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Abstract

Generally the bag-of-words based image representation
follows a bottom-up paradigm. The subsequent stages of the
process: feature detection, feature description, vocabulary
construction and image representation are performed inde-
pendent of the intentioned object classes to be detected. In
such a framework, combining multiple cues such as shape
and color often provides below-expected results.

This paper presents a novel method for recognizing ob-
ject categories when using multiple cues by separating the
shape and color cue. Color is used to guide attention by
means of a top-down category-specific attention map. The
color attention map is then further deployed to modulate the
shape features by taking more features from regions within
an image that are likely to contain an object instance. This
procedure leads to a category-specific image histogram rep-
resentation for each category. Furthermore, we argue that
the method combines the advantages of both early and late
fusion.

We compare our approach with existing methods that
combine color and shape cues on three data sets contain-
ing varied importance of both cues, namely, Soccer ( color
predominance), Flower (color and shape parity), and PAS-
CAL VOC Challenge 2007 (shape predominance). The ex-
periments clearly demonstrate that in all three data sets our
proposed framework significantly outperforms the state-of-
the-art methods for combining color and shape information.

1. Introduction

Images play a crucial role in our daily communication
and the huge amount of pictures digitally available on the
internet are not manageable by humans anymore. How-
ever, automatic image concept classification is a difficult
task, due to large variations between images belonging to
the same class. Several other factors such as significant
variations in viewpoint and scale, illumination, partial oc-
clusions, multiple instances, also have a significant influ-
ence on the final results and thus make the problem of de-

scription of images even more complicated. The bag-of-
visual words framework, where images are represented by
a histogram over visual words, is currently one of the most
successful approaches to object recognition. Many features
such as color, texture, shape, and motion have been used to
describe visual information for object recognition. In this
paper, we analyze the problem of object recognition within
the bag-of-words framework using multiple cues, particu-
larly, combining shape and color information.

In order to combine multiple cues within the bag-of-
words framework, we consider two properties that are es-
pecially desirable for the final image representation: fea-
ture binding and vocabulary compactness. Feature binding
involves combining information from different features at
the local level and not at the image level. This allows to
differ images with red circles and green squares, from im-
ages with green circles and red square. Vocabulary com-
pactness denotes to the property of having a separate visual
vocabulary for each of the different cues. This prevents the
different cues from getting diluted, which happens in case
of a combined shape-color vocabulary. For example, when
learning the concept “square” the color cue is irrelevant. In
this case, a combined color-shape vocabulary only compli-
cates the learning of “squares” since they are spread across
multiple visual words (i.e. blue square, green square, red
square etc.). Existing approaches [3, 28, 27, 23] to combine
color and shape information into a single framework have
not succeeded so far in combining both these properties for
image representation.

Conventionally, the bag-of-words based image repre-
sentation follows a bottom-up paradigm. The subsequent
stages of the process: feature detection, feature description,
vocabulary construction and image representation are per-
formed independent of the intentioned object categories to
be detected. To obtain our goal of combining the two prop-
erties discussed above for image representation, we propose
to introduce top-down information at an early stage (see
Fig. 1). We separate the two cues into a bottom-up de-
scriptor cue, in our case shape, and a top-down attention
cue, color. To this end, we shall use learned class-specific
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Figure 1. A brief, concise overview of our method. In the standard bag-of-words image representation, the histogram over visual shape
words, is constructed in a bottom-up fashion. In our approach we use top-down category-specific color attention to modulate the impact of
the shape-words in the image during the histogram construction. Consequently, a separate histogram is constructed for the all categories,
where the visual words relevant to each category (in this case flowers and butterflies) are accentuated.

color information to construct a visual attention map of the
categories. Subsequently, this color attention map is used
to modulate the sampling of the shape features. In regions
with higher attention more shape feature are sampled than
in regions with low attention. As a result a class-specific
image histogram is constructed for each category. We shall
show that this image representation combines both proper-
ties, feature binding and vocabulary compactness, for im-
age representation. We therefore expect to obtain a superior
performance gain from the combination of shape and color,
than methods which only possess one of these properties.

The paper is organized as follows. In Section 2 we dis-
cuss related work. In Section 3 our approach is outlined
based on an analysis of the relative merits of early and late
fusion techniques for combining color and shape. In Sec-
tion 4 the experimental setup is explained. In Section 5,
experimental results are given, and Section 6 finishes with
concluding remarks.

