and specularities. The combination of these effects has been modelled by
the dichromatic reflection model. However, the application of the model to real-world
images is limited due to unknown acquisition parameters and compression artifacts.
In this chapter, we present a robust model for the shape of a single material reflectance
in histogram-space. The model is a Ridge based Analysis of a Distribution (RAD).
It is based on a multilocal creaseness analysis of the histogram, which results in a set
of ridges representing the material reflectances. The segmentation method derived
from these ridges is robust to both shadow, shading and specularities.
Qualitative results illustrate the ability of our method to obtain excellent results in
the presence of shadow and highlight edges. Quantitative results obtained on the
Berkeley data set show that our method outperforms state-of-the-art segmentation
methods at low computational cost.

3.1 Introduction

Image segmentation is a computer vision process which aims to partition an image into
a set of non-overlapped regions, called segments. A robust and efficient segmentation
is required as a preprocessing step in several computer vision tasks such as object
recognition or tracking. In real images changes due to illumination, shadow, shading
and highlights provoke image measurements to vary significantly. These effects, are
one of the main difficulties that have to be solved to yield a correct segmentation.

Image segments caused by a single material reflectance form complex shapes in
histogram-space, due to shading effects and specularities. The fact that these physical
effects lead to undesired image segments is also confirmed by Martin et al. in [135].
He points out the existence of strong edges caused by such physical effects which
are not considered in human segmentations, but which tend to be detected by cur-

49
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rent segmentation methods. Previous work on image segmentation robust to shading
effects and specularities is based on the reflection model of the light. These meth-
ods, called physics-based, predominantly based on the dichromatic reflection model
(DCM) [171] [106] are aimed to explain the behavior of the light in a scene. Thus,
from a theoretical point of view, these models are able to explain the formation of
shadows and specularities. These methods are based on several assumptions which
severely limit their applicability. The main problem is the presence of artifacts intro-
duced by acquisition conditions, clipped highlights or image compression. A second
set of segmentation methods are feature-based [34] [126]. These methods are not
based on prior assumptions of the underlying physics and are therefore more flexible
to mentioned problems. However, ignorance of the physical process often leads to
incongruences in the presence of shadows and highlights.

Here, we aim to combine the strengths of physics and feature-based methods. The
presented method is based on the observation that the distribution of single material
reflectance can be robustly represented by a single connected ridge in histogram space.
The method is named Ridge-based Analysis of Distributions (RAD). The detection
of these ridges is based on a creaseness analysis of the histogram. This technique
connects the shadows in the dark parts of the object, to the brighter regions, and
further up to the highlights (see Fig. 3.1). Furthermore, the ridges are capable to
correctly connect single material textures, such as grass or sand. The advantage over
previous physics-based methods is that our method does not assume a parametric
shape, and is therefore robust for non-linear acquisition and image compression.

We propose two further extensions to the basic method. Firstly, to suppress those
ridges in the less probable orientations and favor those ridges in the probable ones, we
extend the method to exploit the image statistics of ridge orientations. This extension
is called physics-based RAD (pRAD). Secondly, ridges on the histogram can just cope
with those segments derived from single materials. Segments formed by more than
a material will be represented by different ridges in the histogram. These textures
tend to be present at certain scales, but display weak contrast at other scales. This
fact is exploited by the multi-contrast representation of the image, in which texture
contrast is suppressed. This method is called spatial RAD (sRAD).

This chapter is organized as follows: in section 3.2 we explain the related work in
image segmentation. Afterwards, in section 3.3 we explain the theoretical basis and
motivations of our approach. Subsequently in sections 3.4 and 3.5 we explain RAD.
A comparison with Mean shift and a performance evaluation of our approach is done
in section 3.6. Finally, conclusions of the current work are given in section 3.7.

3.2 Related work

There exist several different methods covering a broad spectrum of points of view.
The work presented by Skarbek and Koschan [180], draws the basis of the current
classifications of segmentation methods. Some other comprehensive surveys of colour
segmentation techniques are presented in [34] and [126], where a similar schema is fol-
lowed. From these works segmentation methods are divided in four main categories:
image-based, feature-based, physics-based and hybrid approaches. Feature-based ap-
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proaches are focused on the photometric information of an image represented on its
histogram [5] [221]. Image-based approaches exploit the spatial information contained
in the image, named spatial coherence. Physics-based methods use the knowledge
about the physical formation of the scene (light, surfaces reflectance), to perform
the segmentation. Finally, hybrid techniques combine methods of the previous cate-
gories. As stated before, this chapter introduces a method that performs an analysis
of the histogram (feature-based method, RAD) exploiting the statistics of the ridges
(physics-based, pRAD) and adding as a final step the spatial coherence of the image
(image based, sRAD) . Therefore, the segmentation method presented belongs to the
category of hybrid methods.

In regard image-based methods, these include region and boundary information
[62] [40] graph-based approaches as nCuts [173] or the efficient graph-based image
segmentation [58], region growing algorithms [159] [175] or segmentation based on
watershed [82] [29] and in general topological approaches [183]. These basic techniques
are either mixed [84] or complete by means of markov random fields [18] [103] or neural
network approaches [52].

Feature-based methods can be further split in three main categories: histogram
thresholding, clustering and fuzzy clustering. Histogram thresholding techniques as-
sume that there exist a threshold value that isolates all pixels representative of an
object in a scene. This basic concept is exploited in several ways as explained in [169].
Clustering techniques, perform a partition of the feature space under different criteria
as described in [5]. Such criteria include distance measures as k-means or ISODATA
[186], probabilistic/statistical approaches, such as Mean Shift [64], or the spectral
analysis of the data [204], based on the Karhunen-Loeve transformation. Fuzzy clus-
tering includes methods such as fuzzy c-means [166] [105], Gath-Geva clustering [68],
or mixture models [1] [129] which are a way to look for areas of high density. From
all of them, the most related work with RAD is Mean shift. Both, Mean Shift and
RAD, use topological information (modes and gradients for Mean Shift and structural
tensor, creaseness and ridges for RAD) to perform the classification of colors in the
histogram space.

Physics techniques model the behavior of the light in the scene. The main con-
tribution to these techniques was done by S.A. Shafer in 1985 with the introduction
of the dichromatic reflection model (DCM) [171]. DCM, has been the basis of sev-
eral segmentation techniques [7] [106], which limitations regarding different materials
(metals and inhomogeneous dielectrics) geometry and non Lambertian surfaces has
been also treated [137] [151]. Furthermore, physical formation of the scene has been
also the inspiration of some other approaches, including pRAD. Thus, DCM explains
under a theoretical point of view the sort of shapes that a single surface can form
in the histogram due to illumination interactions. The fact that these shapes do not
correspond with the common feature-based clustering techniques such as Mean Shift
[64] [39], the most related feature-based technique with RAD is the other observation
that forms the basis of our proposal. Mean Shift joints different modes and its basis
of attraction with a method that can not give the elongated shapes described by the
DCM. Instead of this, pRAD performs an analysis of the histogram space focused in
the extraction of elongated shapes that can easily follow the directions of the DCM (if
present in the histogram) but without its main restrictions. Some other proposals to
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find these structures are, for instance, with an statistical approach based on b-splines
fitting in the HSV [104], or by means of a generalized Hough transform method,
gradient descent method, and eigenvectors method as suggested in [146].

In addition to these approaches we include within physics-based approaches those
models of color spaces proposed to cope with shadows and highlights. The first
good proposal for this aim, was the Ohta space [148] proposed in 1980 which is a
linear transformation of the RGB space that has been used in several approaches for
images segmentation. Other interesting proposals for color spaces robust to, or that
deal with, shadows and highlights, comprises an eigen color representation [2], an
illuminant independent log-opponent representation [10] or an specific model to deal
with color distortion [150].

Finally hybrid approaches combine techniques of the three previous categories.
For instance, by adding image spatial constraints (spatial coherence) to a cluster-
ing technique such as k-means [157] or more recently with fuzzy c-means [38]. The
JSEG segmentation method [46] is a two-step schema following a similar idea. First,
a clustering of the color space is performed. Afterwards, a criterion of good segmen-
tation is applied using the spatial coherence of the image. Another schema proposes
that a good segmentation region should be formed by strongly connected pixels with
homogeneous colors [130].

In this work, we use the spatial coherence of the image to build a multiscale
information-based chromatic contrast map, called multicontrast image. This map will
guide a procedure to combine a set of sub-segmentations computed from a single
image at different feature-space scales. Hence, we use the multicontrast image, to
determine the goodness of a segmentation (or a segment) [87] [70]. This extension of
the method is called sRAD.

3.3 Our approach: Theoretical Foundations

Our approach to colour image segmentation is based on the insight that the distribu-
tions formed by a single-colored object have a physically determined shape in colour
histogram-space. We model an image as being generated by a set of segments, each
of which corresponds with a material reflectance (MR) described by a distribution in
histogram-space. Each MR is related to a semantic object in the image. For example,
in Figure 1 we distinguish between four different MRs, namely: red for the pepper,
green and brown for the branch and black for the background.

A MR generates many image values due to geometrical and photometric variations.
Our main aim is to find a good representation of the topologies which MR’s are likely
to form in histogram space. For this purpose, consider the distribution of a single
MR as described by the dichromatic reflection model [171]:

f (x) = mb (x) cb + mi (x) ci (3.1)

in which f = {R,G,B}, cb is the body reflectance, ci the surface reflectance, mb

and mi are geometry dependent scalars representing the magnitude of body and
surface reflectance. Bold notation is used to indicate vectors. For one MR we expect
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both cb and ci to be almost constant, whereas mb (x) and mi (x) are expected to
vary significantly. Hence, as for this definition, a MR, is formed by a single body
reflectance cb and a surface reflectance ci.

The two parts of the dichromatic reflection model are clearly visible in the his-
togram of Figure 3.1b. Firstly, due to the shading variations the distribution of the
red pepper traces an elongated shape in histogram-space. Secondly, the surface re-
flectance forms a branch which points in the direction of the reflected illuminant. In
conclusion, the distribution of a single MR forms a ridge-like structure in histogram
space.

a) b)

c) d)

Figure 3.1: (a) An image from [72] and (b) its histogram. The effects of shading
and highlights are clearly visible in the red colours of the histogram. (c) Segmented
images using RAD. (d) Ridges found with RAD. Note that the three branches of the
red pepper are correctly connected in a single ridge.

To illustrate the difficulty of extracting the distributions of MRs consider Figure
3.2c, which contains a patch of the horse image. The 2D Red-Green histogram of the
patch is depicted in Figure 3.2d to see the number of occurrences of each chromatic
combination. This is done for explanation purposes. In this 2D histogram it can be
clearly seen that the density of the geometric term mb (x) varies significantly, and the
distribution is broken in two parts. However, we have an important clue that the two
distributions belong to the same MR: the orientation of the two distribution is similar,
which means they have a similar cb. We exploit this feature in the ridge extraction
algorithm by connecting neighboring distributions with similar orientation.

In literature several methods have explicitly used the dichromatic reflection model
to obtain image segmentation, e.g. [106]. A drawback of such methods is however
that for many images Eq. 3.3 does only approximately model the data. This can be
caused by many reasons, such as non-linear acquisition systems, clipped highlights,
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a) b)

c) d)

Figure 3.2: (a) An image and (b) its 3D RGB histogram. (c) A patch of a) and its
RGB histogram. (d) 2D histogram of c) to illustrate the discontinuities appearing
on a MR.

and image compression. We use Eq. 3.3 only to conclude that objects described by
this equation will trace connected ridges in histogram space. This makes the method
more robust to deviations from the dichromatic model.

3.4 A Ridge based Distribution Analysis method
(RAD)

In this section we present a fast algorithm to extract MRs from histogram space. The
proposed method is divided in two main steps. First, we propose a method to extract
ridges as a representative of a MR. Afterwards a flooding process is performed to find
the MRs from its ridges.

3.4.1 First step: Ridge Extraction

To extract a MR descriptor we need to find those points containing the most meaning-
ful information of a MR, i.e., its ridge. We propose to apply a multilocal creaseness
algorithm to find the best ridge point candidates. This operator avoids to split up
ridges due to irregularities on the distribution, mainly caused by the discrete nature
of the data. Afterwards, we apply a ridge extraction algorithm to find the descriptor.
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Multilocal Creaseness: finding candidates and enhancing connectivity

In order to deal with this commonly heavily jagged MR (see Fig. 3.2d) , we propose
to apply the MLSEC-ST operator introduced by Lopez et al. in [123] to enhance
ridge points. This method is used due to its good performance compared with other
ridge detection methods [123] on irregular and noisy landscapes.

The Structure Tensor (ST) computes the dominant gradient orientation in a neigh-
bourhood of size proportional to σd. Basically, this calculus enhances those situations
where either a big attraction or repulsion exists in the gradient direction vectors.
Thus, it assigns the higher values when a ridge or valley occurs. Given a distribution
Ω(x), (the histogram in the current context), and a symmetric neighbourhood of size
σi centered at point x, namely, N(x, σi) the ST field S is defined as:

S(x, σ) = N(x, σi) ∗ (∇Ω(x, σd) · ∇Ωt(x, σd)) (3.2)

where σ = {σi, σd}, and the calculus of the gradient vector field ∇Ω(x, σd) has been
done with a Gaussian Kernel with standard deviation σd.

If w(x, σ) is the eigenvector corresponding to the largest eigenvalue of S(x, σ),
then, the dominant gradient orientation w(x, σ) in a neighbourhood of size propor-
tional to σi centered at x is:

w(x, σ) = sign(wt(x, σ) · ∇tΩ(x, σd))w(x, σ) (3.3)

The creaseness measure of Ω(x) for a given point x, named k(x, σ), is computed with
the divergence between the dominant gradient orientation and the normal vectors,
namely nk, on the r -connected neighbourhood of size proportional to σi. That is:

k(x, σ) = −Div(w(x, σ)) = −
d

r

r
∑

k=1

wt

k
(x, σ) · nk (3.4)

where d is the dimension of Ω(x). The creaseness representation of Ω(x) will be
referred hereafter as Ωσ.

As an example, Figure 3.3a shows the opponent colour 2D histogram of 3.3g. Its
creaseness values are showed in 3.3b. There are three enhanced areas which corre-
sponds with the three MRs of the original image. They appear as three mountains
in 3.3b, clearly separated by two valleys. Note that higher creaseness values have a
larger probability to become a ridge point.

Ridge Detection

In the previous section we have detected a set of candidate ridge points. In this section
we discard superfluous points. As a result only those points necessary to maintain
the connectivity of a MR remain. These points form the ridges of Ωσ.

We classify ridge points in three categories. First, Transitional Ridge Points
(TRP): when there is a local maximum in a single direction. Second, Saddle Points
(SP): when there is a local maximum in one direction and a local minimum in another
one. Third, Local Maximum Points (LMP). Formally, let Ω(x, y) be a continuous 2D
surface and ∇Ω(x, y) be the gradient vector of the function Ω(x, y). We define ω1 and
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a) b) c)

d) e) f)

g) h)

Figure 3.3: A graphical example of the whole process. (a) Opponent Red-Green and
Blue-Yellow histogram Ω(x) of g). (b) Creaseness representation of a). (c) Ridges
found in b). (d)Ridges fitted on original distribution. (e) Top-view of d). (f)MRs of
a). (g) Original image. (h)Segmented image.

