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Abstract—Person description is a challenging problem in computer vision. We investigate two major aspects of person description:
gender and action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description
of a single body part such as face or full-body. However, relying on a single body part is sub-optimal due to significant variations in
scale, viewpoint and pose in real-world images.
This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining
information from full-body, upper-body and face regions for gender and action recognition in still images. The proposed approach does
not require any annotations for upper-body and face of a person. Instead, we rely on pre-trained state-of-the-art upper-body and face
detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we
then propose a simple method to select the best candidate bounding box which is used for feature extraction. Finally, the extracted
features from the full-body, upper-body and face regions are combined into a single representation for classification.
To validate the proposed approach for gender recognition, experiments are performed on three large datasets namely: Human attribute,
Head-Shoulder and Proxemics. For action recognition, we perform experiments on four datasets most used for benchmarking action
recognition in still images: Sports, Willow, PASCAL VOC 2010 and Stanford-40. Our experiments clearly demonstrate that the proposed
approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.

Index Terms—Gender Recognition, Action Recognition, Pyramid Representation, Bag-of-words
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1 INTRODUCTION

Describing persons in images is one of the fundamental
semantic problems in image analysis with many appli-
cations such as video surveillance, health care, image
and video search engines and human-computer inter-
action etc. The problem is challenging since persons can
appear in different poses and viewpoints in real-world
scenarios, images can contain back-facing people, have
low resolution, and can be taken under illumination
and scale variations. In this paper, we focus on two
challenging aspects of person description: gender and
action recognition in still images.

In recent years, significant amount of work has been
devoted to detect persons [7], [40], [16], [49] in real-
world images. The part-based method of Felzenswalb et
al. [16] is currently the state-of-the-art method for person
detection [14]. The method works by modeling a person
as a collection of parts, where each part is represented
by a number of histograms of gradient orientations [7]
over a number of cells. Other than full-body detection
methods, several approaches exist in literature [48], [18],
[60], [8] to detect the upper-body and face regions of
a person. Combining different body part detectors for
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efficient person description is an open research problem.
Here, we investigate the problem of combining semantic
information from different body part detectors for gen-
der and action recognition.

To solve the problem of gender recognition, most of
the existing approaches [1], [52], [51], [37] rely only on
face classification methods. These methods are generally
applied on standard databases having high resolution
aligned frontal faces. However, persons can appear in
different scales and viewpoints in real-world images. In
many cases gender recognition solely based on face cues
could fail, and cues from clothes and hairstyle would
be needed. The top row in Figure 1 shows exemplar
images with persons from the different gender datasets
used in this paper; they contain back-facing people, low
resolution faces, and different clothing types. In this
work, we aim at combining different body part detectors
for robust gender classification.

In recent years, action recognition in static images has
gained a lot of attention [43], [39], [10], [57], [36]. In ac-
tion recognition, bounding boxes of humans performing
actions are provided both at training and test time. The
bottom row in Figure 1 shows exemplar images from
different action recognition datasets used in this work.
Most successful approaches to action recognition employ
the bag-of-words (BOW) method popular in object and
scene recognition [43], [9], [27]. The technique works by
extracting local features such as color, shape and texture
etc. on a dense grid of rectangular windows. These
local features are then vector quantized into a fixed-
size visual vocabulary. A histogram is constructed by
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Fig. 1: Example images from the gender and action recognition datasets used in this work. Top row: images
from the three gender recognition datasets. Factors such as back-facing people, scale and pose changes make it
extremely difficult to rely on a single body part. Bottom row: example images from the different action recognition
dataset. Conventional methods construct representations over the bounding box of a person. Combining semantic
information from different body parts to improve the performance is still an open research problem.

counting the occurrence of each visual word in an image.
Incorporating the part-based information within the bag-
of-words framework is an active research problem [44],
[26]. This paper investigates the problem of combining
semantic information from different body parts within
the bag-of-words approach for action recognition.

Both in gender recognition and in action recognition,
the introduction of spatial information within the person
bounding box has been primarily handled with spatial
pyramids [44], [9], [27], [41], [6]. For deformable objects,
like humans, spatial pyramids only provide a rough
spatial description, because the pose of the object can
vary significantly within the bounding box. To account
for this, pose normalization has recently been proposed
as a preprocessing step before performing feature extrac-
tion [3], [59]. Pose normalization would identify relevant
parts, such as head and upper body, and subsequently
describe these parts in the feature extraction phase. For
gender recognition this has been studied by Bourdev et
al. [3], who propose a computationally demanding part-
based approach based on poselets. Other than existing
work, we acknowledge that human part recognition is
a much researched field, and tailored detectors exist for
bodies [16], [49], [7], faces [48], [60], upper-bodies [12],
[53], and even hands [38], [33]. In this paper we combine
these existing detectors for pose normalization and use
them to construct what we call semantic pyramids. To the
best of our knowledge we are the first to investigate
shape normalization based on existing part detectors.
Contributions: In this paper, we propose to combine
different body part detectors for gender and action
recognition. We combine information from full-body,
upper-body and face regions of a person in an image. It
is worth to mention that our approach does not require
annotations for face and upper-body regions. Instead
we use state-of-the-art upper-body and face detectors to
automatically localize body parts in an image. Each de-
tector fires at multiple locations in an image thereby pro-

viding multiple candidate bounding boxes. We propose
a simple approach to select the best candidate bounding
box from each body part detector. The selected bounding
boxes are then used for feature extraction. For gender
classification, we use a combination of visual descriptors.
For action recognition, we employ the popular bag-of-
words approach with spatial pyramid representation.
Finally, the individual representations from the full-body,
upper-body and face are combined into a single feature
vector for classification.