2. Related Work

There has been a large amount of success in using bag-
of-visual-words models for object and scene classification
[3, 5, 7, 12, 16, 22, 28] due to its simplicity and very good
performance. The first stage in the method involves select-
ing keypoints or regions followed by representation of these
keypoints using local descriptors. The descriptors are then
vector quantized into a fixed-size codebook. Finally, the im-

age is represented by a histogram over the visual code-book.
A classifier is then trained to recognize the categories based
on these histogram representations of the images. Within
the bag-of-words framework the optimal fusion of different
cues, such as shape, texture and color, still remains open to
debate.

Initially, many methods only used the shape features,
predominantly represented by SIFT [13] to represent an
image [5, 7, 12]. However, more recently the possibility
of adding color information has been investigated. Bosch et
al. [3] propose to compute the SIFT descriptor in the HSV
color space and concatenate the results into one combined
color-shape descriptor. Van de Weijer and Schmid [28]
compare photometrically invariant representations in com-
bination with SIFT for image classification. Van de Sande
et al. [27] performed a study into the photometric properties
of many color descriptors, and did an extensive performance
evaluation.

There exist two main approaches to fuse color and shape
into the bag-of-words representation. The first approach,
called early fusion involves fusing local descriptors together
and creating one joint shape-color vocabulary. The second
approach, called late fusion concatenates histogram repre-
sentation of both color and shape, obtained independently.
Most of the existing methods use early fusion [3, 27, 28].
Previous work which compares both early and late fu-
sion schemes for image classification have been done by
[23, 10] where both early fusion and late fusion are com-
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pared. The comparison performed in both studies suggests
that combining multiple cues usually improves final classi-
fication results but the optimal fusion scheme is still uncer-
tain.

Introducing top-down information into earlier stages of
the bag-of-words approach has been pursued in various pre-
vious works as well, especially in the vocabulary construc-
tion phase. Lazebnik and Raginsky [11] propose to learn
discriminative visual vocabularies. The vocabulary con-
struction is optimized to separate the class labels. Per-
ronnin [21] proposes to learn class-specific vocabularies.
The image is represented by one universal vocabulary and
one adaptation of the universal vocabulary for each of the
classes. Both methods showed to improve bag-of-words
representations, but they do not handle the issue of multi-
ple cues, and for this reason could be used in complement
with the approach presented here. Vogel and Schiele [31]
semantically label local features into a number of semantic
concepts for the task of scene classification.

The human visual system performs an effective attention
mechanism, employed to reduce the computational cost of
a data-driven visual search [26, 4]. The higher level vision
tasks, such as object recognition, can then focus on the in-
teresting parts in an image to robustly recognize different
object categories. Studies of inattentional blindness [1, 24]
have revealed that attention itself and its attributes remain
unnoticed unless it is directed towards interesting locations
in a scene. Thus the visual system selects only a subset of
available information and demotes the rest of the informa-
tion to only a limited analysis. Most natural searches in-
volve targets that are defined by basic feature information.
These visual features are loosely bundled into objects be-
fore the arrival of attention. In order to bind these features
into a recognizable object, attention is required [34].

The two ways by which information can be used to
direct attention are, bottom-up (memory-free), where the
attention is directed to the salient regions and, top-down
(memory-dependent), which enables goal directed visual
search [33]. In computer vision, several works focus on
computational visual attention, most of them are based on
building saliency maps for simple visual tasks as keypoint
detection [8]. However, some attempts has been done to-
wards increasing the feedback of top-down processes into
the feature vectors [2]. The work presented in our paper
utilizes the top-down visual attention mechanism where the
goal is to recognize a specific object category.

Among several properties of visual stimuli, only few are
used to control the deployment of visual attention [35].
Color is one such attribute which is undoubtedly used to
guide visual attention [35]. Jost et al. [9] measures the con-
tribution of chromatic cue in the model of visual attention.
Several other studies performed recently also reveal the im-
portance of color in visual memory [25, 32]. Similarly, in

Figure 2. A Graphical explanation of early and late fusion schemes
to combine color and shape information. The α and β parameters
determine the relative weight of the two cues.

our work color plays a twofold role, firstly, it contains some
additional information which is category-specific, and sec-
ondly, it modulates the shape words which are computed
using a standard bag-of-words approach.

