COLOR ATTRIBUTESFOR OBJECT DETECTION
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EXPERIMENTAL VALIDATION

PROBLEM COLOR DESCRIPTORS COLOR DESCRIPTOR SELECTION

Evaluation criteria: To avoid laborious cross
validation, we use the KL-ratio to compare the
discriminative power. A high KL-ratio reflects a
more discriminative descriptor.

Goal: Augmenting existing intensity based
detectors with color information.

PASCAL VOC2007: no early fusion method
improves over standard HOG.
Cartoon: Our approach provides a gain of 14%

over standard HOG.
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PASCAL VOC: Our approach improves on 15 out

HUE descriptor (HUE): cells are represented by
a histogram:

Late Fusion

Early Fusion
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Color names: are linguistic color labels which

human assign to colors in the world. In this work

we use the mapping learned from Google images
[Van de Wejjer, TIP09].

Conclusion: We select color names since it has
more discriminative power while being compact.

It is known that late fusion obtains better results
in higher level pyramid representations.

COLORING OBJECT DETECTION

Part-Based: We extend the HOG feature with

CN = {p(cenl|R),p(cn2|R), ...,p(cn11|R)} (3)
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p(cn;|R) = %Z%RP(CWH(%))

Color Name Descriptor:

Labeled input images
from Google image:

LAB-histogram

(4)

color attributes within the part-based framework
|Felzenswalb, PAMI11].

C; = [HOG;, CN;] (7)
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Properties: ESS-Based: We add a separate color vocabulary . We introduce a new dataset ot cartoon char-

acter images.

18 Classes: The Simpsons, Tom, Jerry, Fred,
Barney, Sylvester, Mickymouse, Donaldduck,
Tweety, Coyote, Roadrunner, Buggs, Dalfty,
Shaggy and Scooby.

Images: 586(train 304, testing 282).

Source: Google.

to the ESS framework [Lampert CVPRO08]. Color
and shape are combined with late fusion.

Compactness: only an 11D histogram for each cell
is computed.

Invariance: possess a degree of photometric
Invariance.

Discriminative power: separate bins represent the
achromatic colors: black, grey, and white.

. Early tusion based approaches yield inferior
results for object detection. Our approach
achieves state-of-the-art on PASCAL VOC
2007, 2009 and cartoon datasets despite its
simplicity.

Cartoon Character Detection:

SIFT | CN-SIFT | C-SIFT | OPPSIFT
mean AP | 8.8 12.9 10.3 9.3




