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Abstract

In the last years, intrinsic image decomposition has

gained attention. Most of the state-of-the-art methods are

based on the assumption that reflectance changes come

along with strong image edges. Recently, user interven-

tion in the recovery problem has proved to be a remarkable

source of improvement.

In this paper, we propose a novel approach that aims to

overcome the shortcomings of pure edge-based methods by

introducing strong surface descriptors, such as the color-

name descriptor which introduces high-level considerations

resembling top-down intervention. We also use a second

surface descriptor, termed color-shade, which allows us to

include physical considerations derived from the image for-

mation model capturing gradual color surface variations.

Both color cues are combined by means of a Markov Ran-

dom Field. The method is quantitatively tested on the MIT

ground truth dataset using different error metrics, achieving

state-of-the-art performance.

1. Introduction

The decomposition of a scene into a set of intrinsic im-

ages containing one single physical characteristic was first

proposed by Barrow and Tenenbaum in [2]. Scene intrin-

sic characteristics such as reflectance, shading, and depth

provide useful information for improving computer vision

tasks such as segmentation, tracking, and recognition.

In this paper, we focus on the decomposition of an image

into its reflectance and shading components. Reflectance

describes how the light is reflected at each point of a spe-

cific object and shading represents the perceived reflection

due to the position of the light source and the object shape.

Recovering these two characteristics from a single image I
amounts to estimate a reflectance image and a shading im-

age such that

I(x, y) = Ishading(x, y) · Ireflectance(x, y). (1)

This problem is clearly ill-posed because the number of

unknowns is higher than the number of equations. Con-

sequently, approaches for estimating image intrinsic com-

ponents rely on making simplifying assumptions or adding

constraints to the problem.

Most of the previous approaches are based on the as-

sumption that large image derivatives are due to reflectance

changes while low derivatives are caused by smooth illu-

mination variations. Then, classifying image derivatives as

being caused by either reflectance or shading variations, one

can estimate the reflectance and shading images by integrat-

ing each type of derivatives. This assumption was the basis

of the Retinex algorithm [14] and has been exploited latter

in different ways such as directly thresholding gradients on

color images [10], comparing derivatives of the original im-

age with the derivatives of an illumination invariant image

[9], using classifiers trained on a set of representative ex-

amples showing reflectance and shading changes [21, 20],

or combining image gradients with local texture cues [18].

Some approaches have avoided the use of edges’ infor-

mation by combining steerable filters decompositions with

texture and color cues [13], or by imposing local and global

sparsity constraints on the reflectance representation [19].

Recently, a physical model of image formation has been

used to directly derive intrinsic components of an image [3]

Finally, another way to simplify the problem is to include

additional information by considering image sequences [23,

15] or using interaction with the user [7, 17].

From the analysis of the previous approaches we can

draw some conclusions:

• The exclusive use of edges to recover surface re-

flectance is not sufficient since a small missclassified

edge can provoke an error over a wide area. Surface

attributes such as color and texture are essential cues

to improve edge-based proposals.

• Results from methods that include user interaction

suggest that top-down intervention yields a clear ad-

vantage for dealing with the ill-posed nature of re-



flectance recovery. Hence, we argue for the need of

high-level attributes to describe image content.

• Few efforts have been done to exploit the informa-

tion derived from the assumption that image formation

obeys a specific physical model. Intrinsic image al-

gorithms can benefit from these models since they ac-

count for changes in image appearance due to geome-

try and illumination of the scene.

At the light of the previous conclusions, we propose

the introduction of color surface attributes based on color

names instead of an edge-based approach. These attributes

provide high-level information resembling top-down inter-

vention in the reflectance recovery. Afterwards, we add a

second descriptor, termed color-shade, that allows us to take

into account physical considerations on color surface vari-

ations due to the geometry and lighting of a scene. This

descriptor, which assumes Shafer’s dichromatic reflection

model for image formation [16], is introduced to address

the lack of stability of the color-name descriptor in the pres-

ence of strong variations in the geometry or illumination of

a scene. Color-name and color-shade descriptions are fi-

nally combined by means of a Markov Random Field.

The rest of the paper is organized as follows. Section 2

introduces the color cues that are used to recover reflectance

and shading images as explained in sections 3 and 4. Sec-

tion 5 presents results and concluding remarks are given in

section 6.