3. Top-Down Color Attention for Object
Recognition

In this section, we analyze the two well-known ap-
proaches to incorporate multiple cues within the bag-of-
words framework, namely early and late fusion. On the
basis of this analysis we propose a new approach for the
combination of shape and color information for image rep-
resentation.

3.1. Early and Late Feature Fusion

Before discussing early and late fusion in more detail,
we introduce some mathematical notations. In the bag-of-
words framework a number of local features fij , j=1...M i
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are detected in each image Ii, i=1,2,...,N . Generally, the lo-
cal features are represented in visual vocabularies which de-
scribe various image cues such as shape, texture, and color.
We shall focus here on shape and color but the theory can
easily be extended to include other cues. We assume that
visual vocabularies for the cues are available, with the vi-
sual words wk

i , i=1,2,...,V k and k ∈ {s, c, sc} for the two
cues shape and color and for the combined visual vocabu-
lary of color and shape. The local features are represented
differently for the two approaches: by a pair of visual words
fij = {ws

ij , w
c
ij} for late fusion and by single shape-color

word fij = {wsc
ij } in the case of early fusion.

For a standard single-cue bag-of-words, images are rep-
resented by a frequency distribution over the visual words:

n
(
wk|Ii

)
=

Mi∑
j=1

δ
(
wk

ij ,w
k
)

(1)

with

δ (x, y)
{

0 for x �= y
1 for x == y

(2)

For early fusion we compute n
(
wsc|Ii

)
. For late fusion we

compute n
(
ws|Ii

)
and n

(
wc|Ii

)
separately and concate-

nate the results. A graphical representation of the construc-
tion of early and late fusion representations is provided in
Fig. 2. The parameters α and β in Fig. 2 indicate the rel-
ative weight of color and shape and are learned by cross-
validation.

The two approaches early and late fusion lead to differ-
ent properties for the image representation. We shall dis-
cuss the two properties which we believe to be especially
important and which form the motivation to our approach.
The first property is vocabulary compactness. Having this
property implies constructing a separate visual vocabulary
for both color and shape. This is especially important for
classes which only exhibit constancy over one of the cues.
For example, many man-made objects are only constant
over shape, and vary significantly in color. Learning these
classes from a combined shape-color vocabulary only com-
plicates the task of the classifier. Late fusion possesses the
property of vocabulary compactness, whereas early fusion
lacks it. The second property is feature binding. This prop-
erty refers to methods which combine color and shape in-
formation at the local feature level. This allows for the de-
scription of blue corners, red blobs, etc. Early fusion has
this property since it describes the joined shape-color fea-
ture for each local feature. Late fusion, which separates
the two cues, only to combine them again at an image-wide
level, lacks this property.

Figure 3. Color attention maps. First row: a liverpool category im-
age from Soccer dataset. Second row: a snowdrop flower species
image from Flower dataset.

3.2. Top-Down Color Attention for Image Repre-
sentation

To obtain an image representation which combines the
two desired properties discussed above, we separate the
functionality of the two cues. The shape cue will function
as a descriptor cue, and is used similarly as in the traditional
bag-of-words approach. However, the color cue is used as
an attention cue, and determines the impact of the local fea-
tures on the image representation. The computation of the
image representation is done according to:

n
(
ws|Ii, class

)
=

Mi∑
j=1

p
(
class|wc

ij

)
δ
(
ws

ij , w
s
)
. (3)

The attention cue is used in a top-down manner and de-
scribes our prior knowledge about the categories we are
looking for. The probabilities p

(
class|wc

ij

)
are computed

by using Bayes,

p (class|wc) ∝ p (wc|class) p (class) (4)

where p (wc|class) is the empirical distribution,

p (class|wc) ∝
∑

Iclass

Mi∑
j=1

δ
(
wc

ij , w
c
)
, (5)

obtained by summing over the indexes to the training im-
ages of the category Iclass. The prior over the classes
p (class) is obtained from the training data.

