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fahad.khan@liu.se,

2 Computer Vision Center, CS Dept. Universitat Autonoma de Barcelona, Spain
3 SPCOMNAV, Universitat Autonoma de Barcelona, Spain

Abstract. State-of-the-art texture descriptors typically operate on grey
scale images while ignoring color information. A common way to obtain
a joint color-texture representation is to combine the two visual cues at
the pixel level. However, such an approach provides sub-optimal results
for texture categorisation task.
In this paper we investigate how to optimally exploit color information
for texture recognition. We evaluate a variety of color descriptors, pop-
ular in image classification, for texture categorisation. In addition we
analyze different fusion approaches to combine color and texture cues.
Experiments are conducted on the challenging scenes and 10 class tex-
ture datasets. Our experiments clearly suggest that in all cases color
names provide the best performance. Late fusion is the best strategy to
combine color and texture. By selecting the best color descriptor with
optimal fusion strategy provides a gain of 5% to 8% compared to texture
alone on scenes and texture datasets.
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1 Introduction

Texture categorisation is a difficult task. The problem involves assigning a class
label to the texture category it belongs to. Significant amount of variations in
images of the same class, illumination changes, scale and viewpoint variations
are some of the key factors that make the problem challenging. The task consists
of two parts, namely, efficient feature extraction and classification. In this work
we focus on obtaining compact color-texture features to represent an image.

State-of-the-art texture descriptors operate on grey level images. Color and
texture are two of the most important low level visual cues for visual recognition.
A straight forward way to extend these descriptors with color is to operate on
separately on the color channels and then concatenate the descriptors. However
such representations are high dimensional. Recently, it has been shown that
an explicit color representation improves performance on object recognition and
detection tasks [5, 3]. Therefore, this work explores several pure color descriptors
popular in image classification for texture categorisation task.



There exist two main approaches to combine color and texture cues for tex-
ture categorisation.
Early Fusion: Early fusion fuses the two cues at the pixel level to obtain a joint
color-texture representation. The fusion is obtained by computing the texture
descriptor on the color channels. Early fusion performs best for categories which
exhibit constancy in both color and shape [5].
Late Fusion: Late fusion process the two visual cues separately. The two his-
tograms are concatenated into a single representation which is then the input to
a classifier. Late fusion combines the visual cues at the image level. Late fusion
works better for categories where one cue remains constant and the other changes
significantly [5]. In this work we analyze both early and late fusion approaches
for the task of texture categorisation.

As mentioned above, state-of-the-art early fusion approaches [10] combine
the features at the pixel level. Contrary to computer vision, it is well known
that visual features are processed separately before combining at a later stage
for visual recognition in human brain [13, 17]. Recently, Khan et al. [4] propose
an alternative approach to perform early fusion for object recognition. The vi-
sual cues are combined in a single product vocabulary. A clustering algorithm
based on information theory is then applied to obtain a discriminative compact
representation. Here we apply this approach to obtain a compact early fusion
based color-texture feature representation.

In conclusion, we make the following novel contributions:

– We investigate state-of-the-art color features used for image classification for
the task of texture categorisation. We show that the color names descriptor
with its only 11 dimensional feature vector provides the best results for
texture categorisation.

– We analyze fusion approaches to combine color and texture. Both early and
late feature fusion is investigated in our work.

– We also introduce a new dataset of 10 different and challenging texture cat-
egories as shown in Figure 1 for the problem of color-texture categorisation.
The images are collected from the internet and Corel collections.

2 Relation to Prior Work

Image representations based on color and texture description are an interesting
research problem. Significant amount of research has been done in recent years
to the solve the problem of texture description [6, 8, 14, 7]. Texture description
based on local binary patterns [8] is one of the most commonly used approach
for texture classification. Other than texture classification, local binary patterns
have been employed for many other vision tasks such as face recognition, object
and pedestrian detection. Due to its success and wide applicability, we also use
local binary patterns for texture categorisation in this paper1.