ω2 as the unit eigenvectors of the Hessian matrix and λ1 and λ2 its corresponding
eigenvalues with | λ1 |≤| λ2 |. Then, for the 2D case:

LMP (Ω(x, y)) =,

{(x, y)|(‖∇Ω(x, y)‖ = 0), λ1 < 0, λ2 < 0} (3.5)

TRP (f(x, y)) =,

{(x, y)|‖∇Ω(x, y)‖ 6= 0, λ1 < 0,∇Ω(x, y) · ω1 = 0,

‖∇Ω(x, y)‖ 6= 0, λ2 < 0,∇Ω(x, y) · ω2 = 0, (3.6)

‖∇Ω(x, y)‖ = 0, λ1 < 0, λ2 = 0}
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SP (f(x, y)) = {(x, y)|‖∇Ω(x, y)‖ = 0, λ1 · λ2 < 0} (3.7)

This definition can be extended for an arbitrary dimension using the combinatorial of
the eigenvalues. Hereafter we will refer to these three categories as ridge points (RP).
Thus, RP (Ω(x, y)) = LMP

⋃

TRP
⋃

SP . A further classification of ridges and its
singularities can be found in [208] and [12].

A common way to detect RP is to find zero-crossing in the gradient of a landscape
for a given gradient direction. Thus, we need to compute all gradient directions and
detect changes following the schema proposed in [12]. In our case, we propose a way
to extract a ridge without the need to calculate the gradient values for all points in
the landscape. We begin on a local maxima of the landscape and follow the ridge
by adding the higher neighbours of the current point, if there is a zero-crossing on
it, until it reaches a flat region. This method can be easily applied to an arbitrary
dimension. Formally, let neigh(x,Ωσ) be the set of neighbours of a point x ∈ Ωσ,
and Cneigh(x,y,Ωσ) be the set of common neighbours between point x ∈ Ωσ and
y ∈ Ωσ. We also define a function µ(x,Ωσ) as follows:

µ(x,Ωσ) =

♯ {y ∈ neigh(x) | Ωσ(y) ≥ Ωσ(x)} (3.8)

Therefore, µ(x,Ωσ) = 0 means that x is a local maximum. Finally, we define µ′ as:

µ′(x,y,Ωσ) =

♯ {z ∈ Cneigh(x,y) | Ωσ(z) ≥ Ωσ(y)} (3.9)

µ(x,y,Ωσ) = 0 means that y is a local maxima in the common neighbours between
x and y. To extract ridges we propose an iterative process beginning on local maxima,
that is

RP0(Ω
σ) = x ∈ Ωσ‖µ(x,Ωσ) = 0 (3.10)

Then, we just have to follow ridges starting on RP0(Ω
σ) until its ending.

RPz(Ω
σ) = RPz−1(C)

⋃

{n ∈ neigh(l) | l ∈ RPz−1(Ω
σ), µ′(l,n) = 0} (3.11)

Fig. 3.3c depicts the RP found on Ωσ with black dots. Figs. 3.3d,e show a 3D view
and a 2D projection view respectively of how these RPs fit in the original distribution
as a representative of the three MRs. Finally, from the set of RPs of a distribution
we can perform the calculus of each MR. A second example is shown in Figure 3.1.
The complicated colour distribution of the pepper, caused by shading and highlight
effects, is correctly connected in a single ridge.

3.4.2 Second step: MR Calculus from its RPs

In this final step we find the MR belonging to each ridge found. From topological
point of view, it implies finding the portion of landscape represented by each ridge.
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These portions of landscape are named catchments basins. Vincent and Soille [206]
define a catchment basin associated with a local minimum M as the set of pixels p of
Ωσ such that a water drop falling at p flows down along the relief, following a certain
descending path called the downstream of p, and eventually reaches M. In our case,
M are the set of RPs found and then, MRs are found using the algorithm proposed
in [206] applied on the inverse Ωσ distribution. The proposed algorithm, is not based
on the gradient vectors of a landscape [69] but on the idea of immersion which is
more stable and reduces over-segmentation. Basically, the flooding process begins
on the local minima and, iteratively, the landscape sinks on the water. Those points
where the water coming from different local minima join, compose the watershed lines.
To avoid potential problems with irregularities [123], we force the flooding process to
begin at the same time in all MR descriptors, on the smoothed Ω(x) distribution with
a Gaussian kernel of standard deviation σd (already computed on the ST calculus).
Then, we define RAD as the operator returning the set of MRs of Ωσ using RPs as
marks:

RAD(Ω(x)) = W (Ωσ, RP (Ωσ)) (3.12)

Following this procedure, Fig. 3.3f depicts the 2D projection of the MRs found on
3.3a.

3.5 Colour image segmentation using RAD

Once RAD has been applied we need to assign a representative colour to each MR
found. Thus, let MRn = {x1, ...,xr} be the nth MR of Ω(x), and Ω(xi) the function
returning the number of occurrences of xi in Ω. Then, the dominant colour of MRn,
namely, DC(MRn) will be the mass center of Ω(MRn):

DC(MRn) =

∑r

i=1 xi · Ω(xi)
∑r

i=1 Ω(xi)
(3.13)

The segmented image will have as many colours as the number MRs found. Figure,
3.3h shows the segmentation obtained with RAD from 3.3g. This segmentation has
been performed on the opponent colour histogram. Although RAD can be applied
to any chromatic representation of an image such as CIE, RGB, Ohta spaces or 2-
dimensional ones such as Opponent or normalized RGB.

3.6 Results and performance evaluation

In the experiments we qualitatively and quantitatively evaluate the proposed segmen-
tation method. Firstly, RAD is compared with Mean Shift (MS) [64], [39]. MS has
been chosen because it is widely used, has a public available version, the EDISON one
[37] and it has demonstrated its good performance [156]. Additionally, Mean Shift is
a feature space analysis technique, as well as RAD, and yields a segmentation in a
rather reasonable time, in opposition to other set of methods such as the Graph-Based
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approaches [71]. Secondly, our method is compared on the Berkeley data set against
a set of state-of-the-art segmentation methods.

The MS method [39], consists of finding the modes of the underlying probability
function of a distribution. The method finds the Mean Shift vectors in the histogram
of an image that point to the direction of higher density. All values of the histogram
attracted by one mode compound the basis of attraction of it. In a second step, the
modes which are near of a given threshold are joined. Finally, all modes joined an its
basis of attraction will compose a dominant colour of the image. Mean Shift has two
basic parameters to adapt the segmentation to an specific problem, namely, hs, which
controls a smoothing process, and hr related with the size of the kernel used to deter-
mine the modes and its basis of attraction. To test the method, we have selected the
set parameters (hs, hr) = {(7, 3), (7, 15), (7, 19), (7, 23), (13, 7)(13, 19), (17, 23)} given
in [156] and [221]. The average times for this set of parameters, expressed in seconds,
are 3.17, 4.15, 3.99, 4.07, 9.72, 9.69, 13.96 respectively. Nevertheless, these parameters
do not cover the complete spectrum of possibilities of the MS. Here we want to com-
pare RAD and MS from a soft oversegmentation to a soft undersegmentation. Hence,
in order to reach an undersegmentation with MS, we add the following parameter
settings (hs, hr) = {(20, 25), (25, 30), (30, 35)}. For these settings, the average times
are 18.05, 24.95 and 33.09 respectively.

The parameters used for RAD based segmentation are (σd,σi)={ (0.8,0.05) ,
(0.8,0.5) , (0.8,1) , (0.8,1.5) , (1.5,0.05) , (1.5,0.5) , (1.5,1.5) , (2.5,0.05) , (2.5,0.5)
, (2.5,1.5) }. These parameters vary from a soft oversegmentation to an underseg-
mentation, and have been selected experimentally. The average times for RAD are
6.04, 5.99, 6.11, 6.36, 6.11, 5.75, 6.44, 5.86, 5.74 and 6.35. These average times,
point out the fact that RAD is not dependent of the parameters used. In conclusion,
whereas the execution time of Mean Shift increases significantly with increasing spa-
tial scale, the execution time of RAD remains constant from an oversegmentation to
an undersegmentation.

The experiments has been performed on the publicly available Berkeley image
segmentation dataset and benchmark [135]. We use the Global Constancy Error
(GCE) as an error measure. This measure was also proposed in [135] and takes care
of the refinement between different segmentations. For a given pixel pi, consider
the segments (sets of connected pixels), S1 from the benchmark and S2 from the
segmented image that contain this pixel. If one segment is a proper subset of the
other, then pi lies in an area of refinement and the error measure should be zero. If
there is no subset relationship, then S1 and S2 overlap in an inconsistent manner and
the error is higher than zero, (up to one in the worst possible case). MS segmentation
has been done on the CIE Luv space since this is the space used in [156] and [221].
RAD based segmentation has been done on the RGB colour space for two reasons.
First, the Berkeley image dataset does not have calibrated images and, consequently,
we can not assure a good transformation from sRGB to CIE Luv. Second, because the
size of L, u and v, is not the same and the method will require six parameters, instead
of two, that is, −→σL, −→σu and −→σv. Nonetheless, for the sake of clarity, we also present
some results of RAD on CIE Luv to directly compare results with MS. Figure 3.4
depicts a set of examples for RAD on RGB. From left to right: original image, RAD
for (σd,σi)={ (0.8,0.05) , (1.5,0.05) , (2.5,0.05) , (2.5,1.5) } and human segmentation.
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Table 3.1: Global Constancy Error for several state-of the-art methods: seed [142],
fow [61], MS, and nCuts [173]. Values taken from [142] and [221].

human RAD seed fow MS nCuts
GCE 0.080 0.1996 0.209 0.214 0.2598 0.336

Figure 3.5 shows some results for the mean shift segmentation, corresponding to
(hs, hr) = {(7, 15), (13, 19), (17, 23), (20, 25), (25, 30), (30, 35)}.

These results point out the main advantage of RAD in favor of MS, namely, the
capability of RAD to capture the DS of a histogram, whereas MS is ignorant to the
physical processes underlying the structure of the DSs as Abd-Almageed and S. Davis
explain in [1]. Graphically, the set of images depicted in the first row of Figure 3.5,
shows this behavior in a practical case. In the last column, MS joins rocks with the
mountain, and the mountain with the sky, but is not able to find one unique structure
for a rock or for the mountain, whereas RAD, as shown in Figure 3.4, is able to do.

A danger of RAD is that for some parameter settings it is prone to underseg-
menting. Consequently it finds only one dominant colour for the whole image. This
happens in some cases for (σd,σi)={(2.5,1),(2.5,1.5)}, as Figure 3.6 illustrates. In the
first example, the aircraft has a bluish colour similar to the sky, as well as the fish
and its environment in the second example.

Additional examples related to the presence of physical effects, such as shadows,
shading and highlights are shown in Figure 3.7. The good performance of RAD in
these conditions can be clearly observed for the skin of the people, the elephants and
buffalos, as well as for the clothes of the people.

The histogram of the mean GCE values versus the percentage of images for each
GCE value are shown in Figures 3.8a,b for RAD on RGB and MS respectively. As
more bars are accumulated on the left, the better is the method. Figures 3.8c,d show
the standard deviation along the maximum and the minimum GCE values (red lines)
for each of the 10 sets of parameters for RAD on RGB and MS. Note that the be-
haviour of both methods in this sense is almost the same. A low and similar standard
deviation along all parameters means that the method presents an stable behaviour.
Figure, 3.8e depicts the mean GCE index for each image ordered by increasing index
for MS (green), RAD on RGB (black) and RAD on Luv (red). This plot shows, not
only the good performance of RAD, but that RAD has a similar behavior on RGB
and CIE Luv spaces, even with the aforementioned potential problems on Luv. Figure
3.8f plots the GCE index differences for each image between RAD on RGB and MS.
Values lower than zero indicate the number of images where RAD performs better
than MS. The same but for RAD on Luv versus MS, and RAD on RGB versus RAD
on Luv is depicted on Figure 3.8g,h.

Additionally, table 3.1 shows GCE values for several state-of-the-art methods.
These values are taken from [142] and [221]. These experiments have been performed
using the train set of 200 images. For both the RAD and MS we present the results
obtained with the best parameter settings. For our method the best results were
obtained with (σd,σi)={(2.5,0.05)}.

As can be seen our method obtains the best results. Furthermore, it should be
noted that the method is substantially faster than the seed and the nCuts [173]
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method. In addition, the results obtained with the MS need an additional step.
Namely, a final combination step, which requires a new threshold value, is used to
fuse adjacent segments in the segmented image if their chromatic difference is lower
than the threshold (without pre- an postprocessing MS obtains a score of 0.2972).
For our RAD method we do not apply any pre- or postprocessing steps.

3.7 Conclusions

In this chapter we have described a new feature space segmentation method that
extracts the Ridges formed by a dominant colour on an image histogram. This method
is robust against discontinuities appearing in image histograms due to compression
and acquisition conditions. Furthermore, those strong discontinuities, related with the
physical illumination effects are correctly treated due to the topological treatment of
the histogram. As a consequence, the presented method yields better results than
Mean shift on a widely used image dataset and error measure. Additionally, even
with neither preprocessing nor postprocessing steps, RAD has a better performance
than the state-of-the-art methods. It points out that the chromatic information is an
important cue on human segmentation. Additionally, the elapsed time for RAD is
not affected by its parameters. Due to that it becomes a faster method than Mean
Shift and the other state-of-the-art methods.

The main shortcoming of RAD is its tendency to oversegmentation depending
parameters used. In the next chapter we detail a saliency measure which is used to
detect oversegmentation in a non-supervised manner.
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Figure 3.4: Examples of segmentation. For each image: orig-
inal image, 4 segmentations with RAD on RGB with parameters
(σd,σi)={(0.8,0.05),(1.5,0.05),(2.5,0.05),(2.5,1.5)} and last image corresponding
with human segmentation.
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Figure 3.5: MS segmentation examples for different parameters. For each
image: original image 5 segmentations showed for parameters: (hs, hr) =
{(7, 15), (13, 19), (17, 23), (20, 25), (25, 30)}.

Figure 3.6: Examples of oversegmentation. For each image: original image. and
segmentation with RAD with (σd,σi)={(0.8,0.05),(2.5,0.05),(2.5,1.5)}.
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Figure 3.7: Examples of segmentation in presence of shadows and highlights.
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Figure 3.8: (a,b)Mean GCE values for each set of parameters. (c,d) Standard
deviation of GCE along maximum and minimum values for each set of parameters.
(e)Mean GCE values for each image sorted form lower to higher. (f)Values higher
than zero: images where MS performs better RAD. (g,h)The same as f) but for MS
and RAD Luv and for RAD RGB versus RAD Luv.
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Chapter 4

Saliency of Color Image Derivatives

A shortcoming with RAD, as explained in Chapter 3, is undersegmenation. Saliency-
driven methods have been proposed to detect oversegmentation and undersegmenta-
tion in an unsupervised manner. In this chapter we propose a saliency method which
is used to turn RAD in an unsupervised segmentation technique by adding image
spatial coherence.
Chromaticity and contrast play an important role in bottom-up saliency. Therefore,
a computational model for saliency of color derivatives is proposed. The model is de-
rived by applying Shannon’s information theory to color derivative distributions. The
computational model is compared to a human saliency measure which is computed
from an image dataset consisting of manually labelled salient objects.
The experimental results show that the proposed method provides accurate per-
formance to compute visual saliency with a Hit rate up to 95.2% on a large scale
image dataset. Further, the psychophysical experimental results demonstrate that
the proposed method performs significantly better at predicting human saliency than
state-of-the-art models.