We validate the proposed approach on three large
datasets for gender classification namely: Human at-
tribute, Head-Shoulder and Proxemics. For action recog-
nition, we perform experiments on four benchmark
datasets namely: Sports, Willow, PASCAL VOC 2010
and Stanford-40. For both gender and action recognition,
our approach outperforms state-of-the-art methods in
literature.

The paper is organized as follows. In Section 2 we
discuss related work. In Section 3 we introduce our ap-
proach. The results on gender recognition are provided
in Section 4. In Section 5 we provide a comprehensive
evaluation of our approach for action recognition in
still images. Section 6 finishes with a discussion and
concluding remarks.

2 RELATED WORK

Describing person attributes is an active research prob-
lem in computer vision. Several methods exist in litera-
ture [1], [52], [51], [37], [3], [35], [59] to tackle the problem
of gender recognition. An evaluation of gender classifica-
tion methods using automatically detected and aligned
faces is performed by [1]. Interestingly, the evaluation
shows that using automatic face alignment methods did
not increase the gender classification performance. Wu
et al. [11] propose an approach for gender classification
by using facial shape information to construct discrim-
inating models. The facial shapes are represented using
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2.5D fields of facial surface normals. The work of [3]
propose to use a part-based approach based on pose-
lets for describing human attributes. Recently, Zhang et
al. [59] propose two pose-normalized descriptors based
on deformable part models for attribute description. In
this paper, we also focus on the problem of gender
recognition in the wild using semantic information from
different body parts.

Other than gender recognition, describing actions as-
sociated with humans is a difficult problem in computer
vision. In action recognition, given the bounding box
of a person both at train and test time, the task is to
classify the action label associated with each bounding
box. Several approaches exist in literature [24], [39],
[10], [57], [36], [23], [44] to solve the problem of action
recognition. The bag-of-words based approaches [43],
[27], [9] have shown to obtain promising results for
action recognition task. Sharma et al. [43] propose an
approach based on learning a max margin classifier to
learn the discriminative spatial saliency of images. A
comprehensive evaluation of color features and fusion
approaches is performed [27].

Besides the bag-of-words framework, several meth-
ods [39], [10], [57], [36] have recently been proposed to
find human-object interactions for action recognition. A
human-centric approach is proposed by [39] that works
by first localizing a human and then finding an object
and its relationship to it. Maji et al. [36] introduced
an approach based on poselet activation vector that
captures the pose in a multi-scale fashion. The work
of [10] propose a method based on spatial co-occurrences
of objects and individual body parts. A discriminative
learning procedure is introduced to solve the problem
of the large number of possible interaction pairs.

Recently, several methods [44], [26] look into com-
bining part-based information within the bag-of-words
framework. The work of [44] is based on learning a
model based on a collection of part templates learnt
discriminatively to select scale-space locations in the
images. Similarly, our work also investigates how to
combine the semantic part-based information within the
bag-of-words framework for improved action recogni-
tion.

In recent years, significant progress has been made
in the field of human detection [7], [40], [16], [49]. The
part-based approach by Felzenszwalb et al. [16] has
shown to provide excellent performance. Besides full-
body person detection, localizing specific parts of human
body such as face, upper-body and hand also exist in
literature [48], [18], [60], [8]. Combining these different
body part detectors for human attribute description is
an open problem in computer vision. In this paper, we
propose an approach by combining semantic informa-
tion from full-body, upper-body and face for gender and
action recognition problems.

Fig. 2: Traditional spatial pyramid approach in top row
where the person box is divided geometrically in various
blocks. In the bottom row our approach of semantic
pyramids which performs pose normalization by placing
the representation on semantic parts (here we consider
face detection and upper-body detection).

3 SEMANTIC PYRAMIDS FOR PERSON DE-
SCRIPTION

In this section we outline our method of semantic pyra-
mids for person description. We will apply the method
to two cases of person description, namely gender recog-
nition and action recognition.

Typically, both for gender recognition as well as for
action recognition in still images, bounding boxes of per-
sons are provided. This is done to decouple research in
person detection from research in gender/action recog-
nition. The task is then, given a bounding box of the
person, to decide on the gender or/and the action of
the person. Generally, this is approached by applying a
spatial pyramid on the provided bounding box, similar
as is done for image classification [32], [13] and object
detection [7]. The pyramid encodes spatial information
and allows the description of features dependent on
their relative location in the bounding box. Following
this strategy for several features (such as shape, texture,
and color) was found to obtain competing results for
gender classification [3], [35], [25] as well as action
recognition [27].

The spatial pyramid allows to learn a rough spatial
structure of the human outline. But because of the large
variety of poses, i.e. people can e.g. be lying, sitting or
being captured from the back, the discriminative power
of such a representation remains inherently limited. This
has recently been acknowledged by research in fine-
grained object detection, where the task is to distinguish
between hundreds of birds, flowers or airplane models
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[15], [20]. The exact localization of semantic parts on
these classes is considered an important step before
going into the feature extraction phase [15], [59], see also
Figure 2. The pre-localization of parts of the objects is
also called the pose-normalization step. The method has
also been applied to human attribute recognition in the
poselet framework of Bourdez et al. [3].

Most existing methods to pose normalization are gen-
eral and could be applied to a variety of objects [15],
[20]. Here we take a different approach. Because of
the importance of humans in many computer vision
applications, the recognition of semantic human parts
has been studied in great detail. There exists much work
on person detection [16], [7], [49], face detection [48],
[60], but also specialized work on upper-body detec-
tion [12], [53] and even hand detection [38], [33]. These
detectors have been separately designed and optimized
for their task. Therefore, in this paper, we focus on how
to combine these tailored detectors for the task of gender
and action recognition. Other than previous work we do
not propose to relearn detectors for human parts [3], [59].

