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PROBLEM STATEMENT

Goal: How to construct efficient-multi cue
vocabularies for large-scale data sets?
Problems: Existing fusion approaches are
problematic for data sets with several hun-
dred object categories.

Method Cue-Binding Cue-Weighting Scalability
Early Fusion Yes Hard Yes
Late Fusion No Yes Yes
Color Attention[2] Yes Yes No

Desired Properties:
Cue-Binding: This property refers to combin-
ing color and shape information at the local
feature level. This allows for the description
of blue corners, red blobs, etc.
Cue-Weighting: This implies constructing a
separate visual vocabulary for both color
and shape. Having this property allows for
efficient cue-weighting.
Scalability: The final dimensionality should
be independent of number of object cate-
gories in a data set.

PRODUCT VOCABULARIES

A simple way to ensure cue-binding is by a
product vocabulary of primitive visual cues.

Drawbacks: Product vocabularies are very
high dimensional. The resulting representa-
tion leads to overfitting on the training set.

OUR APPROACH: PORTMANTEAU VOCABULARIES

Procedure:

1. Construct separate color and shape vocabularies.
2. Empirical class-conditional word distributions of

color and shape using the training set.
3. Estimate joint cue distribution assuming condi-

tional independence over classes.
4. Compress the large product vocabularies us-

ing the DITC algorithm to obtain Portmanteau
words.

5. A new color-shape histogram is constructed by
using the new index list output by DITC.

ESTIMATING JOINT-CUE DISTRIBUTIONS

Observation: Modeling joint-cue distribu-
tions independently over the class is statisti-
cally more robust than empirical dependent
joint-distribution directly.

Jenson-Shannon divergence between each estimate and the true joint distribution.

1. Results are provided as a function of
number of training images.

2. Low JS means a better estimate of the
true joint-cue distribution.

3. Results shows that independence as-
sumption yields similar of better esti-
mates than empirical counterparts.

EXPERIMENTAL VALIDATION

We validate our approach on two difficult
data sets Bird-200 (6000 images) and Flower-
102 (8000 images).

Method Flower-102 Bird-200
Shape Only 60.7 12.9
Color Only 48.5 16.8
Early Fusion 70.5 17.0
Direct Empirical 64.6 18.9
Independent 63.5 19.8
Independent + α 66.4 21.6
Independent + α + β 73.3 22.4

Comparison with the state-of-the-art: Our
approach yields competitive results by only
combining two cues.

Method Flower-102 Bird-200
OpponentSIFT 69.2 14.0
C-SIFT 65.9 13.9
MKL [Nilsbeck08] 72.8 -
MKL [Branson10] - 19.0
Random Forest - 19.2
Saliency 71.0 -
Our Approach 73.3 22.4

CONCLUSIONS

1. We propose a new method to construct
multi-cue vocabularies.

2. We compress product vocabularies to
construct discriminative compound vi-
sual words.

3. Assuming independence of cues given
the class provides robust estimation.

4. Additionally it allows for efficient cue-
weighting.

5. Our final representation is compact,
maintains cue binding and admits cue
weighting.
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CUE-WEIGHTING

The independence assumption additionally
allows for efficient weighting of cues [0,1]:

The effect of weighting on Portmanteau clusters.

HIGHLY DISCRIMINATIVE CLUSTERS

The beta parameter directs the DITC to find
clusters discriminative for a single category:

The effect of beta on DITC clusters. A higher beta directs DITC
to construct Portmanteau each discriminating one class.

COMPACT VOCABULARIES USING DITC

To obtain compact representations, the DITC
algorithm[1] is used to compress visual vo-
cabularies. The algorithm is designed to find
fixed number of clusters. The DITC opti-
mizes a global objective function:

DITC iteratively optimizes the above objec-
tive function:

1. Compute the cluster distributions according to:

2. Re-assign the words to the clusters based on
their closeness in KL-divergence respectively:

PORTMANTEAU VOCABULARIES

Compress product vocabularies using the
DITC technique. This results in a compact
multi-cue visual vocabulary which is used to
construct a color-shape histogram.

Novelty: The DITC algorithm is not in-
vestigated before to handle the problem of
multi-cue visual vocabularies.