4.1 Introduction

Human visual attention is for an important part driven bottom-up by the saliency
of image details. An image detail appears salient when one or more of its low-level
features (e.g. size, shape, luminance, color, texture, binocular disparity, or motion)
exceeds the overall feature variation of the background. Saliency determines the ca-
pability of an image detail to attract visual attention (and thus guide eye movements)
in a bottom-up way [189] [109]. Current models of human visual search and detection
suggest that this preattentive stage indicates potentially interesting image details,
whereupon the focus of attention is sequentially shifted to each of these regions and
the serial stage is deployed to analyze them in detail [192].

Several information theoretical approaches have been proposed to compute visual
saliency from local image features [100] [63][132]. These methods are based on the
assumption that feature saliency is inversely related to feature occurrence (i.e. rare

67
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features are more informative and therefore more salient than features that occur
more frequently). It is indeed plausible that interesting image details correspond
to locations of maximal self information, a measure closely related to local feature
contrast [22] [66]. Using this notion, recent models of human visual fixation behav-
ior assume that saliency driven free viewing corresponds to maximizing information
sampling [65][224]. These models have successfully been deployed to model human fix-
ation behavior, pop-out, dynamic saliency, saliency asymmetries, and to solve classic
computer vision problems like dynamic background subtraction [65] [66][67].

Because of its importance for many practical applications, we focus on bottom-up
saliency in this chapter. The parallel, preattentive, or bottom-up stage of human
vision is thought to guide a serial (computationally intensive) attentive or top-down
stage. Among all features that contribute to a detail’s saliency, orientation and color
are generally considered to be the most significant ones [98][211] [216]. Consequently,
most current saliency models are based on local color and orientation contrast (e.g.
[78][94][214]).

There exist evidence that the human visual system combines and processes low-
level features in an early stage [109] [110]. Most popular models of visual attention
compute individual saliency maps for different features like color, orientation or mo-
tion, and merge these in a later stage into a single overall saliency map, e.g. [94] (late
fusion of features). Here we present an information theoretical method to compute
the saliency of color edges. by combining chromaticity and contrast (early fusion of
features).

In this chapter, a method is proposed which computes image saliency from the
information content (the frequency of occurrence, probability, or self information) of
both local chromatic and orientation derivatives. The method is based on the ob-
servation that in natural images, color transitions of equal probability (i.e. isosalient
transitions) form ellipsoids in decorrelated color spaces [198]. The transformation
that turns these ellipsoidal isosaliency surfaces into spherical ones (called the color
saliency function), effectively replaces gradient strength with information content. Af-
ter the color saliency transformation, vectors of equal length have equal information
content and thus equal impact on the saliency function. We introduce three different
ways to calculate the saliency transformation, using either a single image, a collec-
tion of images, or the restriction that the eigenvectors of the transformation matrix
coincide with the opponent color space. Further, we investigate whether there is a
correspondence between our approach and human visual perception.

The chapter is organized as follows. In the next section, we propose three com-
putational saliency measures, and one human saliency measure. In Section 4.3, the
psychophysical experiment is outlined. Finally, in Section 4.4, the results are pre-
sented and conclusions are drawn.

4.2 Saliency of Color Edges

In this section, we present two different methods to compute color edge saliency. The
first one, introduced in section 4.2.1, is a computational method based on the self
information of color edges. We present three versions of this method: a local version
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(that estimates color edge saliency from only a single image), a global version (that
uses a collection of images to compute color edge saliency), and a version in which
the eigenvectors of the transformation matrix are restricted to the opponent color
space. Then, in section 4.2.2, we propose a measure of color edge saliency based on
(human-labeled) salient object detection data.

4.2.1 Multi-contrast computational saliency

The color saliency method by Van de Weijer et al. [198] is inspired by the notion that
a feature’s saliency reflects its information content. Consider an image f = (R,G,B)t.
The information content, I, of an image derivative fx, according to information theory,
is given by the logarithm of its probability p:

I = −log(p(fx)). (4.1)

Hence, color image derivatives which are equally frequent have equal information
content. To map image derivatives to a saliency map, a function g is required for
which the following holds:

p(fx) = p(f′x) ↔ |g(fx)| = |g(f′x)|. (4.2)

The saliency function g transfers color image derivatives to a space where their norm
is proportional to their information content.

In Fig. 4.1, the distribution of color derivatives for the COREL dataset is given.
The derivatives form an ellipsoid-like distribution, of which the longest axis is along
the luminance direction. This indicates that equal displacements are more informative
along the color directions (perpendicular to the luminance) than in the luminance
direction. The saliency transformation in [198] is restricted to a transformation based
on known color spaces. Now we propose a more general transformation to compute g
in that it is not fixed to a pre-defined color space.

Let the distribution of the ellipsoid to be described by the covariance matrix M:

M = fx (fx)
t

=





RxRx RxGx RxBx

RxGx GxGx GxBx

RxBx GxBx BxBx



 (4.3)

where the matrix elements are computed by

RxRx =
∑

i∈S

∑

x∈Xi

Rx (x) Rx (x) (4.4)

where S is a set of images, and Xi is the set of pixels coordinates x in image i. Matrix
M describes the derivatives energy in any direction v̂. This energy is computed
by E(v̂) = v̂Mv̂t. Matrix M can be decomposed into eigenvector matrix U and
eigenvalue matrix Λ according to M = UΛΛUt. This provides us with the saliency
function g:

g (fx) = Λ−1Utfx. (4.5)
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Substitution of Eq. 4.5 into Eq. 4.3 yields

g (fx) (g (fx))
t

= Λ−1UtUΛΛUtUΛ−1 = I, (4.6)

meaning that the covariance matrix of the transformed image is equal to the identity
matrix. This implies that the derivative energy in the transformed space is equal in
all directions.

We consider three methods derived from information theory to compute the saliency
of color edges:

• Local color saliency: saliency is defined by the rarity of the color derivatives in a
single image. Thus, when applied to a set of images, each image is transformed
by its own individual saliency matrix Mc

l (where c stands for computational
and l for local). For its computation, S in Eq. 4.4 contains only a single image.

• Global color saliency: saliency is defined as the rarity of the color derivatives
over a set of images. Hence, a single matrix Mc

g is computed based on the color
derivatives of all images in a data set (S contains all images). The same saliency
matrix is then applied to all images in the data set.

• Global opponent color-space saliency [198]: saliency is defined as the rarity of
the color derivatives in a set of images, with the additional restriction that the
eigenvectors of the saliency matrix coincide with the vectors which span the
opponent color space

U =







1√
2

−1√
2

0
1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3






. (4.7)

The color saliency transformation Mc
o = Λ−1Ut only differs in the scaling of

the axes as given by the eigenvalue matrix Λ = diag (α, β, γ). Applied to a set
of images, the same eigenvalue matrix is applied to all images.

An example of local and global computational saliency is given in Fig. 4.2. Based on
global saliency, the edges of the red American flag are considered salient. However,
for local saliency, which is computed based on only the statistics of this image, the red
edges are not considered salient. Instead the brown edges of the pastry are considered
more salient. This is in correspondence with human assessment of this image.
Multi-scale color saliency: The three types of information theoretical saliency
maps can be computed at multiple spatial scales. Maps computed at multiple scales
can be combined into a single saliency map as follows:

s (x) =
∑

σ∈Σ

∑

x′∈N(x)

‖Mσ (fσ (x) − fσ (x′))‖ (4.8)

where fσ denotes the Gaussian smoothed image at scale σ, and Σ = {1, 2, 4, 6, 8, 10, 12, 14}.
N (x) is a 9x9 neighborhood window. Mσ is the transformation matrix computed from
Gaussian derivatives of scale σ and can be any of the three before mentioned ones:
Mc

l , Mc
g or Mc

o. Note that leaving out M from Eq. 4.8 results in the multi-scale
contrast approach proposed by Liu et al. [121]. An example of a multi-scale color
saliency map is given in Fig. 4.2. The edges of the salient pastry are considered more
salient by the multi-scale color saliency map.
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Figure 4.1: Histogram of the distribution of opponent derivatives computed for the
Corel image dataset.

4.2.2 Human saliency measure

In the previous section, we proposed different versions to color saliency based on infor-
mation theory, which we called computational saliency measures. Since our goal is to
obtain saliency maps that closely relate to human perception, a more direct approach
would be to learn the optimal transformation Mh (where h stands for human) of color
derivatives from a labeled set of training images. The images should be labeled with
salient objects in the scene. From this data, the saliency transformation Mh can be
derived that maximally agrees with the human labeled data.

To compute Mh, a large-scale image data set of human labeled salient objects
is used [121]. Example images of this dataset are shown in Fig. 4.3. The data set
contains a large number of high quality images obtained from different sources such
as image forums and image search engines. Images all contain a single salient object
or a distinctive foreground object. For each image, users drew a rectangle enclosing
the most salient object in the image. We use the a set of images called set B in [121].
This set consists of 5000 images which were labeled by nine users. Foreground pixels
are those pixels which are considered to be foreground by a majority of the users.
Then, this set is divided in 10 subsets of 500 images each (B1, ..., B10). We use the
500 images in B1 for training and the rest of the 4500 images for testing.

We evaluate the performance of the saliency measure with the precision index as
follows. An image is divided in a foreground region f i and a background bi, where i
is the image index. Let f i

M
be the summed saliency of the foreground for a certain

saliency transformation M. Let bi
M

denote the same for the background. Further, let
A(f i) and A(bi) denote the area of the foreground and background respectively. The
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Figure 4.2: Top left: Original image. Top right: computational global saliency.
Bottom left computational local saliency. Bottom right: local boosting with multi-
scale contrast. The local statistics used in the local transformation suppress the
colorful edges of the American flag, therefore the pastry is better detected, which is
the part of the scene selected as the most salient one by the 9 users.

Figure 4.3: Labeled images from image set B consisting of 5000 images which were
labeled by nine users obtained from [121].
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confidence measure used is the Precision index P i
Λ:

P i
M

=
A

(

bi
)

f i
M

A (f i) bi
M

. (4.9)

In other words, P i
M

provides the likelihood to select from the salient map the most
salient object.

To reduce the set of possible transformations, the transformation is used which
corresponds to the opponent color space. We define Mh

o as that transformation which
maximizes P i

M
by varying the parameters Λ = diag(α, β, γ). Therefore, an exhaus-

tive search is performed in the αβγ space and P i
M

is computed for all training set
images. The best transformation (αl, βl, γl) is the one corresponding with the highest
average precision score. Hence, it is that transformation which obtains the maximum
correspondence (given the opponent transformation) to human assessments of object
saliency.

4.2.3 Comparing computational and human color saliency

In this section, we compare the saliency maps obtained with the computational and
human saliency measures. To this end, (αm, βm, γm) are computed according to the
computational opponent color-space measure. Table 4.1 summarizes the results of the
computational saliency and the human saliency measures in terms of the precision
index.

When comparing the human saliency measure with the computational saliency
measure, it can be inferred that the results obtained by the computational approach
are very close to the best possible transformation, that is, the human saliency measure.
In both cases, γ is a fairly small value. This is because there is a high amount of
achromatic transitions in the images as opposed to chromatic ones. Hence, these
transitions are less informative, as predicted by the computational saliency measure,
and to obtain a good saliency map the weights of these transitions should be decreased.
Thus, α and β values are larger and close to each other in both cases.

To quantitatively show the resemblance of the saliency maps computed by the
computational and human measure, we have calculated the intersection of the nor-
malized saliency maps. The averaged score over all images reaches 97.43%, whereas
the overlapping between human saliency and saliency based on RGB edges (with-
out additional transformation) is only 83.11%. A qualitative comparison between
computational and human saliency is depicted in Fig. 4.4.

This indicates the relevance of using information theory as a valid saliency process-
ing model from a computational point of view. To provide more insight in the relation
between the computational and human saliency measure, we propose to validate this
observation with human perception by means of a psychophysical experiment that
is conducted in the next section. The goal of this experiment is to study whether
information theory is a valid underlying mechanism of color saliency in human vision.
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Figure 4.4: Color saliency example. First row: original image. Second row: RGB
edges. Third row: computational global saliency Mc

o (see table 4.1). Fourth row:
Mh

o (see table 4.1). The overlap between human and computational maps over all
images reaches 97.43% whereas the overlapping with the RGB edges is 83.11%.



4.3. Psychophysical Evaluation of Color Edge Saliency 75

Measure α β γ P i
M

Mh
o 0.65 0.34 0.01 0.49

Mc
o 0.53 0.43 0.04 0.45

Mc
l image dep. image dep image dep 0.51

Table 4.1: Results obtained for human global saliency measure Mh
o (αl, βl, γl),

computational global saliency Mc
o saliency (αm, βm, γm) and computational Local

Saliency Mc
l with different transformation values depending the image. The fourth

column shows the average precision score.

4.3 Psychophysical Evaluation of Color Edge Saliency

In this section, a psychophysical experiment is proposed to determine if the classic
information theory can explain human perception in saliency. In the previous section,
we have shown how computational saliency corresponds with the human saliency
measure. Nonetheless, in the comparison carried in section 4.2 there is also an un-
controlled cognitive top-down mechanism in the human measure. Therefore, the goal
of this section is to investigate whether in a controlled scenario, a human subject
and computational saliency measures will provide the same response by avoiding any
possible effect of cognitive top-down mechanisms. Hence, a set of images are designed
where any possible known pattern is avoided to block the apparition of top-down
mechanisms. A way to solve this is to generate images without any familiar shape for
a human subject.

The next question is how to measure chromatic information in a synthetic image.
To this end, the spatial distribution formed by chromatic transitions in an image is
taken. As shown in Fig. 4.1, these transitions form an ellipsoid in opponent color
space. Then, the principle is to generate synthetic images having the same distri-
bution. An example of such a synthetic image forming a controlled distribution is
depicted in Fig. 4.5.

Saliency is the degree to which an item or location stands out from its surround.
Therefore, we propose a center-surround experiment. Every image is composed by a
background (surround) following a controlled distribution as the one in Fig. 4.5, and
a central foreground (center) following another distribution. The color patterns are
defined in the CIELAB color space [218]. Other color spaces might have been selected
but the aim is to specify colors in terms of a perceptual space and enable comparison
of the results with other studies [125].

Given a certain distribution of L*a*b* values in the surround, the saliency of the
center will depend on the difference between the L*a*b* distribution of the center and
that of the surround. The more the two distributions differ, the higher the saliency of
the center is expected to be. The aim is to determine how strong this saliency depends
on the underlying L*a*b* distributions (and associated edge transition distributions).
We therefore transform these distributions in a systematic manner. So, most of
the energy is contained in the L* direction, followed by b* and a*. Following the
observations made in section 4.2, we should expect that the center should be the
most salient. In other words, our model of computational saliency should provide
corresponding answers as a human subject in the psychophysical experiment.
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a) b)

c)

Figure 4.5: a) Example of a synthetic image with specified distribution in CIELab
color space, which forms the surround. b) Two different transformations of the
color distribution shown in a) form two centers. c) Layout of the psychophysical
experiment, showing two center-surround color patterns side-by-side. The surrounds
are identical, the centers are different. Subjects had to indicate which of the two
centers stood out most from the surround, i.e. was considered most salient.
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4.3.1 Method

Subjects

Five men and three women (ages ranging from 22 to 29) participated in our exper-
iment. They had normal or corrected-to-normal acuity and normal color vision as
confirmed by testing on the HRR pseudoisochromatic plates (4th edition). Subjects
were unaware of the purpose of the experiment.