In the remainder of this section we outline our method
of semantic pyramids for human attribute and action
recognition. The main steps are indicated in Figure 3.
First we run the part based detectors and obtain a set
of hypotheses of possible part locations. Next we infer
the most likely configuration given the person bounding
box in the part selection step. In the next step, several
features are extracted and represented in a histogram for
all the elected part bounding boxes. Finally, a classifier
is learned on the concatenated histograms. These steps
are outlined in detail in the following subsections.

3.1 Human Parts Detection
In action recognition, the bounding box of a person
is given both at training and test time. For gender
recognition, the Human attribute dataset [3] has bound-
ing box information given. The head-shoulder gender
dataset [35] contains persons with only head-shoulder
covering almost the entire image. Finally, the Proxemics
dataset [54] also contains bounding box information of
each person instance in an image. Therefore, in this
work, we start with the assumption that the bounding
box information of a person is available in prior. How-
ever, our approach can easily be extended for scenarios
where no bounding box information is available in prior.

In order to automatically obtain the upper-body part
of a person, we use a pre-trained upper-body detec-
tor.1 The upper-body detector is based on the popular
part-based object detection framework of Felzenswalb
et al. [16]. In this work, we use a pre-trained model
learned to detect near-frontal upper-body regions of a
person. Given a cropped person image using the bound-
ing box information, the upper-body detector returns
bounding-boxes fitting the head and upper half of the

1. The upper-body detector is available at: http://groups.inf.ed.ac.
uk/calvin/calvin upperbody detector/

torso of the person. In order to increase the robustness
of the detector, the primary upper-body detections are
regressed from the Viola and Jones face detector [47]
to obtain secondary upper-body detections. The upper-
body detection framework is successfully used for the
problem of human pose estimation [12].

In order to automatically extract the face of a per-
son, we use a pre-trained face detector [60] constructed
on top of part-based implementation of Felzenswalb et
al. [16]. The method employs a tree-structured model
with a shared pool of parts where every facial landmark
is modeled as a part. The method efficiently captures
global elastic deformations. In this work, we use a pre-
trained detector learned using the positive samples from
MultiPIE dataset2 and the negative instances from the
INRIA Person dataset [7].

3.2 Part Selection
Each of the part detectors fires at multiple location
within the bounding box of the person, yielding a set
of hypotheses for all of the parts. These detections come
together with a detection score indicating the confidence
of the detector. A straightforward method would be to
select the highest scoring detector for each part. How-
ever, due to the difficulty of the problem - low reso-
lution, strange body pose, partial occlusion - detectors
give many false detections. Here we consider a method,
related to the pictorial structure method of Felzenswalb
and Huttenlocher [17], to improve part selection.

Here we outline our approach to find the optimal con-
figuration of parts given a bounding box. We consider n
part detectors. For a given person bounding box we run
the detectors and obtain a number pi detections for part
i. Each detection j of detector i consists out of a location
xj
i and a detector score cji . A possible combination of

parts is represented by a configuration L = {l1, ..., ln},
where li ∈

{
1, ..., pi

}
represents the index to one of the pi

detections of part i (e.g. L = {2, 4} means that there are
two parts, where in this configuration for the first part
the second detection is considered and for the second
part the fourth detection).

We consider the part’s locations to be independent of
each other given the person bounding box. Finding the
optimal configuration can then be defined as an energy
minimization problem [19]. We model the costs of the
configuration to be dependent on the mismatch, mi, of
the appearance of the part and the deformation cost,
di, based on the location of each part to the person
bounding box. The optimal configuration L∗ is then
computed with:

L∗ = argmin
L

(
n∑

i=1

mli
i +

n∑
i=1

λid
li
i

)
(1)

where λi is a weight which balances the relative strength
of appearance mismatch versus deformation cost. Since

2. The dataset is available at: http://multipie.org/
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Fig. 3: Overview of our method. In the part detection stage the detectors for each of the parts are run and hypotheses
for the locations are obtained. In the part selection stage a single optimal detection is selected for each part. In the
last step, histogram representations for all parts are concatenated to form the final representation.

there are no dependencies between the part locations,
Eq. 1 can be solved for each part separately:

l∗i = argmin
li

mli
i + λid

li
i (2)

Given mi, di and λi this is therefore straightforward to
solve: the equation can be evaluated for all of the loca-
tions li where a part i was detected, after which the best
location can be established. As the appearance mismatch
cost we use minus the detector score mli

i = −clii . In the
remainder we outline our method to compute di and λi.

First consider the case where we have a set of train-
ing images with ground truth bounding boxes for the
parts. We transform all coordinates to relative coordi-
nates by subtracting the upper left coordinate of the
person bounding box, and dividing by the width and
respectively height of the bounding box (we indicate
relative coordinates with .̂). Based on the ground truth
bounding boxes we compute the mean location µ̂i and
its standard deviation σ̂i of part i. Now we can define
the deformation cost of detection li of part i to be the
normalized Euclidean distance, as given by:

dlii =
(
x̂li
i − µ̂i

)T
M−1

i

(
x̂li
i − µ̂i

)
(3)

where the matrix Mi = diag (σ̂i) contains the standard
deviation of the coordinate. Hence, the deformation cost
rises with the distance of the detection to the mean
location of the part, and rises faster for parts which are
well localized in space (i.e. which have low σ).