2. Our approach

To explain our approach for intrinsic image recovery,

we first introduce the color-name and color-shade descrip-

tors. Next, we outline the conditional inference approach

we adopt to combine these color cues.

2.1. Color-name descriptor

The color-name descriptor associates the linguistic terms

humans use for describing objects to image colors. Basic

color names were first defined by Berlin and Kay [6]. They

were deduced from a large anthropological study based on

speakers of 20 different languages and specific documen-

tation from 78 other languages. The authors concluded

that the universal basic color terms defined in most evolved

languages are 11. Subsequent psychophysical experiments

have generated data that allow these basic names to be accu-

rately specified [4] and computationally implemented [5].

Accordingly, color-naming models provide perceptually-

based quantizations of the RGB color space, which present

a higher discrimination power with respect to usual chro-

maticities, as proven for classification tasks [11].

We use the color-naming model proposed by Benavente

et al. [5], where a color name category is modeled as a

(a) (b)

Figure 1: Color names in the RGB space. (a) Plotted vol-

umes represent those RGB’s with probability equal to 1. (b)

Image labeled with the color-name descriptor.

fuzzy set with a membership function that, given a color

sample, assigns a value between 0 and 1 to represent the

color-name membership. The model uses the set of names

proposed by Berlin and Kay [6], namely N = { black,

white, red, green, yellow, blue, brown, purple, orange, pink,

grey}. Since the model forces the sum of all memberships

to be 1 for any pixel, the membership values can be consid-

ered as probabilities. The color-name descriptor of a pixel

ri, denoted ND(ri), is a 11-dimensional real-valued vec-

tor whose components are the probabilities of labeling the

given pixel with each one of the color names in N . More

explicitly,

ND(ri)j = p(Nj |ri), ∀j = 1, ..., 11, (2)

where Nj is the j-th color name in the set of basic color

names N . Figure 1(a) shows the volumes of the RGB space

where each of the 11 color names have probability 1.

The color-name descriptor has two interesting proper-

ties. First, it is relatively invariant to small photometric

changes since wide areas of a single reflectance surface as-

sume the same label, and small changes in shading only

cause gradual changes in the descriptor. Next, it provides

a sparse representation of color since very few coordinates

of the 11-dimensional vectors are non-zero (usually up to

three). Since this descriptor yields the labels of a condi-

tional inference labeling problem (see Section 3), we only

allow three coordinates to be non-zero and we further dis-

cretize the probability vector by quantizing the coordinates

to {0, 0.25, 0.5, 0.75, 1} while keeping the constraint that

they sum to 1. This means that a color can be described

with a maximum of three names (for instance, greyish blue-

green), which is a perceptually consistent constraint since in

the model very few colors are in the boundary of four color

names [5]. Although with such restrictions 671 labels are

theoretically possible, only 250 of them are actually used



since the others correspond to unfeasible combinations of

colors (such as bluish yellow-purple). The set of labels is

denoted by L.

In the next sections we prove that this set of labels is a

reliable sparse representation of color to recover reflectance.

In Figure 1(b) we show an example of the color-name labels

assigned to an image.

2.2. Color-shade descriptor

The color-shade descriptor is based on the method pro-

posed by Vazquez et al. in [22]. In this work, the authors

propose to describe scene reflectances by a Ridge Analy-

sis of the color Distributions (RAD method). A ridge is a

list of points connecting the local maxima of a color dis-

tribution in the RGB histogram space. In Figure 2(b), we

show a 3D representation of the color distribution of the im-

age in 2(a). The corresponding ridges (connected maxima)

detected by the RAD method on the 4D color histogram

distribution are shown in Figure 2(c), where we can see

four ridges corresponding to the blue, red, orange and white

parts of the image. By looking at the ridges, we can see how

all the shades of each color are represented. For example,

the white ridge spans colors from the lightest white to the

darker gray present in the shadowed part of the object. In

the ideal case, the RAD method provides a single ridge for

each reflectance surface of the image.