Apparatus

Stimuli were presented on a self-calibrating LCD monitor (Eizo, ColorEdge CG211)
operating at 1600x1200 pixels (0.27 mm dot pitch) and 24-bit color resolution. Using
a spectrophotometer (GretagMacbeth, Eye-one) the monitor was calibrated to a D65
white point of 80 cd/m2, with gamma 2.2 for each of the three color primaries. CIE
1931 x,y chromaticities coordinates of the primaries were (x,y) = (0.638, 0.322) for red,
(0.299,0.611) for green and (0.145,0.058) for blue, respectively, closely approximating
the sRGB standard monitor profile [184]. Spatial uniformity of the display, measured
relative to the center of the monitor, was ∆E∗

ab < 1.5 according to the manufacturer’s
calibration certificates.

Stimuli and design

Fig. 4.5c shows the layout of the experiment. From Fig. 4.1, it is observed that for the
Corel dataset, we have 5 times more transitions (edges) in Intensity than transitions
in RG and BY. In L*a*b* space this corresponds to σLCorel

= 54, σbCorel
= 27 and

σaCorel
= 16. We generate a controlled synthetic image which forms a distribution

that corresponds with these statistics. Then, we transform this distribution (e.g.
multiplying each axis by a certain value) in order to create the two central patches.
As shown in Fig. 4.5, two square center-surround color patterns were shown side-by-
side. Subjects have to indicate which of the two centers is most salient.

In addition to the surround corresponding with the COREL statistics, we use
three more surrounds where, the axis containing the most information was a* in one
of them and b* in the other instead of L*. The last surround generated was a surround
with an spherical distribution to verify what happens in equal conditions of energy
in all directions. Table 4.2 summarizes the values used to generate the distributions
forming these three surrounds.

Each surround listed in Table 4.2 was combined with 13 different center distributions.
These center distributions were obtained by applying the transformation
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One of the transformations, labeled C1, is predicted by our computational saliency
measure Mc

l (computational local transformation, which is here fixed to L*a*b* space)
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Surround σL σa σb

SL σLCorel
σaCorel

σbCorel

Sa σaCorel
σLCorel

σbCorel

Sb σbCorel
σaCorel

σLCorel

Seq σLeq σaeq σbeq

Table 4.2: Surrounds with systematic changes in the standard deviations (σ) along
the L*, a* and b* axes of perceptual color space. The statistics of the first surround
(SL) comply with the energy distributions of natural images contained in the Corel
image dataset. The last surround (Seq) has equal amounts of energy in the three
directions.

as the most salient between all possible transformations, having values α0, β0 and γ0.
Five more center patches (C2 - C6) are generated with α0, β0 and γ0 interchanged.
Centers CL, Ca and Cb were created by maximizing the energy of the axis indicated
by the subscript, while the energy in the remaining two axes are equal. Centers CLa,
CLb and Cab were created by maximizing the energy of two axes (indicated by the
subscripts). Finally, center Ceq was obtained by having the same amounts of energy
in all three axes.

Summarizing, for each surround (background) we generate 13 different centers
(foregrounds). One of these centers is predicted from the computational saliency
measure as the most salient. The question is whether the human observers also find
this center to be the most salient. If so, this means that information theory is a valid
underlying mechanism for saliency.

Procedure

After passing the color vision test, the subjects were seated at 50 cm viewing distance
from the LCD monitor. In each trial, they had to indicate (by pressing keys on the
keyboard) which of the two centers (left or right) was most salient, i.e. standing out
most from the surround. They were encouraged to make a decision although they
could also indicate that the two centers were equally salient.

4.4 Validation and Results

Here we present the computational results obtained for the test set for all methods
(4.4.1). Then, the results are provided of the psychophysical experiment (section
4.4.2) and a comparison of the computational saliency models with the psychophysical
results is given (section 4.4.3).

4.4.1 Color saliency on real-world images

Here we analyze the computational and human salience measures on the real-world
large-scale image data set [121]. To evaluate saliency methods, we use the Hit and
Miss index ( a common comparison measure used in literature). Note that for each
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image the size of the foreground (rectangle) is given. If the maximum of the saliency
map falls inside the original rectangle, we have a hit, otherwise, a miss is registered.

We evaluate the human saliency (Mh
o ), computational global saliency (Mc

o) and
computational local saliency (Mc

l ). In addition to these transformations, we also show
results obtained with the multi-scale computational local transformation (Mσc

l ), the
RGB edges without any transformation (RGBe), the Itti saliency method (Itti) and
a random selection of the most salient location (Random). Table 4.3 summarizes the
results obtained. From this table, it can be concluded that the results obtained with
multi-scale contrast are better than others. A 5.8% increase in visual saliency accu-
racy is obtained. Further, using locally induced saliency provides better performance
than computing the color (matrix) transformation based on color edges extracted from
the whole image dataset (global). As expected, locally computing the transformation
adapts better to the edge distribution for each image. Furthermore, the results show
that locally induced saliency with multi-scale contrast provide the best performance.

Transformation Hit Miss

Global Human (Mh
o ) 87.1 12.9

Global Computational (Mc
o) 87.9 12.1

Local Computational (Mc
l ) 89.6 10.4

Local multi-scale computational (Mσc
l ) 95.2 4.8

RGB edges 81.4 18.6
Itti 88.2 11.8

Random 72.8 27.2

Table 4.3: Hit and Miss values obtained in the test set for all proposed saliency
transformations as well as for RGB edges, Itti saliency measure [94] and a Random
selection of the most salient location.

4.4.2 Psychophysics

In each trial, a subject indicated which center was most salient. Each center was
in competition with the 12 others just once. In Figure 4.6, the relative saliency is
shown obtained for all surrounds. Error bars indicate the standard error of the mean,
on descending order, obtained by averaging over the 8 observers. The data did not
indicate one or more of the observers to be an outlier.

Regarding SL, Fig. 4.6 shows that center Cab has the highest relative saliency.
This is the expected result, because SL has the largest variance in the L* dimension
and Cab has a color edge distribution boosted along both the *a and b* dimension,
at the cost of reducing energy in the intensity edge (L*) distribution. So, center Cab

looks more strongly colored but with less luminance contrast, which is highly salient
in the SL surround. In contrast, the least salient center (CL) has increased the energy
in the intensity edges, at the cost of reducing energy in the color edges. However, since
the surround SL already has a distribution that dominates in the intensity edges, the
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extra boosting in intensity edges does not result in visual saliency, as predicted for
our saliency measure.

Surround Sa was created by rotating the axes of edge distributions such that the
largest variance coincided with the a* axis of CIELAB space. This results in an
increased edge distribution along the red-green axis of color space, i.e., the colors
along the red-green axis become more saturated, at the cost of a decreased edge
intensity. Fig. 4.6 shows that for this background the most salient center is Cb and
the least salient center is C6. Note that there is no significant difference between the
saliency of C4 and C6. Center Cb is most salient because it is boosted along the b*
axis (the blue-yellow axis in color space) which is orthogonal to the boosted a* axis of
the surround, at the cost of reduced energy in the b* and L* axes. Blue-yellow edges
with decreased intensity edges are salient in a dominant red-green edge distribution.
Center C6 and C4 are least salient in surround Sa because their γ-coefficient in the
saliency transformation equals α0, which is the largest (α0 > β0 > γ0). So, intensity
edges are boosted most but do not show up as salient in the dominating red-green
surround.

The results for surround Sb are described in a similar as that of Sa, but with the
role of the red-green and yellow-blue axes interchanged. So, in short, Ca is most salient
because it has boosted red-green edges (at the cost of blue-yellow and intensity), which
stands out from the dominating blue-yellow surround.

The surround Seq is characterized by equal amounts of energy in the edge distri-
butions along the L*, a* and b* axes of CIELAB color space. Center Ca apparently
is most salient, followed by Cab and Cb, which are all chromatic transformations. The
least salient centers are all intensity boostings. This is an important result: when the
edge distributions in the three axes of color space are equal, the most salient change
to that distribution is a chromatic one, i.e. an increase of edges along the a* or b*
axis, or both, at the cost of a decrease of energy in intensity edges.

With respect to the natural surround SL there remains one important question.
Why was center C1 not the most salient one? We recall that C1 was expected to be
most salient from a computational point of view. Figure 4.6 shows that C1 and C2

are not significantly different, and have a higher relative saliency than C3 and C4,
and C5 and C6. So, C1 has indeed the highest saliency with respect to the group of
centers C1 to C6, but it is still outperformed by the chromatic transformations Cab,
Ca and Cb. The reason for this is that the latter transformations have maximized
energy in one or two axes which exceeded the transformation of C1.

4.4.3 Comparison of computational models with psychophysics

In this section, we compare the performance of the different saliency models on pre-
dicting the human response (the selection of the most salient center) in our psy-
chophysical experiment. We apply a transformation to the matrices obtained in sec-
tion 4.2 to convert them to L*a*b* space. For each subject (s = 1..8) and each
computational model (m = 1..5) we computed the overall correspondence between
the subject’s selection and the model’s selection of the most salient center. This
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correspondence Cor(s,m) is a value between 0 and 100 and is computed as follows:

Cor(s,m) = 100

∑468
i=1 ai

468
, (4.11)

where ai denotes - per trial i - the agreement (either 0 or 1) between model and
subject. Fig. 4.7 shows the correspondence for the 5 computational models. Trials
in which subjects could not decide on the most salient center are left out of the
computation.

It is clear from Fig. 4.7 that global computational saliency (Mc
o) and global human

saliency (Mh
o ) outperform the other models. Additional statistical testing (Statgraph-

ics Centurion XV) indicate no significant difference between (Mc
o) and (Mh

o ). At the
95% confidence level significant differences exist between (Mh

o ) and local computa-
tional saliency (Mc

l ) (p=1.1E-4), between (Mc
l ) and Itti (p=1.2E-3) and Itti and RGB

(p=1.8E-15). We also computed the inter-observer agreement using Eq. 4.11 but with
ai replaced by wi, where wi represents the fraction (between 0 and 1) of subjects that
gave the same response in each trial i. So, if 6 of the 8 subjects selected the same
center, wi = 6/8. This resulted in an observer agreement of 86.8%. In conclusion,
our computational saliency methods (both local and global) are significantly better
at predicting human saliency than Itti and Koch model, as showed in Fig. 4.7.

4.5 Conclusions

In this chapter, a model for saliency is proposed generated by multicontrast based
on an early fusion of chromaticity and contrast. The information of these features is
obtained by means of a local process based on Shannon’s information theory.

Computational results obtained from a large-scale dataset confirms that an early
fusion of these features results in an improvement on the prediction of saliency. Fur-
ther, it can be derived that the proposed method provides very accurate performance
to compute visual saliency with a Hit rate up to 95.2%.

From the psychophysical experiment, it can be derived that, for a uniformly dis-
tributed background, humans are more sensitive to chromatic changes than luminance
variations. Further, it is shown that the proposed method performs significantly bet-
ter at predicting human saliency than state-of-the-art models.

The method presented in this chapter is used to yield a non-supervised image
segmentation. We compute the saliency of the segments resulting for a given param-
eter settings of RAD. In this way we can detect oversegmentation. Furthermore, we
can combine the most salient segments of varying parameter settings. We detail this
procedure in the next chapter.
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Figure 4.6: Relative saliency of the 13 centers for the surrounds SL, Sa, Sb, Seq

averaged over observers. Error bars represent the standard error of the mean. The
images on the right hand side show the most salient (top) and least salient (bottom)
centers, in a small portion of the surround.
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Figure 4.7: Correspondence as computed with eq. 4.11 between computational
saliency and human saliency. The different computational models are sorted on de-
scending correspondence. Error bars indicate standard error of the mean (8 subjects).
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Chapter 5

Hybrid RAD Using Saliency and
Prior Knowledge

The segmentation method (RAD) detailed in Chapter 3, models the shape of a sin-
gle material reflectance in histogram-space. The method is based on a multilocal
creaseness analysis of the histogram, which results in a set of ridges representing the
material reflectances. The segmentation method derived from these ridges is robust
to both shadow, shading and specularities, and texture in real-world images.
In this chapter we further complete the method by incorporating saliency-based prior-
knowledge and spatial coherence by using the multi-scale color contrast saliency in-
formation method detailed in Chapter 4. Results obtained show that our method
clearly outperforms state-of-the-art segmentation methods on a widely used segmen-
tation benchmark, having as a main characteristic its excellent performance in the
presence of shadows and highlights.

5.1 Introduction

The segmentation method detailed in Chapter 3 overcomes the shortcomings derived
from the dichromatic reflection model [171] by introducing a ridge-based analysis of
the histogram which better describes the shape of a single material reflectance. Our
approach is more flexible than the dichromatic reflection model, thus solving cases as
the one depicted in Fig. 5.1. The cast shadow on the floor provokes an abrupt change
in the material reflectance representative of the floor. RAD is able to find a single
ridge which includes this change. Such shape is not described by the dichromatic
reflection model.

The main advantage of RAD is its performance in the presence of shadows and
highlights. Fig 5.2 depicts two examples of it. In the first row we can see how RAD
properly segments the face of the man. In the second row we show another example
with a cast shadow. In this case, the shadows have a bluish color. Moreover, part of
the shadow is in the grass. RAD is able to successfully segment this image.

RAD has a shortcoming though, namely, its risk of oversegmentation. Fig 5.3

85
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a) b)

c) d)

Figure 5.1: a) Original image. b) RGB histogram. c) Segmented image. d) The
material reflectance representative of the floor can not be described for the dichro-
matic reflection model. RAD is able to find a single ridge (brownish) even with the
change in direction due to the shadow.

shows two examples.
In this chapter we propose two extensions of RAD which are aimed to cope with

this problem which has two main causes: the excessive flexibility of RAD and its lack
of spatial coherence.

5.1.1 Shortcoming 1: Lack of physical preference

RAD has been thought to be a flexible method to avoid the shortcomings of the dichro-
matic reflection model. Nevertheless, there is an issue that is ignored for RAD: the
directions of the ridges, even with its irregularities should approximately coincide with
the directions of the dichromatic reflection model. We can see an example in Fig. 5.1.
The ridge corresponding with the floor, mainly follows a direction from the black to
the white areas of the RGB cube. Statistically this is to be expected. shading and
shadows mainly causes changes in this same direction. The same surface is not sta-
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Figure 5.2: Two examples of the good performance of RAD in the presence of
shadows and highlights.

Figure 5.3: Examples of undersegmentation. For each image: original image. and
segmentation with RAD with (σd,σi)={(0.8,0.05),(2.5,0.05),(2.5,1.5)}.

tistically expected to have changes in the chromatic direction, that is, perpendicular
to the main diagonal of the RGB cube. So far, RAD do not includes this knowledge.
Therefore, there is theoretically equally-probable having a ridge joining different col-
ors than a ridge describing a surface including its shadows. In practice changes in
chromaticity due to shadows and shading are more subtle than those in chromaticity
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corresponding to different surfaces. Nonetheless, we have to give more likelihood to
having ridges following directions similar to the main diagonal than ridges perpen-
dicular to it. In Sec 5.2 we present a way to include such statistical knowledge. It
turns RAD from a feature-based analysis method to a hybrid one by including also
physical information. The method resulting is the physics-RAD (pRAD).