Above we considered the case where we have a train-
ing set with ground truth bounding boxes for the parts.
In all the data sets we consider in this paper such ground

truth is not present, and we need an automatic method to
select good detections for each of the parts. We followed
a simple procedure which was found efficient for the
data sets we considered. For each bounding box in the
training set we only consider the best detection, of these
we take the 50% of detections with the highest classifier
score. Based on this selection a first estimate of both µ̂
and σ̂ is made. We iteratively improve the estimates by
selecting the 50% closest (in normalized Euclidean sense)
and recompute µ̂ and σ̂ until convergence. This reduces
the influence of outliers on the estimates. Finally, to
determine the weights λi we use the following heuristic:
the λ’s are chosen in such a way that the average distance
between the best and second best detection is equal
for both deformation costs (times lambda) and classifier
score. By doing so, we have chosen the influence of both
cues to be equal. In Figure 4 several examples of the
selection parts are shown. One can see that incorporating
the deformation cost improves results. In the experiment
section, we will compare our approach to the baseline
method which ignores the deformation costs, and just
picks the highest scoring detection.

3.3 Combining Detector Outputs
We combine the bounding boxes of upper-body and
face selected using the approach proposed in section 3.2
with the conventional full-body person bounding box.
For gender recognition, multiple features in a spatial
pyramid representation are computed for each of the
full-body, face and upper-body boxes. The three spatial
pyramid representations are then concatenated into a
single feature vector which is then input to the gender
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Fig. 4: Results of detector output selection: in red the
highest scoring detection and in blue the detection after
taking into account the deformation cost. Top row: The
method correctly identifies the head in these four exam-
ples using the boxes from the face detector. Bottom row:
Our method accurately localizes the upper-body regions
in these examples using the upper-body detector.

classifier.
In case of action recognition, We employ the same

procedure by constructing bag-of-words based spatial
pyramid representations each for full-body, face and
upper-body boxes. The final image representation is then
obtained by concatenation of the three feature vectors
each coming from a different body part.

4 GENDER RECOGNITION

Here, we evaluate our approach for the problem of
gender recognition. We start by introducing the datasets
used in our experiments. Afterwards, we describe the
details of our experimental setup followed by the fea-
tures used in our evaluations. Finally, we provide the
results of our experiments.

4.1 Datasets

We have evaluated our approach on three challenging
gender recognition datasets namely: Human attribute,
Head-Shoulder and Proxemics. These datasets pose the
challenging problem of gender recognition “in the wild”
since the images contain persons in different poses,
viewpoints and scales.

The Human attribute [3] is the most challenging
dataset3 and comprises of 8035 images. The images are
collected from the H3D [4] and PASCAL VOC 2010 [14]
datasets. The dataset contains nine attributes where each
has a label corresponding to absent, present and unspec-
ified instances. We use the gender attribute from this
dataset for our experiments.

The Head-Shoulder [35] dataset consists of 5510 im-
ages4 of head-shoulder of men and women. This is the
largest dataset for head-shoulder based gender recogni-
tion. The dataset contains 3856 training samples (2044
men and 1812 women) and 1654 test samples (877 men
and 777 women).

Finally, we present results on the Proxemics
dataset [54]. The Proxemics dataset5 was recently
introduced for the problem of recognizing proxemics
in personal photos. We manually labeled the dataset
with gender labels. The dataset consists of 1218 samples
divided into 620 training and 598 test samples. The top
row in Figure 1 shows example images from the three
gender datasets.

4.2 Image Features
In this work, we use three visual features for image
representation commonly used for gender recognition
problem [35], [41], [6], [25].
CLBP[21]: Local binary patterns (LBP) is the most com-
monly used feature to extract texture information for
image description. The LBP descriptor has shown to ob-
tain state-of-the-art results for texture classification [29],
[21], [22] and applied successfully for gender recognition
task [41], [35]. In this paper, we employ the complete
LBP (CLBP) approach [21] where a region in an image is
represented by its center pixel and a local difference sign-
magnitude transform. In our experiments, we compute
the texture features at multiple pixel neighborhoods
and radius spacings since it was shown to improve the
performance.
PHOG[2]: To represent the shape information, we use
the popular PHOG descriptor. The descriptor captures
the local shape of an image along with its spatial layout
and has been evaluated previously for gender recogni-
tion [6], [3]. In this work, we use 20 orientation bins in
the range [0,360].
WLD[5]: The Weber Local Descriptor (WLD) has two
components. The first component extract the gradient
orientation of a pixel. The second component captures
the ratio between the relative intensity differences of
a pixel against its neighbors and the intensity of the
current pixel. The WLD descriptor has shown to pro-
vide excellent results for texture classification. Based
on its success for human face and gender recognition

3. Human attribute dataset is available at: http://www.cs.berkeley.
edu/∼lbourdev/poselets/

4. Head-Shoulder dataset is available at: http://limin81.cn/research.
html/

5. Proxemics dataset is available at: http://www.ics.uci.edu/
∼dramanan/software/proxemics/
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problems[5], [25], we also use this descriptor in our
experiments.

4.3 Spatial Pyramid Image Representation

We use the conventional pyramid scheme by [32], which
is a simple and computationally efficient method to
capture the spatial information. The spatial pyramid
scheme works by representing an image using multi-
resolution histograms, which are obtained by repeat-
edly sub-dividing an image into increasingly finer sub-
regions. The final image representation is a concatena-
tion of the histograms of all the regions. The spatial
pyramid representation has shown to provide excellent
performance for object and action recognition [27], [31].

All three features mentioned above are computed in a
spatial pyramid manner. In this work, we use a spatial
pyramid representation with three levels, yielding a total
of 14 sub-regions. Combining multiple visual features
has shown to provide improved performance [35], [25].
For each body part, we also combine the spatial pyra-
mid representations of all three features into a single
representation which is then input to the classifier. In
our experiments, we will show both the importance of
multiple features and spatial pyramid representation for
gender recognition.