The physical model underlying the RAD method is the

dichromatic model described by Shafer in [16]. In this

model, all the color variations of a surface, including shad-

ing effects and highlights, span a 2D plane in the RGB space

which is defined by two vectors: one in the direction of the

surface’s albedo, and the other in the direction of the illu-

minant. Hence, the dichromatic model, and, therefore, the

RAD method, provide a compact representation of all the

variations of a single-color surface can present due to illu-

mination changes and the geometry of the scene.

Given an image, the RAD method returns a set of ridges

R = {R1, ..., Rn}. From this set of ridges, we define the

color-shade descriptor of an image pixel ri as

SD(ri) = arg min
Rj∈R

dist(ri, Rj), (3)

where dist(ri, Rj) represents the (Euclidian) distance be-

tween the RGB value ri and the points of the ridge Rj .

To sum up, the ridges provide useful information for en-

hancing the color-name representation and allows us to deal

with the variations of color names in the presence of strong

illumination effects, i.e. shading and highlights. For exam-

ple, two pixels belonging to the same reflectance object but

with very different RGB values, e.g. one in a shadowed part

of the object, the other in a brighter part, are connected by

their nearest ridge. Following this approach, one can consis-

tently name pixels within a single reflectance area allowing
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Figure 2: RAD method (a) Original image. (b) Color image

distribution. (c) Detected ridges.

for shading changes.

2.3. Method outline

Our algorithm is based on the main assumption that a

single material reflectance can be described by a unique

color name provided by the descriptor introduced in section

2.1. Spatial coherence for this descriptor is then achieved

by propagating evidence through a homogeneous MRF. The

color name descriptor introduces two interesting properties:

• An accurate color edge localization, where relevant

color edges are perfectly located by changes in color

names.

• A meaningful surface interpretation based on standard

prior knowledge compiled from psychophysical data.

However, when strong shading variations occur, irrele-

vant edges can appear within a homogeneous surface pro-

voking a non-desirable over-segmentation. To deal with this

problem, we use the color-shade descriptor introduced in

section 2.2 to incorporate physical information to the previ-

ously defined MRF (by breaking its homogeneity). This

second step stems from the assumption that changes in

shading within an area of uniform reflectance yield to con-

nected distributions of points in the RGB histogram. This

step provides:

• An efficient combination criterion for the excessive

segmentation of color names in shaded and near high-

light areas.

• A relation between physical and name changes that

could be exploited to estimate the color of the light

source (beyond the scope of this paper).

In a third stage, once information from names and shades

has been propagated, we modify the reflectance description

provided by the MRF to match the intensities of the recov-

ered reflectance to those of the original image. A scheme of

the method is given in Figure 3.
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Figure 3: Block diagram of our method for intrinsic image estimation.

3. Reflectance recovery by MRF inference

In this section we present the MRF which combines the

two color cues our method uses to recover reflectance.

Let G = (V, E) be the graph that represents the input

image, where the set of vertices V correspond to random

variables xi associated to the set of pixels of the image

(one node for each pixel), and E is the set of undirected

edges representing relationships between pairs of adjacent

pixels (using a 4-neighborhood system). The set of maxi-

mal cliques Cl is formed by the edges of the graph {xi, xj},

where i and j are adjacent pixels, and the cliques of the

form {xi, yi}, for each pixel i ∈ V , where yi stands for the

observation at pixel i.

Both random variables xi and observations yi are re-

flectance values as expressed by the color-name descriptor

outlined in the previous section. Accordingly, the set of la-

bels L is a set of 11-dimensional vectors.

The energy function of our MRF has the following form:

E(x) = µ
∑

i∈V

D(xi, yi) + (1− µ)
∑

{i,j}∈E

V (xi, xj), (4)

where D(xi, yi) is the singleton potential defined on each

node xi and V (xi, xj) is the pairwise potential defined on a

pair of neighboring pixels. The contribution of both terms in

the global energy is weighted using a parameter µ ∈ [0, 1].

The labeling x̂ that minimizes equation 4 was found with

the α-expansion graph cut algorithm [1] presented in [8].

In the following sections we detail how we define the

potentials to integrate the information from the two color

cues.

3.1. Singleton potential: color name

The singleton potential D(xi, yi) measures to which ex-

tent the labeling x fits the observed data {yi}i∈V . In prac-

tice, this potential can be interpreted as the cost of assigning

xi a label different from the label of observation yi.