5.1.2 Shortcoming 2: lack of spatial coherence

RAD analyzes the RGB space representation of the image. the spatial coherence
of an image, that is, the spatial relation of the pixels in the image space, is not
included. Spatial coherence can be used to determine whether a segmentation should
be considered oversegmenation or not. A common way to do it is using image saliency.
In Chapter 4 we have described a method for image saliency focused on chromatic
transitions. Since RAD segments are based on colour, the analysis of the chromatic
transitions as representative of the image colors and its spatial positions should be a
coherent method to validate RAD segmentation. In Sec 5.3 we describe how to use
our saliency measure to perform such validation. Moreover, we also detailed in Sec 5.3
how to use saliency to perform a multi-scale segmentation. The method resulting is
the spatial-RAD (sRAD).

5.2 Adding Physical Preference (pRAD)

The dichromatic model predicts pixels of a single colored object to form a line pass-
ing through the origin as long as no specular reflection is present. In case of specular
reflection, it models pixels of both body and specular reflection to form a plane. How-
ever, applying these geometrical models to the pixel values often leads to unsatisfying
results because of the many deviations causing the body reflectance pixels neither to
lie on a line, nor the combined body and specular pixels to lie in a plane. In the previ-
ous section, we therefore proposed a method to extract ridges from histogram space,
based on the observation that ridges capture the essential structure predicted by the
dichromatic model while being more robust to slight deviations from the ideal case.
These ridges are allowed to have any orientation. However, the dichromatic results
suggest the orientation of body reflection and of specular reflection, to be more likely
than others. In this section, we will incorporate this additional information into the
RAD method, and propose the physic-based RAD called pRAD.

The general structure which a single colored object forms in histogram space,
is a ridge in the radial direction caused by shadow and shading variations with in
the higher intensity regions of the RGB cube some branches in the illuminant di-
rection caused by specularities. Changes in the chromatic direction, perpendicular
to these two directions are seldom. Due to blurring effects, caused by for example
out of focus, relative motion between camera and object, and aberrations in the op-
tical system, ridges in the chromatic direction are formed between different surface
reflectances. These ridges which might result in undesired segmentation results. To
suppress ridges in the less probable orientations and favor ridges in probable ones,
we propose to exploit the image statistics of ridge orientations. This statistic is cap-
tured by computing the normalized tensor representation Ŝ of the color histograms
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generated by a set of images in a train data set with,

Ŝ (x, σ) =
∑

i∈T

Ŝi (x, σ)

Ŝi (x, σ) = S(x,σ)
‖S(x,σ)‖

(5.1)

where T is the set of indexes of the train data. We normalize the tensors with

‖S (x, σ)‖ = N (x, σi) ∗
(

∇Ωt (x, σd) · ∇Ω(x, σd)
)

(5.2)

since we are only interested in the orientation of the ridges, not their strength (note
that the transpose operates on the first gradient here, whereas in Eq. 3.2 it operates

on the second). The outcome Ŝ is a tensor field, which for each RGB value in the
histogram indicates the relative likelihood of the orientations of ridges passing through
this point.

The tensor field Ŝ, which does not require human segmentation, is learned on the
complete COREL dataset of over 40.000 images [31]. In Fig.5.4 we have depicted
the three eigenvectors of the tensor field for a slice of the RGB-cube, namely the
chromatic plane (R+G+B = 1). The dominant orientation (Fig.5.4a) coincides with
the intensity direction. The orientation of the second and third eigenvector is less
clear. However, in general the second eigenvector points outwards from the center of
the chromatic plane (Fig.5.4b). This is called the saturation direction, since changes
in this direction cause colors to become more or less saturated. The least variations
is found in the angular direction in the chromatic plane (Fig.5.4c), coinciding with
hue changes. This is what we expect since most physical changes such as shadows,
shading, and specularities (when white) do not cause any hue changes of the MR.

a) b) c)

Figure 5.4: From left to right: first, second and third dominant orientations of the
tensor field computed using 40.000 images of the COREL dataset.

This prior knowledge can be incorporated in the ridge extraction framework pro-
posed in the previous section by using instead of Eq. 3.2 the following equation,

Sλ (x, σ) = (1 − λ) S (x, σ) + λ ‖S (x, σ)‖ Ŝ (x, σ) (5.3)

where λ = [0, 1] regulates the influence of the prior knowledge represented by Ŝ. For
example, λ = 0.25, indicates that 75% of the strength of tensors in Sλ is based on
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the image to be segmented, and 25% of strength is defined by prior knowledge. The
regulation parameter λ is learned from a training data set. In our experiments on the
Berkeley training set. We found λ = 0.33 to yield the optimal results (optimization is
based on the GCE score). Further results obtained with pRAD are detailed in section
5.4.

In conclusion, we proposed a method to favor ridges in orientation commonly
seen in real-world images, and suppress ridges in the less probable orientations. It
is important to note that the extra computational cost of pRAD is negligible with

respect to RAD, since Ŝ is precomputed.

5.3 Multi-scale segmentation adding image spatial
coherence (sRAD)

With the addition of the physical information (pRAD) we add robustness to the
method, which has a better behavior in those cases where the geometry of the objects
and the light causes shadows, shading and highlights for a single colored object. In this
section, we propose two further improvements. Firstly, the optimal parameter setting
was found to vary for each image. To automatically obtain a good segmentation, we
propose to combine the segmentations at various parameter settings. Secondly, RAD
tends to oversegmentation in textures formed by multiple chromaticities. To overcome
this problem, we propose to use mutliscale contrast (see section 4.2.1). We call this
method sRAD (spatial RAD) or in combination with pRAD, it is called spRAD.

The idea to combine different sub-segmentations to build a combined segmentation
has been investigated before [50] [142] [160]. The objective is to take the strengths
of each segmentation while avoiding its weakness. Roughly, it implies to determine
a measure of the goodness of a segment. JSEG algorithm [46], for instance, propose
the J-measure that is based on the variance of the pixels belonging to a class-map
(color quantization). This measure of goodness is computed at different scales forming
the set of images that have to be combined. This is achieved by a region growing
algorithm. The resulting image (based on goodness, not on chromaticity) tends to
be oversegmented. Hence, a merge algorithm based on Euclidean distance of the
histogram of each neighboring region is applied. Actually, this way to merge regions
is commonly applied, e.g. also for Mean Shift segmentation, another algorithm which
tends to oversegment. A graph-based approach to merge oversegmented images is
presented in [160]. Other measures to describe the correctness of a segment are the
homogram proposed in [35], the spatial-color compactness degree [130], a calculus
based in the Bhattacharyya distance [50] or a probabilistic approach as explained in
[142]. The method introduced in this chapter to combine sub-segmentations belongs
to those methods that use contrast as a criteria of the goodness of a segmentation
(e.g. [70][87]).

5.3.1 Combining sub-segmentations

With RAD and pRAD, we can segment at different feature-space scales by changing
σd (feature-space smoothness). The optimal σd value varies depending on the image.
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Therefore, whereas a single value can be found as the optimal when considering a
whole dataset, results can be improved by selecting a different value depending on
the image. Moreover, good segments can be found at different scales. Hence, we
propose a method to consider segments at different feature-space scales for any single
image. For the selection of segments we use a multi-scale contrast representation of
the image which suppresses texture edges. Its computation is further explained in
section 4.2.1.

The procedure follows two steps. First, we perform a set of segmentations at
different feature-space scales (named sub-segmentations) of the same image. An ex-
ample of these sub-segmentations is showed in Fig. 5.5, second column. The num-
ber refers to the value of σd used. Afterwards, we select the best segments of this
sub-segmentations using the multiscale contrast image (Fig. 5.5) to build the final
segmentation. The selection is based on a ranking which is computed by summing
the contrast underlying the edges of the segments normalized for the perimeter of the
segment. This operation, a combination of each sub-segmentation with the multi-
scale image is represented with ⊗. In Fig. 5.5, we show the ranking for every segment
selected by spRAD with a gray-value codification: the lighter the color, the higher
the rank position. Once the most contrasted segment (first in the ranking) has been
added to the combined segmentation, the contrast already contained in this segment
is removed from the multiscale image and the ranking is done again. The numbers
appearing in the images of the Fig. 5.5 (third row and spRAD segmentation), illus-
trate at what scales were selected the segments that form the combined segmentation
(spRAD).

sRAD is evaluated on the Berkeley dataset using the GCE error measure. Com-
parison based on GCE requires methods to have a similar number of segments [135].
In the Berkeley dataset, human segmentations have an average of eight segments.
Additionally, the results of all methods presented in section 5.4 have a similar num-
ber of segments (between 7 and 10). Therefore, we will select the nine first ranked
segments to build the final segmentation. It is interesting to note that the combined
segmentation was found to outperform all of the sub-segmentations from which it was
formed, showing the validity of the approach.

5.3.2 Multiscale Color Contrast

In the previous section, we introduced a multiscale color contrast image as a selection
criteria to combine various segmentations. The relevance of the segments is computed
by summing the contrast underlying the edges of the segment (normalized for the
perimeter of the segment). To obtain a good segmentation, we need the contrast-
image to suppress shadow and specular edges, as well as spurious texture edges.

Textures tend to be present at certain scales, but exhibit weak contrast at other
scales. For this reason, we propose to use a multi-scale contrast image. This multiscale
chromatic contrast is computed as a linear combination of the Gaussian pyramid
image, commonly used in saliency (e.g. [94]), according to:

s (x) =
∑

σ∈Σ

∑

x′∈N(x)

‖Mσ (fσ (x) − fσ (x′))‖
2

(5.4)
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where fσ denotes the Gaussian smoothed image at scale σ chosen from Σ = {1, 2, 4, 6, 8, 10, 12, 14}.
N (x) is a 9x9 neighborhood window. The approach is similar to [121].

To prevent the re-introduction of shadow and specular edges, we apply a color
boosting matrix M in Eq. 5.4 [198]. This approach was originally proposed to amplify
salient chromatic edges in the image, and thereby indirectly suppressing shadows and
specularities. The boosting matrix is computed with

Mσ = (diag (ōσ
x
))

−1
U, (5.5)

where
oσ
x

(x) = Ufσ
x

(x)

ōσ
x

=
√

∑

x∈X

(oσ
x

(x))
2 (5.6)

where the summation is over all pixels in the data set X (in our experiments the
COREL data set), and U the transformation from RGB to opponent color space is
given by

U =







1√
2

−1√
2
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6

1√
6

−2√
6
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3
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3

1√
3






. (5.7)

The boosting matrix M normalizes the derivatives in each of the opponent color
channels with the average derivative energy in that opponent channel in the data set.
As was shown in [198] most derivative energy is along the intensity axis (the third
opponent axis O3) and only little variations in the chromatic directions (the first
and second opponent axes O1 and O2). Therefore, multiplication with the boosting
matrix emphasizes salient chromatic edges and suppresses achromatic edges.

The multiscale approach helps to minimize oversegmentation in textured parts of
the image. Fig.5.6 shows two examples of the improved behavior when adding spatial
coherence to the method. We can see how the flower-texture is assigned to a single
segment by sRAD, whereas RAD and pRAD assign multiple labels to this texture.
The same occurs in the second row with the plants.

5.4 Results and performance evaluation

In this section, the performance of RAD is compared with pRAD, sRAD and spRAD.
Finally, our method is compared on the Berkeley data set against a set of state-of-
the-art segmentation methods.

5.4.1 Results obtained with pRAD, sRAD and spRAD

As explained before, the addition of physical-based prior knowledge requires to select a
proper value for λ. We obtained that the best value for λ is 0.33. This prior knowledge
is added following equations 5.2 and 5.3. The addition of the prior knowledge aims
to favor ridges following the statistically expected directions of a surface reflectance
(mainly achromatic changes), at the same time that we suppress those ridges formed
by different surface reflectances. These effects can be observed in Fig. 5.6, first row.
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Table 5.1: Global Constancy Error for our different proposals.

human spRAD pRAD sRAD RAD
GCE index 0.080 0.1678 0.1780 0.1860 0.2048

Table 5.2: Global Constancy Error for several state-of the-art methods: seed [142],
fow [61], MS, and nCuts [173]. Values taken from [142] and [221].

human spRAD seed fow MS nCuts
GCE index 0.080 0.1678 0.209 0.214 0.2598 0.336

Whereas RAD joins the purple flowers with the grass, pRAD correctly finds a ridge
for purple flowers and another for the grass. More qualitative examples are showed
in Fig. 5.7. First row: pRAD is able to find a segment for the gray little stones in
the top-left part of the images. Second and fourth rows: in both cases, pRAD finds
a single surface reflectance for all the rocks, whereas RAD clearly oversegment these
rocks.

As a second adaptation to RAD we propose sRAD which uses the information
contained in the image to yield a segmentation enhancing the multicontrast of the
image. It can be performed using subsegmentations generated either by RAD (then
the method is called sRAD), or by pRAD (then the method is called spRAD). This
segmentation is less affected by textures, since they have a weak effect in a multiscale
analysis. Fig. 5.6 shows two clear examples of it. We can see how, RAD segments
incorrectly the red and yellow flowers and oversegment the grass on the second row.
pRAD find better segments in both cases, but still with an oversegmentation. spRAD,
instead, find a single segment for the red flowers, the purple ones, and the floor of the
second row, that is, produces a non-oversegmented images. In the examples showed in
Fig. 5.7 the same effect can be observed. For instance, in the second row, we can see
how spRAD is able to find a single segment for the trees and segment for the rocks.
In the third row it is showed an example of the improvement achieved by combining
multiple segmentations. RAD and pRAD, can not find a segment for every mountain
due to a clear blurring effect, whereas spRAD produces a better segmentation. We
point out that results obtained with sRAD are worse than the ones obtained with
spRAD, as can be observed in these examples. This is the expected result, since the
subsegmentations used by spRAD are better than the ones used by sRAD.

Quantitative results using the GCE score are presented in section 5.4.2.

5.4.2 Comparison to State of the Art

In this section we show more quantitative results obtained with our segmentation
method. Table 5.1 shows results obtained with RAD, sRAD, pRAD and spRAD.
It can be seen how each improvement outperforms the other proposals, being the
combination of sRAD and pRAD, namely, spRAD, the one obtaining the best per-
formance. Table 5.2 shows GCE values for several state-of-the-art methods. These
values are taken from [142] and [200]. For both RAD and MS we present the results
obtained with the best parameter settings. For RAD, best results were obtained with
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(σd,σi)={(2.5,0.05)}. The mean number of SR found using RAD has been 5, but it
is not directly translated in 5 segments on segmented images. Often, some segments
of few pixels appear due to chromaticity of surfaces. CGE evaluation favors over-
segmentation [135]. Hence, to make feasible a comparison with other methods using
GCE, we have performed the segmentation without considering segments of an area
lower than 2% of the image area. In this case, the mean number of segments for the
200 test images is 6.98 (7 segments). The number of segments for the other methods
varies from 5 to 12, including pRAD. Finally, for RAD and spRAD we show results
obtained by generating a combined segmentation having 9 segments. Furthermore,
we stand out that results obtained with spRAD, outperform all results obtained with
its sub-segmentations. These sub-segmentations, have GCE values going from 0.1780
to 0.2205.

As can be seen our final approach, spRAD, obtains the best results. Furthermore,
it should be noted that the method is substantially faster than the seed and the nCuts
[173] method. In addition, the results obtained with the MS need an additional step.
Namely, a final combination step, which requires a new threshold value, is used to
fuse adjacent segments in the segmented image if their chromatic difference is lower
than the threshold (without pre- an postprocessing MS obtains a score of 0.2972).