1 We also investigated other texture descriptors such as MR8 and Gabor filters but
inferior results were obtained compared to LBP. However, the approach presented
in this paper can be applied with any texture descriptor.



Color has shown to provide excellent results for bag-of-words based object
recognition [10, 5]. Recently, Khan et al. [5, 3] have shown that an explicit rep-
resentation based on color names outperforms other color descriptors for object
recognition and detection. However, the performance of color descriptors, popu-
lar in image classification, has yet to be investigated for texture categorization
task. Therefore, in this paper we investigate the contribution of color for texture
categorization. Different from the previous methods [12, 11], we propose to use
color names as a compact explicit color representation. We investigate both late
and early fusion based global color-texture description approaches. Contrary to
conventional pixel based early fusion methods, we use an alternative approach
to construct a compact color-texture image representation.

3 Pure Color Descriptors

Here we show a comparison of pure color descriptors popular in image classifi-
cation for texture description.
RGB histogram [10]: As a baseline, we use the standard RGB descriptor. The
RGB histogram combines the three histograms from the R, G and B channels.
The descriptor has 45 dimensions.
rg histogram [10]: The histogram is based on the normalized RGB color model.
The descriptor is 45 dimensional and invariant to light intensity changes and
shadows.
C histogram: This descriptor has shown to provide excellent results on the
object recognition task [10]. The descriptor is derived from the opponent color
space as O1

O3 and O2
O3 . The channels O1 and O2 describe the color information.

Whereas O3 channel contains the intensity information in an image. We quantize
the descriptor into 36 bins using K-means to construct a histogram.
Opponent-angle histogram [16]: The opponent-angle histogram proposed by
van de Weijer and Schmid is based on image derivatives. The histogram has 36
dimensions.
HUE histogram [16]: The descriptor was proposed by [16] where hue is
weighted by the saturation of a pixel in order to counter the instabilities in
hue. This descriptor also has 36 dimensions.
Transformed Color Distribution [10]: The descriptor is derived by normal-
izing each channel of RGB histogram. The descriptor has 45 dimensions and is
invariant to scale with respect to light intensity.
Color Moments and Invariants [10]: In the work of [10] the color moment
descriptor is obtained by using all generalized color moments up to the second
degree and the first order. Whereas color moment invariants are constructed
using generalized color moments.
Hue-saturation descriptor: The hue-saturation histogram is invariant to lu-
minance variations. It has 36 dimensions (nine bins for hue times four for satu-
ration).
Color names [15]: Most of the aforementioned color descriptors are designed
to achieve photometric invariance. Instead, color names descriptor balances a



certain degree of photometric invariance with discriminative power. Humans use
color names to communicate color, such as “black”, “blue” and “orange”. In this
work we use the color names mapping learned from the Google images [15].

4 Combining Color and Texture

Here we discuss different fusion approaches to combine color and texture features.
Early Fusion: Early fusion involves binding the visual cues at the pixel level.
A common way to construct an early fusion representation is to compute the
texture descriptor on the color channels. Early fusion results in a more discrim-
inative representation since both color and shape are combined together at the
pixel level. However, the final representation is high dimensional. Constructing
an early fusion representation using color channels with a texture descriptor for
an image I is obtained as:

TE = [TR, TG, TB ], (1)

Where T can be any texture descriptor. Most color-texture approaches in liter-
ature are based on early fusion approach [11, 10]. Recently, Khan et al. [5] have
shown that early fusion performs better for categories that exhibit constancy of
both color and shape. For example, the foliage category has a constant shape
and color.
Late Fusion: Late fusion involves combining visual cues at the image level. The
visual cues are processed independently. The two histograms are then concate-
nated into a single representation before the classification stage. Since the visual
cues are combined at the histogram level, the binding between the visual cues is
lost. A late fusion histogram for an image is obtained as,

TL = [HT , HC ] , (2)