If we compute p
(
class|wc

ij

)
for all local features in an

image we can construct a class-specific color attention map.
Several examples are given in Fig. 3. The color attention

982



map can be understood to modulate the weighting of the
local features. In regions with high attention more shape-
features are sampled than in regions with low attentions
(note that all histograms are based on the same set of de-
tected features and only the weighting varies). As a conse-
quence a different distribution over the same shape words is
obtained for each category, as is indicated in Fig. 1. The fi-
nal representation of an image is obtained by concatenating
the class-specific histograms. Hence, its dimensionality will
be equal to the shape vocabulary size V s times the number
of classes.

The image representation proposed in Eq. 3 does not
explicitly code the color information. However, indirectly
color information is hidden in these representations since
the shape-words are weighted by the probability of the cat-
egory given the corresponding color-word. Some color in-
formation is expected to be lost in the process, however the
information most relevant to the task of classification is ex-
pected to be preserved. Furthermore, this image represen-
tation does combine the two properties feature binding and
vocabulary compactness. As can be seen in Eq. 3 the cues
are represented in separate vocabularies and are combined
at the local feature level. For categories where color is ir-
relevant, p (class|wc) is uniform and Eq. 3 simplifies to the
standard bag-of-words representation of Eq. 1.

The method can simply be extended to include multiple
attention cues. For n attention cues we compute

n
(
ws|Ii, class

)
=

Mi∑
j=1

p(class|wc1

ij ) × ... × p(class|wcn

ij )δ
(
ws

ij ,w
s
) (6)

Note that the dimensionality of the image representation is
independent of the number of attention cues. Therefore,
we also provide results based on multiple color cues. We
summerize the procedure of top-down color guided atten-
tion image representation in Algorithm 1.

4. Experimental Setup

Details of the proposed procedure are outlined in this
section. First, we discuss the implementation details of
the descriptors and detectors used for our experiments, fol-
lowed by a brief description of the data sets used for the
evaluation purpose.

4.1. Implementation Details

To test our method, we have used the difference of
Gaussian (DoG) detector for the Soccer data set. For
Flower data set and PASCAL VOC Challenge 2007 we
have used a combination of Harris-Laplace point detector
[17] along with DoG and multiscale Grid detector. We
normalized all the patches to a standard size and descrip-
tors are computed for all regions in the feature description

Algorithm 1 Top-Down Color Attention
1: Require: Separate visual vocabularies for shape and

color with visual words wk
i , i=1,2,...,V k and k ∈ {s, c}

for shape and color.
2: Construct color histogram n

(
wk|Ii

)
: images are rep-

resented by frequency distribution over color visual
words using equation 1.

3: Compute a class-specific color posterior p
(
class|wc

ij

)
:

for all the local color features in an image using equa-
tion 5.

4: Construct the class-specific image representation
n
(
ws|Ii, class

)
: compute the weighted class-specific

histogram using equation 3.
5: The final image representation is obtained by concate-

nating the class posterior p
(
class|wc

ij

)
for all the cate-

gories. The dimensionality of the final histogram is V s

times the number of categories.

phase. A visual vocabulary is then computed by cluster-
ing the descriptor points using K-means algorithm. In our
approach the SIFT descriptor is used to create a shape vo-
cabulary. For color vocabulary we have used two differ-
ent color descriptors namely, the Color Name (CN) de-
scriptor [29, 30] and HUE descriptor (HUE) [28]. We
shall abbreviate our results with the notation convention
CA(descriptor cue, attention cues) where CA stands
for Color Attention based bag-of-words. We shall pro-
vide results with one attention cue CA(SIFT, HUE),
CA(SIFT, CN), and for the color attention based on two
attention cues CA(SIFT, {HUE, CN}) combined using
Eq. 6. Each image is represented by a frequency histogram
of visual words. A classifier is then trained based on these
histograms. In our experiments we use a standard non-
linear SVM with χ2 kernel for Soccer and Flower data set
and intersection kernel for Pascal VOC 2007 data set since
it requires significantly less computational time [14], while
providing performance similar to χ2 kernel.