Finally, when comparing the different versions of RAD, we can see how, each
of them improve in a coherent way the results obtained with the basic version of
RAD. Thus, we can see how pRAD clearly outperforms results obtained with RAD,
at the same computational cost. It makes pRAD, the best version when looking for
a fast method of segmentation. Further, spRAD outperforms all the other methods.
Nonetheless, its computational cost is much higher, since it computes five subsegmen-
tations, a multicontrast image and a ranking of all the segments obtained.

5.5 Conclusions

This chapter introduces a new segmentation method, called pRAD, that extracts the
ridges formed by a surface reflectance. This method is robust against discontinuities
appearing in image histograms due to compression and acquisition conditions. Fur-
thermore, those strong discontinuities, related with the physical illumination effects
are correctly treated due to the topological treatment of the histogram and the addi-
tion of prior knowledge. As a consequence, the presented method yields better results
than Mean Shift on a widely used image dataset and error measure. Additionally, even
with neither preprocessing nor postprocessing steps, pRAD has a better performance
than the state-of-the-art methods. Furthermore, we have proposed an improvement
of pRAD, called spRAD, consisting in the addition of the spatial coherence to be less
affected by texture edges and avoiding oversegmentation. spRAD outperforms results
obtained with pRAD but at higher computational cost. Results obtained with pRAD
point out that the chromatic information is an important cue on human segmenta-
tion. Additionally, the elapsed time for pRAD is not affected by its parameters. Due
to that it becomes a faster method than Mean Shift and the other state-of-the-art
methods.

spRAD is based on the saliency method detailed in Chapter 4. In the next chap-
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ter we further evaluate the potential of using the saliency of image derivatives in
segmentation evaluation.
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Figure 5.5: spRAD segmentation: from an original image, we generate a multiscale
image (MC) and a number of sub-segmentations with different parameters of pRAD
(second row). The goodness of a segment is computed with by summing the contrast
underlying the edges of the segments normalized for the perimeter of the segment
(RAD ⊗ MC). The best segments will form the combined segmentation (spRAD).
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RAD pRAD spRAD

Figure 5.6: Examples of the best performance of spRAD in textured images. spRAD
assigns a single segment far all the flowers. A similar effect occurs with the plants of
the images showed in the second row.

Human RAD sRAD pRAD spRAD

Figure 5.7: Examples of segmentation. First column: From first to last column,
respectively: Human segmentation, RAD, sRAD, pRAD and spRAD. It can be ob-
served that when adding spatial coherence, the segmentations have a closer similarity
with human segmentation.
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Chapter 6

Unsupervised Evaluation of Color
Image Segmentation

A wide variety of segmentation approaches have been introduced along last years.
Commonly these methods can be adapted to image content by changing a set of pa-
rameters which determine segmentation coarseness. Currently, one of the main chal-
lenges in segmentation is to perform such adaptation in a non-supervised manner.
Due to that, applying a segmentation method without a previous, time-consuming su-
pervision usually leads to inconsistent results. Saliency approaches have been shown
to yield a good performance in unsupervised segmentation evaluation. Moreover,
saliency based approaches facilitate a good guess about if objects in the scene are
properly segmented, therefore making potentially easier ulterior stages such as inclu-
sion of top-down information for object detection.
The saliency method detailed in Chapter4 has been shown to improve results obtained
by RAD as described in Chapter 5. In this chapter we use our saliency method for un-
supervised segmentation evaluation. Our approach is compared with a ground truth
and a state-of-the-art saliency-based evaluation method by using diverse segmenta-
tion approaches and parameter settings. Results obtained show how our approach
is successfully applied for non-supervised segmentation evaluation, helping in one of
the main challenges on segmentation so far.

6.1 Introduction

Image segmentation aims to partition an image in a set of non-overlapped regions,
called segments [34, 126]. Segmentation coarseness is determined by a set of parame-
ters to better adapt results to image content. The segmentation coarseness required
for a low-resolution image with a single object and few chromatic variations is op-
posed as that of a high-resolution image with multiple objects. A good segmentation
method should be able to perform a correct segmentation in both scenarios by chang-
ing its settings. One of the main challenges in image segmentation is how to find out
which parameters shall adapt the segmentation to each scenario in a non-supervised

99
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manner. By doing so, undesired effects such as over and undersegmentation and other
inconsistencies in general purpose segmentation, are minimized.

Some approaches has been proposed to perform this unsupervised evaluation. For
instance, the JSEG method introduced in [46], which is a two-step segmentation
schema. First, a clustering of the color space is performed. Afterwards, a criterion
of good segmentation is applied using the spatial coherence of the image, i.e., the
information of the spatial relation existing between the pixels in the image space.
Other measures to describe the goodness of a segment are the homogram proposed in
[35], a calculus based in the Bhattacharyya distance [50] or a probabilistic approach
as explained in [142].

Along with specific proposals, a family of methods based on image saliency have
been shown to yield a good performance in unsupervised segmentation evaluation [70,
87, 130]. These biologically-inspired approaches have as an interesting characteristic
that they facilitate a good guess about if objects in the scene are properly segmented,
therefore making easier ulterior stages such as inclusion of top-down information for
object detection.

The method detailed in [130] proposes that a good segmentation region should be
formed by strongly connected pixels with homogeneous colors. This approach follows
a similar idea as the one introduced in [87], which uses the color distinctiveness as a
measure of goodness. The authors define a measure of color saliency of a segment,
which considers its color distinctiveness, that is, its difference with the surrounding
segments. Saliency is also used in other approaches as in [70], where a segmentation
is considered good if it includes the most salient object of the image. The authors in
the same article present a ground truth of the most salient objects in a set of images.
Nonetheless, these methods have not been tested in common segmentation datasets
such as the Berkeley segmentation one [135]. In this work we perform such evaluation.

The method proposed in this chapter is an extension of the color-boosting algo-
rithm introduced in [198]. The method uses the saliency of the color image derivatives
in the opponent chromatic space in a a multi-scale, center-surround schema [199] as
commonly used in saliency algorithms [94] [121]. We evaluate the correspondence
between the most salient edges and the edges of the segmented image.

Our method is evaluated using the ground-truth facilitated in the Berkeley dataset
[135] using the Boundary Displacement Error measure [89][62]. We also compare
our proposal with the Heidemann’s saliency-based segmentation evaluation method
introduced in [87]. To this aim, we use a set of segmentations obtained with the
Mean Shift algorithm [39], the Efficient Graph-Based segmentation method [58] and
the Ridge-Based Analysis of a Distribution method [200]. Results obtained show how
our approach successfully evaluates the goodness of the segmentation methods used
and clearly outperforms the state-of-the-art method presented in [87].

This chapter is organized as follows: in section 6.2 we explain the method used for
segmentation evaluation. In section 6.3 we outline Heidemann’s method. Afterwards,
in section 6.4 we present the methodology used to evaluate our approach. Subse-
quently, sections 6.5 and 6.6 presents results obtained and the conclusions extracted
respectively.
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6.2 The saliency of the image derivatives

In this chapter, for segmentation evaluation, we propose to use a saliency method
based on chromatic transitions [199]. This method computes the saliency of the im-
age derivatives. As a results, we form the Boosting-based Images (BI). We transform
these derivatives to a new space where the most salient transitions are enhanced by
considering its information content [198]. The modelling of saliency based on the in-
formation content of the image has been assessed in several approaches [100] [63][132].
This theory holds that saliency is inversely related to the number of occurrences of a
feature, in our case, chromatic transitions. Thus, those colors which barely appear in
the image are the most informative and, therefore, the most salient. Chromatic infor-
mation is closely related with contrast [22] [66]. Highly contrasted objects/surfaces
are expected to be segmented [70] [87]. The most salient edges will be used to rank
a set of segmentations.

The saliency method used in this work has two main improvements compared
with the one originally proposed in [198]. First, it is not computed globally (for
the whole dataset), but locally (for a single image). It makes the method more
adaptable to any image singularities. Furthermore, we propose another biologically-
inspired mechanism to improve results obtained with Color Boosting. To generate
an image in concordance with the multi-scale way to process images of the HVS, we
build a pyramid of Gaussians [78] [94] [121]. Then we compute the color boosting
transformation at each level and, finally we perform a center-surround calculus to
build an image which is less affected by textured parts of the image keeping those
most informative and contrasted objects of the scene.

6.2.1 Color Boosting

Color boosting is used to find the most informative chromatic transitions of an image.
This method is based on the self information of the chromatic transition (first order
derivatives of the image). It is showed in [198] that Color Boosting improves the color
distinctiveness in a framework of interest points detection.

The color saliency method introduced by Van de Weijer et al. in [198] is inspired
by the notion that a feature’s saliency reflects its information content. Consider an
image f = (R,G,B)t. The information content, I, of an image derivative fx, according
to information theory, is given by the logarithm of its probability p:

I = −log(p(fx)). (6.1)

Hence, color image derivatives which are equally frequent have equal information
content. We choose to map the derivatives to a new space where isosalient derivatives
have equal norms:

p(fx) = p(f′x) ↔ |g(fx)| = |g(f′x)|. (6.2)

The saliency function g transfers color image derivatives to a space where their norm
is proportional to their information content.

It can be seen in [198] that the derivatives form an ellipsoid-like distribution.
The longest axis corresponds with the luminance direction. This indicates that equal
displacements are more informative along the color directions (perpendicular to the
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luminance) than in the luminance direction. In the original work these statistics are
computed in the opponent. Then, a single color boosting transformation is obtained
from the statistics computed on a whole dataset, which might be used for any image.
As in [199] we use a more general transformation to compute g in that it is not
computed in a dataset but for any single image. The improvements obtained are
shown in [199] in the framework of saliency.

Let the distribution of the ellipsoid to be described by the covariance matrix M
between color channels:

M = fx (fx)
t

=




RxRx RxGx RxBx

RxGx GxGx GxBx

RxBx GxBx BxBx



 (6.3)

where the matrix elements are computed by

RxRx =
∑

x∈X

Rx (x) Rx (x) (6.4)

where X is the set of pixels coordinates x in an image. Matrix M describes the
derivatives energy in any direction v̂. This energy is computed by E(v̂) = v̂Mv̂t.
Matrix M can be decomposed into eigenvector matrix U and eigenvalue matrix Λ
according to M = UΛΛUt. This provides us with the saliency function g:

g (fx) = Λ−1Utfx. (6.5)

Substitution of Eq. 6.5 into Eq. 6.3 yields

g (fx) (g (fx))
t

= Λ−1UtUΛΛUtUΛ−1 = I, (6.6)

meaning that the covariance matrix of the transformed image is equal to the identity
matrix. This implies that the derivative energy in the transformed space is equal in
all directions. In this case, the matrix Ut corresponds with the transformation matrix
to the Opponent color space.

We use the modulus of the transformed image to build a gray-scale image which
will be used to evaluate a segmentation, we call this image BI (boosting-based image).
Figs. 6.1c-f show four examples where derivatives have been computed at four different
scales. When comparing BI with the ground-truth in Fig. 6.1b, we can appreciate
a high correspondence between them. Edges drawn by humans are clearly visible in
BIs. The main problem is that there is also too much non-significative information
mainly related with the textures formed by the rocks and the clouds.

To better suppress spurious transition we propose to use a biologically inspired
mechanism as the center-surround image using a multi-scale schema.

6.2.2 Multi-scale, center-surround boosting

We compute the boosting image at several scales by building a pyramid of Gaussians
[78]. Afterwards we generate a center-surround image which considers pixel differences
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a) b)

c) d)

e) f)

g) h)

Figure 6.1: a)Original image from [135]. b)Ground truth [135]. c-f)Single-scale
boosting images computed at sigma = 1, sigma = 4, sigma = 8, sigma = 16
respectively. g) Boosting with σ = {1, 2, 4, 6, 8, 10, 12, 14} as proposed in [121]. h)
Boosting following human perceptual octaves, σ = {1, 2, 4, 8, 16}.

at multiple scales. With this approach, those transitions which are representative at
multiple scales are strongly detected.

Maps computed at multiple scales can be combined into a single saliency map as
follows:

s (x) =
∑

σ∈Σ

∑

x′∈N(x)

‖Mσ (fσ (x) − fσ (x′))‖ (6.7)

where fσ denotes the Gaussian smoothed image at scale σ, and σ = {1, 2, 4, 8, 16}.
N (x) is a 9x9 neighborhood window. Mσ is the transformation matrix computed
from Gaussian derivatives of scale σ computed as explained in section 6.2.1. Note
that leaving out M from Eq. 6.7 results in the multi-scale contrast approach proposed
by Liu et al. [121]. Two examples of a multi-scale color saliency map is given in Fig.
6.1g,h. The boosting image depicted in Fig. 6.1g corresponds with the set of scales
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proposed in [121], namely, σ = {1, 2, 4, 6, 8, 10, 12, 14} whereas Fig.6.1h shows the BI
image computed at scales σ = {1, 2, 4, 8, 16} which corresponds with the human visual
system, based on octaves [15]. The latter one, since has a biological explanation is
the one that we use in our approach.

6.2.3 Applying boosting for evaluation

BI images can not be directly used for our aim. Even with the multiscale approach
there is information in the whole image. nonetheless, most salient edges are much
more clear than with the single scale approach. It allows the application of a thresh-
old. In our case, we use values falling into the ten topmost percentiles of the BI
image. Afterwards, we compute the skeleton of the images. The distance between the
borders of the image and the skeleton of the BI images will be used to evaluate the
segmentation.

Fig 6.4 shows three examples of the final BI. In Sec.6.4 we give further details
about the evaluation.

6.3 Heidemann’s color saliency

The approach of Heidemann introduced in [87] proposes a goodness function for color
segmentation, which allows to predict whether the segmented regions will be stable
against noise, variation of lighting, and change of viewpoint. Color saliency is defined
from the average border contrast of the segmented image. Experiments for three
different algorithms show that the performance is independent of the particular func-
tional principle of segmentation. Thus, the measure can be applied for the automatic
and context-free optimization of segmentation parameters.

The measure proposed is based on the color distinctiveness of the regions of the
segmented image. Thus, as larger the (Euclidean) distance between neighboring re-
gions, the better is the segmentation. Given an image I having three chromatic
channels for each pixel (x, y), we compute a segmentation from which I is divided
in NR non-overlapped regions. The region color is defined as the mean color of this
region in the original image.

The region saliency SR(Ri) is defined as the average color difference of Ri to the
neighboring regions. Concretely, let the boundary of Ri be given as a set B(Ri)
consisting of NB(Ri) different pixels. Then SR(Ri) is calculated along the boundary
as

SR(Ri) =
1

NB(Ri)

∑

(x,y)∈B(Ri)

1

Ndiff (x, y)

×
∑

Rj(x′,y′)|(x′,y′)∈Neigh4(x,y)

‖ C(Ri) − C(Rj) ‖ . (6.8)

Here, ‖‖ . denotes the color distance measure for the particular segmentation
algorithm used. For color spaces such as RGB, L ∗ u ∗ v∗ or L ∗ a ∗ b∗ the Euclidean
distance is used.
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The first sum in Eq. 6.8 is over all boundary pixels (x, y). The second sum
goes over the pixels (x′, y′) within a 4-neighborhood of (x, y) being denoted by
Neigh4(x, y). To each neighboring pixel (x′, y′) the corresponding region Rj(x

′, y′)
has to be found, so that the Euclidean distance between the region colors C(Ri) and
C(Rj) can be calculated. Ndiff (x, y) denotes the number of pixels of Neigh4(x, y)
that belong to a different region, not to Ri. This factor is introduced to avoid dilution
of the average distance in case there is, e.g. only one neighboring pixel which belongs
to a different region. Ndiff (x, y) is at least 1 since (x, y) is part of the boundary, the
maximum value is Ndiff (x, y) = 4 in the case that (x, y) is a region consisting of an
isolated pixel.