4.4 Experimental Setup

We follow the same evaluation protocol as pro-
posed with the respective datasets. For Human-attribute
dataset, the performance is represented as average preci-
sion under the precision-recall curve. The results for The
Head-Shoulder dataset are represented in terms of clas-
sification accuracies. We run separate classifiers for men
and women. The final classification result is obtained as
a mean recognition rate over the two categories. For the
Proxemics dataset, we follow the same criteria used for
Human-attribute dataset by measuring average precision
under the precision-recall curve. The final performance is
calculated by taking the mean average precision over the
two categories. For classification, we use Support Vector
Machines (SVM) with a χ2 kernel [58].

4.5 Experimental Results

We start by evaluating the contribution of each Visual
feature for gender classification. In the next experiment,
we show the importance of spatial pyramid represen-
tation for improving the recognition performance. After-
wards, we demonstrate the effectiveness of our semantic
pyramid representation together with a comparison with
state-of-the-art approaches.

4.5.1 Experiment 1: Combining Visual Cues
In the first experiment, we evaluate to what extent com-
bining multiple visual cues improve the performance of
gender recognition. The experiments are performed on

Dataset CLBP[21] PHOG[2] WLD[5] Combine
Human-attribute 69.6 68.4 67.7 73.4
Head-Shoulder 76.0 81.0 70.5 85.5
Proxemics 66.2 65.2 64.7 70.6

TABLE 1: Comparison of different visual cues and
their combination on the three gender datasets. For
the Human-attribute and Proxemics dataset, the result
are shown in average precision (AP). For the Head-
Shoulder dataset, the performance is shown in terms
of recognition rate. For all datasets, the best results are
obtained by combining the three visual cues.

Dataset Level 1 level 2 Level 3
Human-attribute 73.4 76.1 77.7
Head-Shoulder 85.5 88.0 89.5
Proxemics 70.6 72.4 73.6

TABLE 2: Evaluation of spatial pyramid representation
on the three gender datasets. Level 1 corresponds to
standard image representation with no spatial pyramids.
On all three datasets, a significant gain in performance
is obtained by using the spatial pyramid representation.

the full-body of the persons without the spatial pyramid
representation.

Table 1 shows the results of combining visual cues
on the three gender datasets. On the Human-attribute
dataset, the single best feature (CLBP) provides an
average precision score (AP) of 69.6. The results are
significantly improved on all datasets when the three
visual cues are combined. The performance is improved
by 3.8% when combining multiple visual cues. Similarly,
on the Head-Shoulder and Proxemics datasets a gain of
4.5% and 4.4% is obtained when using a combination of
visual cues compared to the single best feature.

The results clearly suggest that combining multiple vi-
sual cues always provide better performance compared
to using a single visual feature for gender classification.
This further shows that the visual features used in this
paper contain complementary information and should
be combined for improve gender classification.

4.5.2 Experiment 2: Spatial Pyramid Representation
Here, we evaluate the impact of using the spatial pyra-
mid representation for gender classification. The experi-
ments are performed on the full-body of the persons us-
ing a combination of multiple visual cues. In this work,
we use a 3 level spatial pyramid: level 1 corresponds
to standard image-wide representation, level 2 contains
the 2x2 division of the image and level 3 comprises of 9
sub-window as a results of 3x3 division. For each higher
level, the histogram representations of previous levels
are concatenated (i.e. level 3 is obtained as a result of
histogram concatenation of 14 sub-windows).

Table 2 shows the results obtained by using different
level of pyramids on the three gender datasets. A signif-
icant improvement in performance is obtained by using
spatial pyramid representation on all three datasets. A
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gain of 4.3%, 4.0% and 3.0% is obtained on Human-
attribute, Head-Shoulder and Proxemics datasets respec-
tively by using the spatial pyramid scheme compared to
the standard image representation.

4.5.3 Experiment 3: Semantic Pyramid Representation
We provide the results of our semantic pyramid rep-
resentation for gender classification. We combine the
full-body, upper-body and face pyramid histograms into
a single image representation. As a baseline, we use
two approaches. In the first approach, called Horizontal
pyramids, we divide the full-body of a person into three
horizontal regions. This provides a rough estimation of
body parts without any alignment. A spatial pyramid
histogram is then computed for each horizontal region.
The three horizontal pyramid histograms are then con-
catenated into a single representation for classification.
As a second baseline, called Maximum pyramid scheme,
we directly use the bounding box with maximum confi-
dence from the detector output directly (and ignore the
deformation cost).

Table 3 shows the results using semantic pyramid
representations on the three gender datasets. Using
only the full-body based representation (FB) provides
an average precision (AP) of 77.7% and 73.6% respec-
tively on Human-attribute and Proxemics datasets. The
baseline, Horizontal Pyramids, provide inferior results
which clearly suggest that alignment of different body
parts is crucial to obtain robust semantic information.
Using the bounding box selection based on the detec-
tor confidence, Maximum pyramids, provides improved
performance for both face (FB) and upper-body (UP)
parts. Our detector output selection method, described
in Section 3.2, obtains the best results. Finally, a signif-
icant gain in classification performance is obtained by
combining the semantic pyramids of full-body (FB), face
(FC) and upper-body (UP) based representations. This
clearly shows that a single body part is sub-optimal
and different body parts should be combined for robust
gender recognition.
State-of-the-art Comparison: we compare our semantic
pyramids with state-of-the-art approaches in literature.
Table 4 shows a comparison of state-of-the-art meth-
ods with our semantic pyramids based approach on
the Human-attribute and Head-Shoulder datasets. On
the Human-attribute dataset, Cognitec which is one of
the leading face and gender recognizing tool provides
an average precision (AP) of 75.0%. The poselet based
approach [3] obtains a classification score of 82.4%.
Our semantic pyramids approach, despite its simplic-
ity, outperforms the existing methods by obtaining a
score of 84.8% on this dataset. On the Head-Shoulder
dataset, combining LBP, HOG and gabor features (MC)
provides a classification accuracy of 87.8%. Combining
multiple cues with PLS based classification approach [35]
provides a recognition score of 88.6%. Our approach
outperforms state-of-the-art methods by obtaining a clas-
sification accuracy of 92.0% on this dataset.