We compare our method with the standard methods to
combine color and shape features from literature: early fu-
sion and late fusion. We perform early and late fusion
with both CN and HUE and report the best results. Re-
cently, an extensive performance evaluation of color de-
scriptors has been presented by van de Sande et al. [27].
We shall compare our results to the two descriptors reported
to be superior. OpponentSIFT uses all the three channels
(O1, O2, O3) of the opponent color space. The O1 and
O2 channels describe the color information in an image
whereas O3 channel contains the intensity information in
an image. The WSIFT descriptor is derived from the oppo-
nent color space as O1

O3 and O2
O3 , thereby making it invariant

with respect to light intensity. Furthermore, it has also been
mentioned in [27] that with no prior knowledge about ob-
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Figure 4. Examples figures of the three data sets. From top to
bottom: Soccer, Flower and PASCAL VOC 2007 data set.

ject categories, OpponentSIFT descriptor was found to be
the best choice.

4.2. Image Data Sets

We tested our approach on three different and challeng-
ing data sets namely Soccer, Flower and PASCAL VOC
Challenge 2007. The data sets vary in the relative impor-
tance of the two cues shape and color.

The Soccer data set 1 consists of 7 classes of different
Soccer teams [28]. Each class contains 40 images divided
in 25 train and 15 test images per category. The Flower data
set 2 consists of 17 classes of different varieties of flower
species and each class has 80 images, divided in 60 train
and 20 test images [18]. Finally, we also tested our ap-
proach on PASCAL Visual Object Classes Challenge [6].
The PASCAL VOC Challenge 2007 data set 3 consists of
9963 images of 20 different classes with 5011 training im-
ages and 4952 test images. Fig. 4 shows some images from
the three data sets.

5. Experiments

In this section we present the results of our method on
image classification. The data sets have been selected to
represent a varied importance of the image cues color and
shape. Results are compared to state-of-the-art methods that
fuse color and shape cues.

5.1. Image classification: color predominance

Image classification results are computed for the Soc-
cer data set to test color and shape fusion under conditions
where color is the predominant cue. In this data set the task
is to recognize the Soccer team present in the image. In this

1The Soccer set at http://lear.inrialpes.fr/data
2The Flower set at http://www.robots.ox.ac.uk/vgg/research/flowers/
3The PASCAL VOC Challenge 2007 at http://www.pascal-

network.org/challenges/VOC/voc2007/

case, the color of the player’s outfit is the most discrimina-
tive feature available.

The results on the Soccer data set are given in Table 1.
The importance of color for this data set is demonstrated by
the unsatisfactory results of shape alone. The disappoint-
ing results for WSIFT might be caused by the importance
of the achromatic colors in this data set to recognize the
team shirts (for example, Milan outfits are red-black and
PSV outfits are red-white). This information might get lost
in the photometric invariance of WSIFT. Color Names per-
formed very well here due to their combination of photo-
metric robustness and the ability to describe the achromatic
regions. A further performance gain was obtained by com-
bining hue and color name based color attention. Moreover,
our approach outperforms the best results reported in liter-
ature [29], where a score of 89% is reported, based on a
combination of SIFT and CN in an early fusion manner.

Method Voc Size Score
SIFT 400 50

EarlyFusion 1200 90

LateFusion 400 + 300 90

WSIFT 1200 77

OpponentSIFT 1200 87

CA(SIFT, CN) 400, 300 88

CA(SIFT, HUE) 400, 300 82

CA(SIFT, {CN, HUE}) 400, {300, 300} 94
Table 1. Classification Score (percentage) on Soccer Data set.

5.2. Image Classification: color and shape parity

Image results on the Flower data set show the perfor-
mance of our approach on a data set for which both shape
and color information are vital. The task is to classify the
images into 17 categories of flower-species. The use of both
color and shape are important as some flowers are clearly
distinguished by shape, e.g. daisies and some by color, e.g.
fritillaries. The results on Flower data set are given in Ta-
ble 2.

Method Voc Size Score
SIFT 1200 68

EarlyFusion 2000 85

LateFusion 1200 + 300 84

WSIFT 2000 77

OpponentSIFT 2000 83

CA(SIFT, CN) 1200, 300 87

CA(SIFT, HUE) 1200, 300 87

CA(SIFT, {CN, HUE}) 1200, {300, 300} 89
Table 2. Classification Score (percentage) on Flower Data set.

Among the existing methods Early Fusion provides the
best results. However, the three methods based on color
attention obtain significantly better results. Again the com-
bination of CN and HUE was found to give the best results.
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On this data set our method surpassed the best results re-
ported in literature [20]. The best reported result [20]
is 88.3% where shape, colour and texture descriptors were
computed on the segmentation scheme proposed by [19].
On the other hand neither segmentation nor any bounding
box knowledge have been used in our method. A more
proximal comparison with our approach is that of [29]
where a result of 81 was obtained by combining SIFT and
CN in an early fusion manner.

