COLOR ATTRIBUTES FOR OBJECT DETECTION

Fahad Shahbaz Khan^{1,*}, Rao Muhammad Anwer^{2,*}, Joost Van de Weijer², Andrew D. Bagdanov^{2,3}, Maria Vanrell², Antonio M. López²

Computer Vision Laboratory, Linköping University, Sweden

Computer Vision Center, University of Florence, Italy

Media Integration and Communication Center, University of Florence, Italy

PROBLEM

Goal: Augmenting existing intensity based detectors with color information.

Color-Shape Independency Early Fusion Late Fusion Color-Shape Dependency

It is known that late fusion obtains better results in higher level pyramid representations.

Method	Level	Sports	Butterflies
Early fusion	1	80.6	79.6
Late fusion	1	81.6	81.9
Early fusion	2	80.8	81.7
Late fusion	2	82.7	84.4
Early fusion	3	82.7	83.3
Late fusion	3	84.4	87.9

CARTOON CHARACTER DETECTION

18 Classes: The Simpsons, Tom, Jerry, Fred, Barney, Sylvester, Mickymouse, Donaldduck, Tweety, Coyote, Roadrunner, Buggs, Daffy, Shaggy and Scooby.

Images: 586(train 304, testing 282).

Source: Google.

COLOR DESCRIPTORS

HUE descriptor (HUE): cells are represented by a histogram:

$$hue = \arctan\left(\frac{O1}{O2}\right) \to s = \sqrt{O1^2 + O2^2}$$
 (1)

Opponent descriptor (OPP): cells are represented by a histogram over the opponent angle:

$$ang_{\mathbf{x}}^{O} = \arctan\left(\frac{O1_{\mathbf{x}}}{O2_{\mathbf{x}}}\right) \to s = \sqrt{O1_{x}^{2} + O2_{x}^{2}}$$
 (2

Color names: are linguistic color labels which human assign to colors in the world. In this work we use the mapping learned from Google images [Van de Weijer, TIP09].

$$CN = \{p(cn1|R), p(cn2|R), ..., p(cn11|R)\}$$
 (3)

with

$$p(cn_i|R) = \frac{1}{p} \sum_{x \in R} p(cn_i|\mathbf{f}(x))$$
 (4)

Properties:

Compactness: only an 11D histogram for each cell is computed.

Invariance: possess a degree of photometric invariance.

Discriminative power: separate bins represent the achromatic colors: black, grey, and white.

COLOR DESCRIPTOR SELECTION

Evaluation criteria: To avoid laborious cross validation, we use the KL-ratio to compare the discriminative power. A high KL-ratio reflects a more discriminative descriptor.

$$KL-ratio = \frac{\sum_{k \in C^m \min_{j \notin C^m} KL(p_j, p_k)}{\sum_{k \in C^m \min_{i \in C^m, i \neq k} KL(p_j, p_k)}}$$
(5)

where

$$KL(p_i, p_j) = \sum_{x=1}^{N} p_i(x) \log \frac{p_i(x)}{p_j(x)}$$
 (6)

Conclusion: We select color names since it has more discriminative power while being compact.

COLORING OBJECT DETECTION

Part-Based: We extend the HOG feature with color attributes within the part-based framework [Felzenswalb, PAMI11].

$$C_i = [HOG_i, CN_i] \tag{7}$$

ESS-Based: We add a separate color vocabulary to the ESS framework [Lampert CVPR08]. Color and shape are combined with late fusion.

Cartoon Character Detection:

	SIFT	CN-SIFT	C-SIFT	OPPSIFT
mean AP	8.8	12.9	10.3	9.3

EXPERIMENTAL VALIDATION

PASCAL VOC2007: no early fusion method improves over standard HOG.

Cartoon: Our approach provides a gain of 14% over standard HOG.

PASCAL VOC: Our approach improves on 15 out of 20 object categories compare to baseline.

Method	mean AP(VOC07)	mean AP(VOC09)	Method	mean AP (Cartoon)	mean AP (VOC07)
HOG	32.3	28.0			(
Best 2007	23.3	-	HOG	27.6	32.3
UCI	27.1	-	OPPHOG	34.2	30.6
UOCTTI	-	27.9			
LEO	29.6	_	RGBHOG	35.3	31.3
Oxford-MKL	32.1	27.7	C-HOG	35.2	30.1
LBP-HOG	34.3	21.9			
Our Approach	34.8	29.4	Our Approach	41.7	34.8

Cartoon Detection:

CONCLUSIONS

- 1. We propose the use of color attributes as explicit color representation.
- 2. We introduce a new dataset of cartoon character images.
- 3. Early fusion based approaches yield inferior results for object detection. Our approach achieves state-of-the-art on PASCAL VOC 2007, 2009 and cartoon datasets despite its simplicity.