Dataset Cognitec [3] Poselet [3] MC [35] MC-PLS [35] Ours

Human-attribute 75.0 82.4 - - 84.8
Head-Shoulder - - 87.8 88.6 92.0

TABLE 4: Comparison of our approach with state-of-
the-art methods in literature. On the Human-attribute
dataset, our approach outperforms both professional
face-based software Cognitec and the Poselet methods.
Similarly, on the Head-Shoulder dataset, our method
outperform the previous best results obtained using
multiple cues and PLS based classification.

5 ACTION RECOGNITION

We now evaluate our approach for the task of action
recognition. In action recognition the bounding boxes
of humans performing actions are provided both at
training and test time. The task is to classify the action
associated with each bounding box. In this work, we
follow the successful bag-of-words (BOW) framework
which has shown to provide state-of-the-art performance
in literature [43], [27], [9]. Conventional pyramid rep-
resentation is used with these BOW based approaches
for action recognition. Similar to [27], we follow the
BOW approach with multiple visual cues and compare
our semantic pyramids with conventional pyramids for
action recognition.

5.1 Datasets

We evaluate our approach on four challenging bench-
mark action recognition datasets: Sports, Willow, PAS-
CAL VOC 2010 and Stanford-40. The Sports action
dataset consists of 6 action categories of humans doing
different sports. The action categories in this dataset are:
cricket batting, cricket bowling, croquet, tennis forehand,
tennis backhand and volleyball smash.6 Each of the
action category in this dataset consists of 30 training
images and 20 test images. The Willow dataset con-
sists of 7 action categories: interacting with computer,
photographing, playing music, riding bike, riding horse,
running and walking.7 The second dataset which we use
is the PASCAL VOC 2010 dataset, which comprises of 9
action categories: phoning, playing instrument, reading,
riding bike, riding horse, running, taking photo, using
computer and walking.8 Lastly, we also validate our
approach on the challenging Stanford-40 dataset, which
is the largest and most challenging action recognition
datasets currently available.9 This dataset contains out
of 9532 images of 40 different action categories such as
jumping, repairing a car, cooking, applauding, brushing
teeth, cutting vegetables, throwing a frisbee, etc.

6. The Sports dataset is available at: http://www.cs.cmu.edu/
∼abhinavg/Downloads.html/

7. The Willow dataset is available at: http://www.di.ens.fr/willow/
research/stillactions/

8. PASCAL 2010 is available at: http://www.pascal-network.org/
challenges/VOC/voc2010/

9. The Stanford-40 dataset is available at http://vision.stanford.edu/
Datasets/40actions.html
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Dataset FB Horizontal Pyramids Maximum Pyramids Semantic Pyramids
H1 H2 H3 H1+H2+H3 FC UP FB+FC+UP FC UP FB+FC+UP

Human-attribute 77.7 75.9 71.5 67.7 77.1 79.0 77.1 82.4 81.2 79.4 84.8
Head-Shoulder 89.5 83.5 84.5 81.0 85.5 87.0 87.5 90.5 88.5 89.0 92.0
Proxemics 73.6 65.4 68.8 61.7 71.3 67.1 76.3 77.9 69.9 78.1 80.5

TABLE 3: Classification performance of different methods using full-body (FB), face (FC) and upper-body (UP)
representations. For all representations, we use the same feature set. We compare our semantic pyramids with FB,
Horizontal and Maximum score based pyramid methods. Our semantic pyramids outperforms other methods on
all three datasets. Furthermore, the best results are obtained by combining our semantic FB, FC and UP pyramids.

Dataset SIFT CN Early Fusion Late Fusion C-SIFT OPP-SIFT
SP SM-SP SP SM-SP SP SM-SP SP SM-SP SP SM-SP SP SM-SP

Actions 83.3 85.8 70.1 72.3 85.8 87.5 87.4 90.0 89.1 90.0 88.2 89.3
Willow 64.9 67.3 44.7 47.6 66.6 67.3 68.1 69.2 62.6 64.3 62.9 64.0
PASCAL VOC 2010 54.1 56.5 34.4 36.6 53.0 55.1 56.9 58.5 52.7 53.9 49.8 51.7
Stanford-40 40.6 44.2 17.6 18.9 39.4 43.2 41.7 44.4 37.6 41.9 35.3 41.6

TABLE 5: Comparison of our semantic pyramids with conventional spatial pyramid approach on the four action
recognition dataset. We evaluate our approach on a variety of visual features. In all cases, our approach outperforms
the conventional spatial pyramid method on all four datasets.

5.2 Experimental Setup

As mentioned earlier, we use the popular bag-of-words
(BOW) framework with multiple visual cues. For fea-
ture detection, we use the dense sampling strategy at
multiple scales. To extract the shape features, we use the
SIFT descriptor, commonly used for shape description
in BOW models. For color feature extraction, we use the
color names [46] descriptor which has shown to provide
excellent results for action recognition [27], object detec-
tion [28] and texture classification [29]. We use a visual
vocabulary of 1000 and 500 words for SIFT and color
names respectively. Due to the large size of Stanford-40
dataset, we use a visual vocabulary of 4000 words.