5.3. Image Classification: shape predominance

Finally, we test our approach on a data set where the
shape cue is predominant and color plays a subordinate role.
The Pascal VOC 2007 challenge data set contains nearly
10,000 images of 20 different object categories. For this
data set the average precision is used as a performance met-
ric in order to determine the accuracy of recognition results.
The average precision is proportional to the area under a
precision-recall curve. The average precisions of the in-
dividual classes are used to get a mean average precision
(MAP) as used by [27]. In the table we have also presented
the results in terms of median average precision. Both these
statistical metrics are commonly used to evaluate the results
on this data set.

Table 3 shows the results. We here only compare against
WSIFT which was shown to obtain the best results in [27].
The methods based on color attention again obtain signifi-
cantly better results for both median and mean AP. For this
data set the combination of the two attention cues, HUE
and CN, again provides the best results. To obtain state-
of-the-art results obtained on PASCAL, the method should
be further extended to include spatial information and sim-
ilarly more complex learning methods should be applied to
improve the results further [15].

The results per object category are given in Fig. 5. The
20 categories can be divided into 4 types namely, Animal:
bird, cat, cow, dog, horse, sheep, Vehicle: aeroplane, bicy-
cle, boat, bus, car, motorbike, train, Indoor: bottle, chair,
dining table, potted plant, sofa, tv/monitor and Person: per-
son. It is worthy to observe that our approach performs
substantially better over all the 20 categories compared to
WSIFT and SIFT. Recall that early fusion approaches lack
vocabulary compactness and struggle with categories where
one cue is constant and the other cue varies a great deal.
This behaviour can be observed in vehicle categories such
as car, where the color varies significantly over the various
instances, something which is known to bother early-fusion
methods (i.e. lack of vocabulary compactness). In such
classes WSIFT provides below-expected results. Our ap-
proach, which combines the advantages of early and late
fusion, obtains good results on all types of categories in the
data set.

0 0.2 0.4 0.6 0.8 1

tv/monitor

train

sofa

sheep

plant

person

bike

horse

dog

table

cow

chair

cat

car

bus

bottle

boat

bird

bicycle

aeroplane

Average Precision

Performance of the three methods delineated by category

 

 
SIFT
WSIFT
Our Approach

Figure 5. Performance on Pascal VOC Challenge 2007 for SIFT,
WSIFT and CA(SIFT,{CN,HUE}). The results are split per object
category. Note that we outperform SIFT and WSIFT in all 20
categories.

Method Voc Size Median AP Mean AP
SIFT 1000 41.0 43.5
WSIFT 6000 41.3 45.0

CA(SIFT, CN) 1000, 300 46.4 48.0
CA(SIFT, HUE) 1000, 300 48.3 49.5
CA(SIFT, {CN, HUE}) 1000, {300, 300} 48.6 50.2

Table 3. Median and Mean Average Precision on Pascal VOC
Challegenge 2007 data set. Note that our results provide better
results both in terms of median and mean AP.

6. Discussion and Conclusions

In this paper we presented a new approach to combine
color and shape information within the bag-of-words frame-
work. The methods splits the cues in a bottom-up descriptor
cue and a top-down attention cue. We combine the advan-
tages of early and late fusion, feature binding and vocab-
ulary compactness, which in a standard bag-of-words ap-
proach are mutually exclusive.

The results provided from the three data sets suggest that
for most object categories color attention plays a pivotal role
in object recognition. Color attention based bag-of-words
representations is shown to outperform early and late fusion
methods on all three data sets.

It should be noted that our approach is non-parametric
in that there is no parameter to tune the relative weight of
color and shape information (such a parameter is present for
both early and late fusion). This could however be easily
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introduced, for example by

n
(
ws|Ii, class

)
=

Mi∑
j=1

p(class|wc
ij)

γδ
(
ws

ij ,w
s
)
. (7)

We expect that learning of such a γ could still further im-
prove the results. A second research direction for future
work, will be the inclusion of texture descriptors as atten-
tion cues.
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