For computing the singleton potential, we chose the L1

distance in the Euclidian space of 11-dimensional probabil-

ities vectors:

D(xi, yi) = ‖xi − yi‖1, ∀i ∈ V. (5)

3.2. Pairwise potential: color shade

In classic MRFs, the set of pairwise potentials V (xi, xj)
measure the non-smoothness of the labeling x and can be

interpreted as the cost of assigning different labels to neigh-

boring pixels. These potentials are first defined using the

Euclidian distance as V (xi, xj) = ‖xi − xj‖1, ∀(i, j) ∈
E . However, in the pairwise potential of our MRF, we

also include information from the color-shade descriptor by

weighting the value of the distance between each pair of

neighboring pixels. The main idea underlying this formu-

lation is that pairs of pixels belonging to the same ridge

should belong to the same surface and therefore should

share similar labels: the cost of holding different names

should be higher for neighboring pairs of pixels whose ob-

served RGB values belong to the same ridge. Following this

idea, we define the pairwise potential as

V (xi, xj) = ωij‖xi − xj‖1, (6)

where (xi, xj) is a pair of neighboring pixels and ωij

weights the classical smoothness term according to the rel-

ative position of the RGB values ri and rj of pixels i, j and

the ridges of the color-shade descriptor as explained below.

Let π(ri) be the (orthogonal) projection of the pixel

value ri onto its associated ridge SD(ri) and let θij be the

angle formed by the lines (rirj) and (π(ri)π(rj)). We dis-

tinguish three cases of relative position between a pair of

pixels’ RGB values (ri, rj) and the set of ridges of an im-

age (see Figure 4).

Case A. ωij = α if the two pixels lie on two different ridges,

i.e. SD(ri) 6= SD(rj);

Case B. ωij = β if the two pixels lie on the same ridges, i.e.

SD(ri) = SD(rj), but the direction they determine is not

parallel to the ridge, i.e. θij > thr, where thr is a parameter

fixed once for all;

Case C. ωij = γ if the two pixels lie on the same ridges,

i.e. SD(ri) = SD(rj), and the direction they determine is

parallel to the ridge, i.e. θij ≤ thr.

The main idea underlying the choice of the parameters α,

β, and γ is that the cost of holding different names should

be higher for pairs of pixels whose observed RGB values

belong to the same ridge. In particular, this cost should

dramatically increase if, in addition, they form a segment



Figure 4: Schema of cases A, B, and C for the pairwise

potential computation on ridges.

whose direction is collinear to the ridge’s direction (case

(C) in Figure 4) because this corresponds to the paradig-

matic case of two pixels belonging to the same reflectance

object but with different shadings. Accordingly, (α, β, γ)
should verify the inequalities α ≤ β ≤ γ and α ≪ γ.

3.3. MRF output

The output of the MRF consists of an array of probability

vectors. However, what we expect to recover are reflectance

values (i.e. RGB triplets). Accordingly, we need a way to

set a link between RGB and probability values.

Since we first discretize the probability vectors, many

RGB values are mapped to a single vector by the color-

name descriptor. This provides a partition
∐

v∈L Sv of the

RGB cube, where Sv is the set of RGB values associated to

label v. These sets turn out to be convex. The map to RGB

values is defined by associating each probability vector (i.e.

label v ∈ L) with the center of mass of the RGB convex

region it defines.

4. Adding global scene coherence

Up to this point, we have only used local and semi-

local color information for constructing reflectance esti-

mates. The MRF yields a representative RGB value for each

area of uniform reflectance. However, these semi-local rep-

resentatives are likely to lack global consistency. In particu-

lar, the intensity of the estimated reflectance may not reflect

that of the original image, which can cause undesired shad-

ing patterns. We addressed this problem by adding global

coherence to the intensity of the reflectance values provided

by the belief propagation algorithm. To this end, we mod-

ified the intensity of the RGB descriptor of each uniform

reflectance area according to that of the original image.

Let I =
⋃

i∈U Ui be the partition of an image into its

areas of uniform reflectance provided by the MRF. Let Li

and Lorig
i be the intensities of the RGB triplet of the area

Ui and of the same area in the original image, respectively.