The Saliency measure of an image I denoted by S(I) is given by the average over
all its regions

S(I) =
1

NR

∑

Ri∈I

SR(Ri) (6.9)

Summarizing, S(I) is a measure of the color distinctiveness of the regions of a
segmented image.

In the next section we explain a another way to include color distinctiveness to
and contrast to decide the goodness of a segmentation.

6.4 BI evaluation

The performance of BI has been evaluated using the ground truth facilitated in [135].
In addition, our approach is compared with a state-of-the-art method introduced by
Heidemann in [87].

6.4.1 Ground truth and error measure

The ground-truth used is formed by 300 images labelled by 6 users [135].
Along with the ground-truth, an error measure called Global Constancy Error,

was also proposed. The limitation with the Global Constancy Error is that it can
just compare two segmentations if they have a similar number of segments. Such an
error measure is not valid in our evaluation, since we expect to evaluate in a fully-non
supervised way a set of segmentations having a number of segments which goes from
few hundreds to just 8 segments. Moreover, BI images draw the most salient tran-
sitions on the images but not forming closed objects. Fig. 6.4 shows some example
of BI images after thresholding. This information can be successfully used with the
Boundary Displacement Error (BDE). This method, introduced in [89], evaluates the
precision of the extracted region boundaries [62]. Let B be the estimated boundary
and G the ground-truth boundary. The method uses two distance distribution sig-
natures from the estimated to the ground truth borders, denoted by DB

G and vice
versa, denoted by DG

B . For two sets of boundary points B1 and B2, DB2

B1
is a discrete

function whose distribution characterizes the discrepancy, measured in distance, from
B1 to B2. The authors define the error measure as the minimum absolute Euclidian
distance. DB2

B1
which can be established from the distance histogram from individual
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x ∈ B1 to B2. It can be estimated through a distance transformation with respect to
B2.

6.4.2 Segmentation methods used

To perform the evaluation we have selected three segmentation methods, namely, the
Efficient Graph-based method [58] (EG), the Ridges-based Analysis of a Distribution
(RAD) [200] and the Mean Shift (MS) [39]. These methods perform the segmentation
in three different ways, namely, image-based, feature-based (histogram), and using
both image and histogram space respectively.

The efficient graph-based method performs the segmentation in the image space
and has a public available code. We have selected 6 different sets of parameters.
From the parameters recommended for the authors to yield a good performance, we
have empirically selected a set of parameters to go to a slight oversegmentation to
an undersegmentation. These parameters are (k,σ)= {(250,0.5) , (250,2.5) , (250,5) ,
(500,5) , (1000,0.5) , (1000,5)}.

RAD performs the segmentation in the histogram space and has been demon-
strated to yield state-of-the-art results. We have also performed 6 sets of segmen-
tations with RAD following the same criteria, that is, to go from a slight overseg-
mentation to an slight undersegmntation. In this case we have (σd,σi)={ (0.5,0.05) ,
(0.5,0.8) , (0.8,1.5) , (1,0.5) , (1.5,0.05), (1.5,1.5) }.

Finally, MS performs the segmentation using a combination of the histogram space
and the image one. MS also has a public available version, called EDISON [37]. In this
case the parameters have been (hs, hr) = {(7, 3), (7, 19), (13, 7), (17, 23), (20, 25), (30, 35)}
as suggested in [200]

Examples of results obtained with these methods are depicted in Fig.6.2.

6.5 Results obtained

In this section BI is compared with a the public available ground-truth [135] and with
the sate-of-the-art Heidemann method introduced in [87], ranking 3 segmentation
methods with 6 sets of parameters each. The error measure used is the boundary
displacement error (BDE) [89][62].

Fig.6.3 shows some examples of BI images for a qualitative evaluation of our
proposal. From these examples it stands out the high correlation between BI and the
ground-truth. Second and fourth rows illustrate particularly interesting examples.
The former shows how BI draws the borders corresponding with the two people and
the structure on the back despite the plants of the floor, which are considered not
informative. In the fourth row, the giraffes have a color fairly similar to the floor.
Even in this case, our approach generates an image with the giraffes and the horizon’s
line. Furthermore the clouds are also detected as low informative. Finally, the last
row is an example of a case where BI do have a lower similarity with the ground-
truth. In this case, the information content of the animal is similar to some parts of
the background. Nonetheless, the borders of the animal are correctly drawn.

Finally, some examples of the BI images after thresholding are shown in fig.6.4.
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Table 6.1: First Column: segmentation method and parameters used. Second and
third columns: single-scale BI. Fourth: multi-scale BI. Last column: ground-truth.
Multi-scale BI ranks the segmentation as the ground truth does so.

BIσ=1 BIσ=4 BIσ={1,2,4,8,16} Grnd Truth
MS (13,7) 2.85 (#2) 4.78 (#2) 7.36 (#1) 13.54 (#1)
MS (7,19) 3.28 (#3) 5.55 (#4) 7,52 (#2) 13,65 (#2)
MS (7,3) 4.25 (#4) 6.25 (#3) 8,40 (#3) 14,21 (#3)
MS (17,23) 2.43 (#1) 3.19 (#1) 8,46 (#4) 14,39 (#4)
MS (20,25) 5.06 (#5) 6.91 (#5) 8,85 (#5) 14,94 (#5)
MS (30,35) 5.65 (#6) 7.40 (#6) 11,4 (#6) 17,46 (#6)

RAD (1.5,1.5) 3,13 (#2) 5,15 (#2) 7,49 (#1) 13.18 (#1)
RAD (0.8,1.5) 2,59 (#1) 3,37 (#1) 7,969 (#2) 13,50 (#2)
RAD (1.5,0.05) 3.18 (#3) 3.87 (#3) 9,43 (#3) 14,43 (#3)
RAD (0.5,0.8) 5,30 (#5) 6,72 (#5) 10.41 (#4) 15.43 (#4)
RAD (0.5,0.05) 4,87 (#4) 6,11 (#4) 10,43 (#5) 15,65 (#5)
RAD (1,0.5) 5.73 (#6) 10.40(#6) 10,67 (#6) 16,24 (#6)

EG (250,2.5) 4.45 (#3) 7.36 (#2) 6,85 (#1) 12,91 (#1)
EG (1000,0.5) 3.79 (#2) 8.17 (#3) 6,99 (#2) 13.17 (#2)
EG (250,0.5) 6.52 (#4) 10.71 (#4) 7,94 (#3) 13.59 (#3)
EG (250,5) 2.53 (#1) 3.99 (#1) 8,61(#4) 14,86 (#4)
EG (500,5) 14.61 (#5 19.43 (#5) 11,07 (#5) 18.95 (#5)
EG (1000,5) 23.73 (#6) 29.25 (#6) 17,40 (#6) 26.88 (#6)
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Table 6.2: First Column: segmentation method and parameters used. Second col-
umn: Heidemann. Third column: multi-scale BI. Last column: ground-truth. Multi-
scale BI ranks the segmentation as the ground truth does so, clearly outperforming
results yield by Heidemann.

Heidemann BIσ={1,2,4,8,16} Ground Truth
MS (13,7) 2,10 (#4) 7.3693 (#1) 13.5484 (#1)
MS (7,19) 1,07 (#5) 7,5255 (#2) 13,6511 (#2)
MS (7,3) 0,26 (#6) 8,4033 (#3) 14,2119 (#3)
MS (17,23) 2,96 (#3) 8,4622 (#4) 14,3994 (#4)
MS (20,25) 3,83 (#2) 8,8568 (#5) 14,9489 (#5)
MS (30,35) 6,90 (#1) 11,416 (#6) 17,461 (#6)

RAD (1.5,1.5) 2,91 (#4) 7,4923 (#1) 13.1845 (#1)
RAD (0.8,1.5) 1,93 (#6) 7,969 (#2) 13,501 (#2)
RAD (1.5,0.05) 2,90 (#5) 9,4345 (#3) 14,4385 (#3)
RAD (0.5,0.8) 23,9 (#1) 10.4127 (#4) 15.4366 (#4)
RAD (0.5,0.05) 16,4 (#3) 10,4354 (#5) 15,6537 (#5)
RAD (1,0.5) 16,5 (#2) 10,6759 (#6) 16,2466 (#6)

EG (250,2.5) 14,6 (#4) 6,8534 (#1) 12,9145 (#1)
EG (1000,0.5) 18,0 (#2) 6,9964 (#2) 13.1711 (#2)
EG (250,0.5) 3,15 (#6) 7,9487 (#3) 13.5904 (#3)
EG (250,5) 18,1 (#1) 8,6135(#4) 14,8632 (#4)
EG (500,5) 16,2 (#3) 11,0774 (#5) 18.9582 (#5)
EG (1000,5) 10,5 (#5) 17,4058 (#6) 26.8829 (#6)
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Efficient Graph-Based (GB)

Ridge-based Analysis of a distribution (RAD)

Mean Shift(MS)

Figure 6.2: Examples of segmentation results. The original image and the ground-
truth are showed in Fig.6.1a,b respectively.

Scores obtained using the boundary displacement error (BDE) [89][62] as an error
measure among the 300 images of the Berkeley dataset [135] are shown in Tables 6.1
and 6.2. Table 6.1 summarizes the performance of the single scale and the multi-scale
approaches of BI. In the first row it is shown the 3 segmentations used, namely, mean
shift (MS) [39], efficient graph-based segmentation (EG) [58], and ridge-based analysis
of a distribution segmentation method (RAD) [200]. For each segmentation method
we perform six different segmentations which parameters setting are showed within
brackets. Single-scale BI (second and third columns) and multi-scale BI (fourth col-
umn) are compared with a ground truth [135] (last column). For each combination
of segmentation and ground-truth, the score obtained with BDE is displayed. Us-
ing this score we can rank the segmentation methods, as displayed within brackets
((#1),...,(#6)). It is shown how the ground truth ranks the segmentations in the same
way multi-scale BI does so, for all segmentation methods and sets of parameters. Fur-
thermore, Table 6.1 also illustrates the necessity of using a center-surround multi-scale
framework. When generating BI at a single scale, the method does not succeed in its
ranking in all the cases. Table 6.2, shows a comparison between multi-scale BI (third
column) and Heidemann (second column). Note that results obtained by Heidemann
approach does no correspond with those obtained with the ground truth. This table
shows how BI clearly outperforms Heidemann in segmentation evaluation.

Results obtained in a general ranking are depicted in Fig. 6.5. The segmentation
methods in the abscissa axis are sorted with the BDE value obtained by the ground
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Original Human BI

Figure 6.3: The similarity of a human made ground-truth and our approach BI can
be seen in these examples. Second and fourth rows show a particulary challenging
image where our approach yields good results. Last row show an example where
BI is not that close to human segmentation. Nonetheless, the animal’s borders are
correctly drawn.

truth, shown in the ordinate axis. It is also displays the BDE scores obtained by our
approach (BI). It can be seen that those methods incorrectly ranked by BI as the
third and the fourth methods, have a virtually equal performance. Furthermore, in
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Figure 6.4: Examples of BI after applying a threshold and finding the skeleton.

can be seen that by multiplying the BDE error obtained by BI, it is obtained almost
the BDE scores derived from the ground truth.

Figure 6.5: General ranking based on the BDE score obtained with the ground
truth, along with corresponding values of BDE score obtained by our approach (BI).
It shows that the confusions in the ranking as obtained by BI corresponds to method
with virtually equal performance.

6.6 Discussion and further work

In this chapter a new approach for unsupervised segmentation evaluation has been
introduced. It uses the saliency of the chromatic transitions in an image. The most
salient transitions on the image, as computed by multi-scale boosting [199] shows a
remarkably resemblance with a ground truth [135] used for evaluating the performance
of our approach. Results obtained shows how using our approach we rank a set of
segmentations with diverse parameter settings in a very similar way as using the
ground truth. Differences are obtained by a minimal error in the BDE error measure.
Furthermore our approach clearly outperforms results obtained with a state-of-the-art
method.

A method to avoid the threshold step in our approach might yield better results.
It could be performed by finding the ridges of maximum energy in the multi-scale BI
images.
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Chapter 7

Conclusions

Image segmentation is still a challenging task in Computer Vision, despite the bur-
geoning of multiple approaches in the recent years. A remarkable example of this is
the role of segmentation in object recognition and classification. Segmentation tech-
niques, used as a preprocessing step, are often replaced by superpixels approaches
or superpixels versions of segmentation algorithms. Several important questions in
segmentation remain open. Moreover, there are some questions that cannot be formu-
lated without taking into account a degree of uncertainty and faultiness. Probably,
the main question about segmentation is:

’what is a correct segmentation?’.

Nevertheless, it might be argued that such question is pointless for there is no
correct segmentation, but only a segmentation which is suitable for a given problem.
This point of view remains unclear, although some authors might firmly disagree.
This issue leads to the next essential question:

’can we talk about general purpose segmentation without knowing if
there is a correct (general) segmentation?’.

In order to shed light onto this second question we need to think over the first
question. Probably there is not a categorical, irrefutable answer to it, but we can
be sure that there is a correct segmentation for a given specific problem, e.g., face
segmentation. In this case, we would be looking for specific colors (assuming or
not a correct color constancy algorithm involved), known shapes, and so on. Not
in vain, segmentation in computer vision is an active research area. A segmenta-
tion method can be suitable when looking for uniform textures, another
method can be better when looking for faces, or cars, or people, and so
on. Undoubtedly, a proper segmentation can most effectively assist in recognizing
any object or action on a scene. Hence, the aforementioned questions should be refor-
mulated into the following question: ’can we find a suitable segmentation method for
our framework?’. A segmentation method is essentially a technique which aims to
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find regions in the image sharing specific properties such as color, shape or
texture. Segmentation does not aim to find specific objects in a scene or to identify
actions in a video sequence. This dissertation follows the same chain of thoughts.
Concretely, we have proposed a multidisciplinary approach to deal with chromaticity
and illumination in a scene. We have adopted a technique of medical imaging, the
MLSEC-ST operator, which we have therefore applied to the image histogram.In our
final proposal, called spRAD, we have included a saliency measure to cope with chro-
maticity. spRAD state-of-the-art performance has been also verified. Nevertheless,
although spRAD proved to outperform other segmentation methods, we cannot firmly
assert that it can replace other segmentation methods. For this reason, the final part
of this dissertation is to be read in the light of an effort to facilitate an unsupervised
method of segmentation evaluation. In this sense the main strengths of spRAD are:

• Its good behavior in the presence of shadows and highlights. spRAD describes
in a robust manner light changes in a scene.

• Results obtained in textures. Changes in light in the textures do not lead to
oversegmentation. Smooth-confusing textures in the scene with similar colors
(such as foliage) can be successfully segmented.

Regarding the weaknesses of spRAD, we can affirm that:

• It may result in undersegmentation when the scene presents poor chromatic
variety.

The final proposal, spRAD, gives a suitable framework to overcome this problem.
We might include a set of subsegmentations based on the intensity channel and a two
dimensional color spaces as the rgb (see Appendix A).