To combine color names and SIFT, we use early and
late fusion approaches. In case of early fusion, a joint
visual vocabulary of color-shape words is constructed.
This results in a joint color-shape histogram represen-
tation. In early fusion, separate visual vocabularies are
constructed for both color names and SIFT. Afterwards,
the two histograms are concatenated into a single im-
age representation. For early fusion, we use a larger
vocabulary of 1500 visual words. Besides early and late
fusion, we also use the colorSIFT descriptors by [45].
Similar to early fusion, we also use a visual vocabulary
of 1500 words for colorSIFT descriptors. The image
representations are then input to a nonlinear SVM with a
χ2 kernel [58] classifier. The performance is measured as
mean average precision under the precision-recall curve
over all action categories.

For each representation, we use the conventional spa-
tial pyramid of three levels (1 × 1, 2 × 2, and 3 × 3),
yielding a total of 14 regions [32] over the bounding box
of a person. For our semantic pyramid representation,
we use the same three level pyramids for the bounding
box of a person (full-body), face and upper-body region
respectively. The spatial pyramids from the three body
parts are concatenated into a single image representa-

Fig. 5: Per-category performance comparison of our ap-
proach compared to the conventional pyramid method
on the Stanford-40 action recognition dataset. Note that
our approach improves the performance on 25 out of 40
action categories on this dataset.

tion.

5.3 Experimental Results

We first compare our semantic pyramid approach with
the conventional pyramids commonly employed in ac-
tion recognition frameworks. Afterwards, we provide a
comparison with state-of-the-art approaches on the three
action recognition datasets.
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Method HMI [39] SFC [24] MMC [56] HOI[57] Ours

Accuracy 83.0 79.0 83.0 87.0 92.5

TABLE 6: Comparison of our semantic pyramids method
with state-of-the-art results on Sports action dataset. On
this dataset, our approach outperforms the best reported
results in the literature.

5.3.1 Conventional Pyramids vs Semantic Pyramids
Here, we compare our semantic pyramid representation
with the conventional spatial pyramid scheme used in
the vast majority of action recognition frameworks. The
conventional scheme is based on constructing spatial
pyramids on the bounding box (full-body) of the person.
Similar to gender recognition, our semantic representa-
tion constructs the spatial pyramids on the full-body,
upper-body and face bounding boxes which are later
concatenated into a single image representation.

Table 5 shows the comparison of our semantic pyra-
mids (SM-SP) with conventional spatial pyramid scheme
(SP) for color, shape and color-shape features. On the
Action dataset, our approach improves the performance
from 83.3% to 85.8% for shape alone. On the Willow
dataset the spatial pyramids obtain a mean AP of 64.9%
when using shape alone. Our approach improves the
performance by 2.4% mean AP on this dataset. Similarly,
on the PASCAL VOC 2010 validation set, our method
provides a mean AP 56.5% compared to 54.1% obtained
using the conventional spatial pyramids. On the chal-
lenging Stanford-40 dataset, we obtain a significant gain
of 3.6% mean AP using shape alone. Finally, in all cases,
our approach improves the performance compared to the
conventional method.

Figure 5 shows a per-category performance compar-
ison of conventional spatial pyramids with our seman-
tic pyramids approach on the challenging Stanford-40
dataset. Our approach improves the performance on 25
out of 40 action categories on this dataset. Especially
relevant performance gains are obtained for holding-
an-umbrella (+25%), fishing (+13%), writing-on-a-board
(+11%), fixing-a-car (+10%), and watching-tv (+10%)
compared to conventional spatial pyramid approach.

5.3.2 Comparison with State-of-the-art
We compare our approach with state-of-the-art methods
in literature. To this end, we combine all the feature
representations based on semantic pyramids by adding
the individual classifier outputs. Table 6 shows a state-of-
the-art comparison on the Sports dataset. Our approach
achieves a recognition accuracy of 92.5%, which is the
best result reported on this dataset [39], [57], [56], [24].
The work of [39] obtains a recognition rate of 83.0%
by modeling interactions between humans and objects.
The approach of [57] achieves an action recognition
accuracy of 87.0% using a mutual context model that
jointly models objects and human poses. Our approach,
on this dataset, provides a gain of 5.5% compared to the
second best method.

Table 7 shows a state-of-the-art comparison on the
Willow dataset. Our approach provides the best results
on 4 out of 7 action categories on this dataset. On this
dataset, we achieve a mean AP of 72.1%, which is the
best result reported on this dataset [9], [10], [43], [27],
[44]. The work of [27] obtains a mean AP of 70.1% by
combining color fusion methods for action recognition.
Recently, Sharma et al. [44] report a mean AP of 67.6%
by learning part-based representations with the bag-of-
words based framework. Our approach provides a gain
of 2.0% mean AP on this dataset compared to the second
best method.

Table 8 shows a state-of-the-art comparison on the
PASCAL VOC 2010 test set. The method of [36] based
on poselets activation vectors obtain a mean Ap 59.7%.
The work of [39] employing a human-centric approach
to localize humans and and object-human relationships
achieve a mean AP 62.0%. The color fusion method
Khan et al. [27] obtains a mean AP 62.4%. Our approach
provides the best performance on two categories on this
dataset. The best results [55] on this dataset is achieved
by learning a sparse basis of attributes and parts. It is
worthy to mention that our approach is complemen-
tary to this method [55] since semantic pyramids is
not designed to capture the human-object interactions
explicitly. It would be interesting to combine the two ap-
proaches in order to obtain further gain in performance.