Ideally, to reflect the real shading, the ratio of intensities

should verify, for each pair of areas in contact Ui and Uj ,

Li/Lj = Lorig
i /Lorig

j . (7)

However, the connectivity between uniform reflectance ar-

eas is complex and no modification can make all the inten-

sity ratios similar to that of the original image in general.

In practice, we minimize the differences using mean square

error (MSE). In this minimization problem, we wanted re-

gions sharing a long frontier to have a higher weight. The

length of the frontier between two regions (denoted lij for

regions i and j) is defined to be the amount of pixels in

both regions which have a neighboring pixel (assuming 4-

neighborhood) belonging to the other region.

Thus, our purpose is to find a set of scalars {λi|i ∈ U}
which modify our estimated reflectance intensities in order

to enhance the global coherence of our recovered shading

scene (explicitly, Li is substituted by λiLi). Mathemati-

cally, we can define a function W depending on such scalars

as

W ({λi}i∈U ) =
∑

(i,j)∈R2,i<j

li,j‖λiLiL
orig
j − λjLjL

orig
i ‖2

(8)

and find the set of values that minimize it:

{λi}
∗
= argmin

{λi}
W ({λi}). (9)

This can be done by applying MSE and imposing a lower

bound to the solution (otherwise we could obtain the trivial

solution λi = 0, ∀i ∈ R). Once we have such a set of

parameters λi, we can multiply all the modified reflectance

values by the same factor to obtain new values within the

set [0, 255]. Figure 5 shows an example of how global co-

herence can improve the final recovered images.

(a)

(b) (c) (d)

Figure 5: (a) Original Image. Different reflectance and

shading estimates are shown: (b) Using only local color

coherence. (c) Adding semi-local ridge observations. (d)

Considering global scene coherence



5. Experiments

In this section we evaluate the performance of our ap-

proach. First, we discuss the existing error metrics for in-

trinsic image evaluation that have been proposed in previous

works. Afterwards, we test our method on the MIT dataset

[12], which has become the standard set to test intrinsic im-

age algorithms. We quantitatively and qualitatively com-

pare our results to the ones obtained by several previous

approaches.

5.1. Error Metrics

Several error metrics have been proposed in previous

works to evaluate intrinsic image algorithms.

One of the most used metrics in previous works is the lo-

cal MSE (LMSE), which was proposed by Grosse et al. [12]

as an appropriate measure for edge-based methods. They

claimed that, for such methods, MSE is too restrictive be-

cause images with just a small misclassified edge can have

a large MSE. However, Jiang et al. [13] argued that LMSE

sometimes has a low value in images that are not qualita-

tively good. To overcome this problem they defined a new

metric based on LMSE, the absolute LMSE (aLMSE), and

also proposed to evaluate intrinsic images using the corre-

lation measure, which computes the similarity, i.e. statisti-

cal dependency, between two images independently of their

mean values.

Whereas correlation and MSE are global error measures,

the others are variations of the global measures and are com-

puted as an average of local error on small image windows.

We consider that LMSE is biased towards edge-based

methods. Hence, in the next section, although we evalu-

ate our method with four error metrics, we will focus our

analysis on the results for global measures, i.e. MSE and

correlation.

5.2. Results

We have estimated the intrinsic images of the full MIT

dataset composed of 20 images whose reflectance and shad-

ing ground truth are available. For each image, the error has

been obtained by averaging the results on the reflectance

and shading estimates.

We compare our results to state-of-the-art approaches.

Previous methods have been evaluated either on the full

MIT dataset composed of 20 images or on a subset of 16

objects that we denote here as ’reduced MIT dataset’. In

each case, we compare our results to those from the meth-

ods whose results, or the code to generate them, are avail-

able.

Results on the reduced MIT dataset have been compared

to grey and color Retinex algorithms (obtained from [12]),

the methods by Tappen et al. (Tap-05 [21] and Tap-06 [20]),

the methods by Shen and Yao [19] (Shen-SR and Shen-

SRC), and Weiss algorithm [23]. For the comparison on

the full MIT dataset we test grey and color Retinex algo-

rithms, the methods by Jiang et al. [13] (Jiang-A, Jiang-H

and Jiang-HA), and Weiss’ algorithm.