As already mentioned in the introduction of this dissertation, the necessity of in-
cluding top-down information in segmentation is an interesting discussion topic. The
question is:

’does segmentation can be correct without top-down information?’.

This is indeed a common discussion in other computer vision fields. In the case
of segmentation, the answer comes from the aforementioned reasoning . Segmenta-
tion is correct as far as it fits to a specific framework. spRAD, for instance, is a
good segmentation method for textures and scenarios with a variety of colors. Top-
down information is required when we want to segment semantic objects in a scene.
However, even in that case, a correct initial segmentation, commonly derived from
bottom-up methods, is to be applied. Thus, it is necessary, for different reasons, to
have a robust bottom-up segmentation schema. Top-down information is indeed a
part of a global schema for complex computer vision tasks. This global schema needs
a good knowledge of bottom-up information in the scenario to yield a comprehensive
solution to a complex task such as action recognition.
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7.1 Contributions of this dissertation

In this thesis we have presented a new hybrid segmentation method. The main idea
lies in the use of the MLSEC-ST operator, initially thought for finding ridges in
medical imaging, as a method for analyzing a color histogram. Ridges found for our
approach describe a single material reflectance. This approach overcomes the main
shortcomings of the dichromatic reflection model which was an inspiration for our
work.

The first approach presented, called RAD, is further completed by the addition of
physics-based statistics to suppress spurious ridges, forming a second approach called
pRAD. Finally we have included image coherence into our segmentation model by
using the saliency of the chromatic transitions. This last approach, called spRAD is
a non-supervised segmentation method which overcomes the other two proposals and
state-of-the-art segmentation methods.

The saliency method used as a basis of sRAD is a new proposal also presented in
this dissertation. It has been validated in a computational way as well as by means of
a psychophysical experiment. The good performance of our saliency method yielded
by sRAD, has motivated the proposal of a method of non-supervised segmentation
evaluation. This also outperforms state-of-the-art methods of segmentation evaluation
based on saliency.

The main contributions of this work are:

• Overcoming of the main drawbacks of the dichromatic reflection model. RAD
presents a more flexible behavior in practice than the dichromatic reflection
model which leads to a more robust extraction of a single material reflectance.

• We have presented a new hybrid segmentation model which takes the strengths
of the three main categories of segmentation methods. Feature space informa-
tion is analyzed by the MLSEC-ST operator. Physics-based cues are introduced
by a statistical analysis of the directions of the material reflectances. Image co-
herence is added by means of a saliency-based approach. The resulting segmen-
tation method, spRAD, overcomes state-of-the-art segmentation methods. We
point out that the combined segmentation obtained with spRAD outperforms
all results obtained with its sub-segmentations.

• spRAD is a fully non-supervised segmentation method, which is one of the main
challenges in segmentation so far.

• A new saliency method has been presented and validated both computationally
and psychophysically. Our experiments suggest that red-green transitions are
more salient than blue-yellow and intensity ones.

• The saliency approach has been used as a non-supervised segmentation evalua-
tion method which overcomes a state-of-the-art segmentation method and allow
to rank a set of segmentations as when using a human-made ground-truth.

• Another contribution is the application of the MLSEC-ST operator, formerly
introduced as a method to find ridges in gray-scale medical imagery, as a his-
togram analysis method.
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7.2 Further work

Further lines of research derived from this dissertation has been already pointed out.
Those, along with some additional interesting sources of study are summarized below.

Image segmentation
spRAD can be further improved by introducing subsegmentations based on inten-

sity or two-dimensional chromatic spaces such as rgb.

The combination of subsegmentation in spRAD might be performed using more
complex techniques which might improve results. For instance, instead of applying
to the saliency images, an adaptive threshold aimed in order to find closed regions
which would maximize energy, a simple threshold has been replaced by an adaptive
threshold, since the latter is expected to have a better correspondence with objects
in a scene.

Saliency
Some interesting conclusions, arising from the psychophysical experiments, deserve

further attention. The apparent higher responses of subjects to red-green transitions
suggest that we are indeed more sensible to such wavelengths which form our visual
system.

RAD as a general manifold analysis method
In this work RAD has been presented as a segmentation method, although it can

be considered as a generic manifold analysis method. Some efforts to find out its
potential as a general technique have been already performed. RAD has been applied
to forming a color space adaptive to image content in [201]. Furthermore, RAD is
being used for a color constancy approach with very promising results.



Appendix A

Appendix A: Colour spaces brief
discussion.

Along this thesis we have presented results and methods working in RGB, Luv and
opponent chromatic spaces. In this Appendix we explain the most common chromatic
spaces used in computer vision. Some more recent spaces has been proposed which
are claimed to overcome main drawbacks associated with spaces such as RGB or Luv.
Nonetheless, a detailed discussion about all chromatis spaces is out of the scope of
this appendix.

Though lots of colour spaces has been propose in order to find a correct represen-
tation of colour [57, 133, 2], in this section we will just describe the most common
and used of them. We divide the most common colour models in device dependent
and device independent colour spaces.

A.1 Device Dependent colour spaces.

Here are included all those spaces where the position of a colour in them, is directly
calculated in function of the trichromatic values received from the sensor. This kind
of spaces also belongs to the category of non-perceptual uniform colour spaces, i.e., its
relative distances between colours do not reflect the perceptual differences. It means
that when we move a distance d in this spaces, depending the direction taken, the
perceptual differences are not the same. It is a shortcoming in the feature space based
segmentation algorithms, because some perceptual low differences, can be treated as
high perceptual differences, and the final segmentation can be perceptually inconsis-
tent.

A.1.1 RGB space

Probably the most used colour space is the RGB space due to acquisition and display
devices used to work with this three chromatic representation. Red, green and blue
components are the sum of the respective sensitivity functions and the incident light
and are based in the following equations:
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Figure A.1: RGB graphical representation. Main diagonal from black (0,0,0) to
white (255,255,255) represents the gray values from low to high intensities.

R =

∫

λ

S(λ)fR(λ)dλ

G =

∫

λ

S(λ)fG(λ)dλ (A.1)

B =

∫

λ

S(λ)fB(λ)dλ

Where S(λ) is the light spectrum, λ is the wavelength and fR, fG and fB are
the sensitivity functions for the R,G and B sensors respectively. Graphically, this
representation is a three-dimensional cube with R,G and B as coordinates, commonly
with values from 0 to 255. In this cube, [0, 0, 0] are black while white is in the opposite
vertex, i.e., [255, 255, 255]. The diagonal from black to white represents the gray-
values from low to high intensities. Figure A.1 shows an example. Hence, by taking
perpendicular planes to gray-diagonal, we obtain planes with constant lightness.

The disadvantages of RGB space are, first, that this is a device dependent space,
due to its values depend of the sensitivity functions; second, its high correlation
between its components and third, the fact that this is not a perceptual uniform
representation.

Standard RGB.

In spite of drawbacks related to RGB space, nowadays, the standard RGB (sRGB)
representation has become a standard. The difference between RGB and sRGB is
the gamma correction introduced to improve visualization in common displays and
environments by raising R, G and B channels to a γth power; commonly we find
γ = 1.2. All disadvantages of RGB are inherit in sRGB, so, no improvements far the
visualization ones are introduced. Furthermore this representation distort colours.
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The theoretical advantage is that digital devices adjust their outputs to this stan-
dard space. However, there exist strong differences in practice: the same scene can
looks quite different depending the acquisition device.

Normalized RGB and chromatic coordinates.

Another representation directly related with RGB, is the normalized RGB (Nrgb)
which tries to be a representation independent of intensity by following the next
equations:

r =
R

R + G + B

g =
G

R + G + B
(A.2)

b =
B

R + G + B

Because Red, Green and Blue values have a high correlation, RGB cube have a
non-linear and desired behavior under illumination changes. In Nrgb space this effect
is not completely removed. On existing literature, is common to assume that this
does not happen and talk about Nrgb as a way to achieve a real intensity independent
representation. Moreover, Nrgb introduces noise in low intensities due to the non-
linear transformation from RGB.

A.1.2 Opponent colour space.

This chromatic representation borns from the observation that some some colour
mixtures never appear. An observer can define a colour perception as ’reddish-brown’,
but never as ’reddish green’ or yellowish-blue’. In fact, it seems to be that postreceptor
retina cells responds to opponent colour stimulus in spite of a c simply combination
of three basic colours. Moreover, some studies appoint that blue-yellow channel is a
good choice to fins shadows in a scene, and it would be useful in segmentation tasks.

Not a unique model for opponent representation exists, though all of them share
the same idea, i.e., describe an image by means of three channels: Yellow-Blue (YB)
channel, Red-Green(RG) channel, and Intensity channel. A simple model is defined
as follows:

RG = R − G

Y B =
2B − R − G

2
(A.3)

I =
R + G

2

It is also common to find in existing literature Y B = 2B −R−G and I = R + G.
Another common representation for the the opponent colour space is its logarith-

mic version, and also its chromatic representation (without I channel [10]:
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RG = log(
RG

B2
)

Y B = log(B) −
log(R) + log(G

2
(A.4)

I = log(G)

The opponent space is very interesting when focusin in cromathic differences.

A.1.3 YIQ

This model is used in the NTSC television format in USA, Japan and Central America.
The Y component represents the luminance information, and is the only component
used by black-and-white television receivers. I and Q represent the chrominance
information.

This model is defined with the following conversion from RGB:





Y
I
Q



 =





0.299 0.587 0.114
0.596 −0.273 −0.322
0.212 −0.522 0.315









R
G
B



 (A.5)

This model has been used mainly in works form the USA community though it is
not considered an usual space.

A.1.4 Ohta I1I2I3 and Karhunen Loeve

This space, directly related with segmentation tasks, was presented in [148]. The
authors propose an alternative to Karhunen Loeve transformation (K-L transforma-
tion). K-L Transformation extract three colour features, (X1, X2 and X3) by means
of an eigensystem analysis of the histogram. More specifically, let

∑

be the covari-
ance matrix matrix of the RGB distribution, λ1, λ2 and λ3 with λ1 ≥ λ2 ≥ λ3 be the
eigenvalues of

∑

. Let Wi = (ωRi, ωGi, ωBi)
t for i = 1, 2, 3 be the eigenvectors of

∑

corresponding to λ1, λ2 and λ3. Then X1, X2 and X3 are defined as:

Xi = ωRiR + ωGiG + ωBiB (A.6)

Analyzing 109 color features in eight color pictures, Ohta et. al. find three effective
colour features which can be used instead of X1, X2, X3, i.e., I1, I2 and I3. This
three colour features are defined in terms of RGB values:

I1 =
R + G + B

3

I1 =
R − B

2
(A.7)

I3 =
2G − R − B

4

Even though this space was proposed as the best option for segmentation tasks,
there do not exist conclusive works in this sense.
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A.1.5 HSI , HLS and HSV.

These colour spaces, tries to represent colour information by a more intuitive way. In
fact, these spaces are based on the human perception.

The dominant wavelength of colour is represented by hue (H) component, the
purity of color is represented by saturation component (S) and, finally, the darkness
or lightness is represented by means of intensity component (I). Let MAX be the
maximum of R,G and B, and MIN be the minimum of R,G an B, then to convert
from RGB to HSI space:

I =
R + G + B

3

A simplification of this, widely used to do this conversion is presented in equation
A.9.

H = arctan(

√

3(G − B)

(R − G) + (R − B)
)

S = 1 −
min(R,G,B)

I
(A.8)

I =
R + G + B

3

If HSI, and HSL are the same colour space, there exist a difference between this
two spaces and HSV. Instead of intensity (I) or lightness L, HSV uses value (V) which
is defined as follows:

V = max(R,G,B) (A.9)

A graphical representation of this two colour spaces is showed in figure A.2.
This space is interesting because it assigns at every axis an intuitive feature of

colour Its main shortcoming is that one of her axis depends of the angle and it produces
a instability at low saturations and, in general, its geometry becomes difficult to apply
it in image segmentation.

A.1.6 CMY and CMYK

In contraposition with the spaces presented before, this space is not represented by
means of a combination of RGB values. Furthermore, this space have the charac-
teristic to be a subtractive colour space in opposition with RGB space which is an
additive space. In an additive space, the colours are achieved by adding colours to
the black one. In a subtractive space, we subtract colour to the black one. Hence:

(R,G,B) = (1, 1, 1) − (C,M, Y ) (A.10)

The difference between CMY and CMYK is that the second spaces adds the black
component, K, because is really hard to achieved just with C (cyan), M (magenta)
and Y (yellow).
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Figure A.2: Graphical representation of HSV and HSI-HLS colour spaces.

This space would be probably the less used in segmentation tasks because is fo-
cused in printing tasks.

A.2 Device Independent colour spaces.

This kind of spaces such as CIE colour spaces, does not depend of the sensor, but the
values of an standard observer. These spaces are deeply treated in [57]. Some other
device independent have been proposed last years such as ATD or LLAB. In spite
of that, in this section we just present the main and widely used device independent
colour spaces.

A.2.1 CIE 1931 (XYZ)

The first not-device dependent space presented was the CIE 1931. The idea was to
create an standard chromatic space to avoid all drawbacks of the device dependent
spaces. To do it, Guild and Wright made some experiments with 10 people to extract
these standard primitives. As a result, they define the CIE 1931 (or CIE XYZ)
chromatic space as follows:





X
Y
Z



 =





0.49 0.31 0.2
0.17697 0.81240 0.01063

0.0 0.01 0.99









R
G
B



 (A.11)

A graphical representation of CIE XYZ space is showed in figure A.3.
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a) b)

Figure A.3: (a)Graphical representation of CIE 1931 (XYZ) colour space. (b) CIE
1976 (L∗u‘ ∗ v‘∗) colour space.

A.2.2 CIE 1976 (L∗
u
∗
v
∗) and CIE 1976 (L∗

a
∗
b
∗)

The main problem with that space is that it is not a perceptual uniform colour space.
Due that , the proposal of some new spaces appear, such as CIE 1964 (U∗V ∗W ∗) and
the widely used spaces CIE 1976 (L∗u∗v∗) and CIE 1976 (L∗a∗b∗).

CIE 1976 (L∗u∗v∗) was proposed to be used as the new device independent and
perceptual uniform space as a modification of XYZ coordinates as follows:

u =
4X

X + 15Y + 3Z
(A.12)

v =
6Y

X + 15Y + 3Z

This first definition had problems of non-.preceptual uniformity in yellowish, or-
ange and reddish areas. Hence, the next correction was proposed:

u′ = u (A.13)

v′ =
3v

2

Finally:
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L∗ =

{

116 3

√

Y/Yn, Y
Yn

> 0.008856

903 3

√

Y/Yn, Y
Yn

≤ 0.008856

u∗ = 13L ∗ (u′ − u′
n) (A.14)

v∗ = 13L ∗ (v′ − v′
n)

where u′
n and v′

n corresponds to the coordinates of a reference white.

CIE 1976 (L∗a∗b∗), basically proposed for industrial ends, is a also a modification
of CIE XYZ. This space is defined as follows:

L∗ =

{

116 3

√

Y/Yn, Y
Yn

> 0.008856

903 3

√

Y/Yn, Y
Yn

≤ 0.008856

u∗ = 500( 3

√

X/Xn − 3

√

Y/Yn) (A.15)

v∗ = 200( 3

√

Y/Yn − 3

√

Z/Zn)
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