Finally, Table 9 shows the results on the most chal-
lenging Stanford-40 action recognition dataset. Sharma
et al. [44] obtains a mean AP 42.2% using an expanded
part model (EPM) approach based on learning a discrim-
inative collection of part templates. The sparse basis (SB)
approach [55] based on using attributes and parts, where
attributes represent human actions and parts are model
objects and poselets. The color fusion (CF) method by
Khan et al. [27] achieves a mean AP 51.9. On this dataset,
our approach provides a mean AP 53.0 outperforming
existing results [34], [50], [55], [27], [44] on this dataset.

6 DISCUSSION
In this paper, we have proposed a semantic pyramid
approach for pose normalization evaluated on two tasks,
namely gender and action recognition. Our approach
combines information from the full-body, upper-body
and face regions of a person in an image. State-of-the-art
upper-body and face detectors are used to automatically
localize respective body parts of a person. Each body
part detector provides with multiple bounding boxes
by firing at multiple locations in an image. We then
proposed a simple approach to select the best candidate
bounding box for each body part. Image representation
based on spatial pyramids is then constructed for each
body part. The final representation is obtained by con-
catenating the full-body, upper-body and face pyramids
for each instance of a person.

Our approach for gender recognition is evaluated
on three challenging datasets: Human-attribute, Head-
Shoulder and Proxemics. We show that relying on single
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int. computer photographing playingmusic ridingbike ridinghorse running walking mean AP
Delaitre et al.[9] 58.2 35.4 73.2 82.4 69.6 44.5 54.2 59.6

Delaitre et al.[10] 56.6 37.5 72.0 90.4 75.0 59.7 57.6 64.1
Sharma et al.[43] 59.7 42.6 74.6 87.8 84.2 56.1 56.5 65.9
Khan et al.[27] 61.9 48.2 76.5 90.3 84.3 64.7 64.6 70.1

Sharma et al.[44] 64.5 40.9 75.0 91.0 87.6 55.0 59.2 67.6
Khan et al.[30] 67.2 43.9 76.1 87.2 77.2 63.7 60.6 68.0
Our approach 66.8 48.0 77.5 93.8 87.9 67.2 63.3 72.1

TABLE 7: Comparison of our semantic pyramids approach with state-of-the-art results on the Willow dataset. Our
approach provides best results on 4 out of 7 action categories on this dataset. Moreover, we achieve a gain of 2.0
mean AP over the best reported results.

phoning playingmusic reading ridingbike ridinghorse running takingphoto usingcomputer walking mean AP
Maji et al.[36] 49.6 43.2 27.7 83.7 89.4 85.6 31.0 59.1 67.9 59.7

Shapovalova et al.[42] 45.5 54.5 31.7 75.2 88.1 76.9 32.9 64.1 62.0 59.0
Delaitre et al.[10] 48.6 53.1 28.6 80.1 90.7 85.8 33.5 56.1 69.6 60.7

Yao et al.[55] 42.8 60.8 41.5 80.2 90.6 87.8 41.4 66.1 74.4 65.1
Prest et al.[39] 55.0 81.0 69.0 71.0 90.0 59.0 36.0 50.0 44.0 62.0
Khan et al.[27] 52.1 52.0 34.1 81.5 90.3 88.1 37.3 59.9 66.5 62.4
Our approach 52.2 55.3 35.4 81.4 91.2 89.3 38.6 59.6 68.7 63.5

TABLE 8: Comparison of our semantic pyramids approach with state-of-the-art methods on the PASCAL VOC
2010 test set. Our approach, despite its simplicity, achieves the best performance on two categories while providing
competitive performance compared to state-of-the-art methods.

Method OB [34] LLC [50] SB [55] CF[27] EPM[44] Ours

mAP 32.5 35.2 45.7 51.9 42.2 53.0

TABLE 9: Comparison of our semantic pyramids method
with state-of-the-art results on Stanford-40 dataset. On
this dataset, our approach outperforms the best reported
results in the literature.

body part for recognizing gender is sub-optimal espe-
cially in real-world datasets where the images contain
back-facing people, low resolution faces, different cloth-
ing types and body proportions. This is validated by
our results, which found that faces provide the best
performance on Human-attribute dataset, full-bodies are
the best choice for the Head-Shoulder dataset and the
upper-body region is the best for the Proxemics dataset.
Our approach, that combines the semantic information
from these three body parts, provides significant im-
provement on all three challenging real-world gender
datasets. The results clearly demonstrate the effective-
ness of combining different semantic regions obtained
using a detector output selection strategy. This is further
validated by our results on the Human-attribute dataset
where our approach significantly outperforms a lead-
ing professional face and gender recognizing software,
Cognitec, which uses careful alignment and advanced
proprietary biometric analysis.

We have also evaluated our semantic pyramid ap-
proach for the task of action recognition in still images.
We validate the performance of our method on three
challenging action recognition datasets: Willow, PASCAL
VOC 2010nd Stanford-40. On all three datasets, our
results clearly suggest that combining full-body, face
and upper-body regions improves the performance com-
pared to the conventional approaches relying on full-
body only. Our semantic approach significantly outper-

forms the conventional pyramid based method on all
three datasets, thereby showing the importance of pose
normalization.

Most of the action categories such as phoning, taking
photo, playing guitar, feeding horse etc. contain objects
associated with the action in the upper region of the
person. The explicit use of an upper-body detector can
better capture these associated objects. This is especially
demonstrated on the challenging Stanford-40 dataset,
where our approach when using shape alone improves
the performance on 25 out of 40 action categories com-
pared to conventional scheme based on full-body only.
The results clearly suggest that pose normalization by
means of semantic pyramids improves action recogni-
tion; in most cases leading to state-of-the-art perfor-
mance.
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