The error metrics used to evaluate the results are the

global measures MSE and correlation, and the local mea-

sures LMSE and aLMSE.

In our method, we set µ = 1/3 to weight the two com-

ponents of the energy function of our MRF and the depen-

dence relations among parameters α, β, and γ defined in

section 3.2 as follows: γ/α = 100 and γ/β = 2. To ini-

tialize the network, we apply a logarithm to the input image

before obtaining its color-shade descriptor.

Tables 1 and 2 show the results obtained by the evaluated

methods on the reduced and full MIT datasets, respectively.

As can be seen in the tables, our method obtains the best

results on the global measures (i.e. MSE and correlation)

on both the reduced and the full dataset when compared to

single-image methods. In both cases, we overcome state-

of-the-art results, obtaining even better results than Weiss’

algorithm, which uses image sequences and, therefore, has

more information than single-image based methods. Notice

that for the three error metrics, the lower is the better, while

for the correlation the opposite holds.

Global measures Local measures

Corr. MSE LMSE aLMSE

Grey Retinex 0.6494 0.1205 0.0329 0.3373

Tap-05 — — 0.0570 —

Tap-06 — — 0.0390 —

Col. Retinex 0.7146 0.1108 0.0286 0.2541

Shen-SR 0.7259 0.1223 0.0242 0.2454

Shen-SRC 0.7733 0.0906 0.0149 0.2147

Ours 0.7862 0.0834 0.0340 0.2958

Weiss 0.7709 0.0900 0.0210 0.1953

Table 1: Results on the reduced MIT dataset (16 objects)

with different error metrics. Shen-SRC results are com-

puted on a subset of 13 objects (’deer’, ’squirrel’ and ’di-

nosaur’ results were not available).

Global measures Local measures

Corr MSE. LMSE aLMSE

Grey Retinex 0.6292 0.1169 0.0296 0.3789

Col. Retinex 0.7171 0.1072 0.0257 0.2895

Jiang-A 0.6262 — 0.0388 0.4036

Jiang-H 0.6179 — 0.0409 0.3655

Jiang-HA 0.6631 — 0.0460 0.3655

Ours 0.7556 0.0836 0.0305 0.3457

Weiss 0.7619 0.0890 0.0191 0.2230

Table 2: Results on the full MIT dataset (20 objects) with

different error metrics.



As expected, local measures (LMSE and aLMSE) penal-

ize our results and the performance of our methods con-

siderably decreases when evaluated with these measures.

However, as stated above, we consider that the evaluation of

intrinsic image algorithms in terms of correlation or MSE is

more accurate since these measures are more meaningful in

terms of similarity to the ground truth.

In table 3, we present some qualitative results of our

method on three objects of the MIT dataset. For com-

parative purposes, the objects shown are the ones used in

[12]. These objects belong to each of the three subgroups

of objects that the dataset contains, namely painted objects,

printed papers, and animals. We compare our results to the

ones from Color Retinex and Weiss algorithm, which are

the best methods in the evaluation done in [12], and the re-

sults of the SRC method of Shen and Yao [19], which is the

state-of-the-art best result.

As can be seen in the table, our method is the only one

that completely avoids the cast shadow on the reflectance

image of the raccoon. Although the final colors of sur-

faces in the reflectance are not well recovered in the turtle’s

reflectance image, our method forces a single reflectance

value within the areas where the material color is uniform

and all the shading effects due to the textured surface of the

shell are correctly included in the shading image. Finally,

on the tea bag most of the errors are found on the shad-

ing estimate, which includes some reflectance information.

However, the reflectance image is quite well recovered.

6. Conclusions

In this work, we have described an approach for intrinsic

image recovering based on a description of color using color

names which is novel in the field. This sparse description of

color was then combined with a color-shade attribute which

enhances the stability of color names against strong changes

in the illumination due to shading and highlights using a

MRF.

Our results with the MIT dataset show that our method

achieves state-of-the-art performance. This proves that

color names, based on psychophysical data, provide a good

basis for describing object reflectance.

In addition, the simple framework for inference we use

in this work paves the way for more elaborated inference

mechanisms like higher order potentials, which would allow

us to include additional cues as texture, light source color,

or multiple illuminants.
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