Where HT and HC are explicit texture and color histograms. Late fusion pro-
vides superior performance for categories where one of the visual cues changes
significantly. For example, most of the man made categories such as car, motor-
bike etc. changes significantly in color. Since an explicit color representation is
used for late fusion, it is shown to provide superior results for such classes [5].
Portmanteau Fusion: Most theories from the human vision literature suggest
that the visual cues are processed separately [13, 17] and combined at a later
stage for visual recognition. Recently, Khan et al. [4] propose an alternative
solution for constructing compact early fusion within the bag-of-words frame-
work. Color and shape are processed separately and a product vocabulary is
constructed. A Divisive information theoretic clustering algorithm (DITC) [1] is
then applied to obtain a compact discriminative color-shape vocabulary. Sim-
ilarly, in this work we also aim at constructing a compact early fusion based
color-texture representation2.

2 In our experiments we also evaluated PCA and PLS but inferior results were ob-
tained. A comparison of other compression techniques with DITC is also performed
by [2].



Here we construct separate histograms for both color and texture and product
histogram is constructed. Suppose that T = {t1, t2, ..., tL} and C = {c1, c2, ..., cM}
represent the visual texture and color histograms, respectively. Then the product
histogram is given by

TC = {tc1, tc2, ..., tcS} = {{ti, cj} | 1 ≤ i ≤ L, 1 ≤ j ≤M},

where S = L ×M . The product histogram is equal to number of texture bins
times number of color histogram bins. This leads to high dimensional feature
representation. This product histogram is then input to the DITC algorithm to
obtain a low dimensional compact color-texture representation. The DITC algo-
rithm works on the class-conditional distributions over product histograms. The
class-conditional estimation is measured by the probability distribution p (R|tcs),
where R = {r1, r2, ..rO} is the set of O classes. The DITC algorithm works by
estimating the drop in mutual information I between the histogram TC and
the class labels R. The transformation from the original histogram TC to the
new representation TCR = {TC1, TC2, ..., TCJ} (where every TCj represents a
group of clusters from TC) is equal to

I (R;TC)− I
(
R;TCR

)
=

J∑
j=1

∑
tcs∈TCj

p (tcs)KL(p(R|tcs), p(R|TCj)), (3)

where KL is the Kullback-Leibler divergence between the two distributions de-
fined by

KL(p1, p2) =
∑
y∈Y

p1(y)log
p1(y)

p2(y)
. (4)

The algorithm finds a desired number of histogram bins based on minimizing
the loss in mutual information between the bins of product histogram and the
class labels of training instances. Histogram bins with similar discriminative
power are merged together over the classes. We refer to Dhillon et al. [1] for a
detail introduction on the DITC algorithm.

5 Experimental Results

To evaluate the performance of our approach we have collected a new dataset
of 400 images for color-texture recognition. The dataset consists of 10 different
categories namely: marble, beads, foliage, wood, lace, fruit, cloud, graffiti, brick
and water. We use 25 images per class for training and 15 instances for testing.
Existing datasets are either grey scale, such as the Brodatz set, or too simple,
such as the Outex dataset, for color-texture recognition. Texture cues are also
used frequently within the context of object and scene categorisation. Therefore,



Fig. 1. Example images from the two datasets used in our experiments. First row:
images from the OT scenes dataset. Bottom row: images from our texture dataset.

we also perform experiments on the challenging OT scenes dataset [9]. The OT
dataset [9] consists of 2688 images classified as 8 categories. Figure 1 shows
example images from the two datasets.

In all experiments a global histogram is constructed for the whole image.
We use LBP with uniform patterns having final dimensionality of 383. Early
fusion is performed by computing the texture descriptor on the color channels.
For late fusion, histograms of pure color descriptor is concatenated with a tex-
ture histogram. A non-linear SVM is used for classification. The performance is
evaluated as a classification accuracy which is the number of correctly classified
instances of each category. The final performance is the mean accuracy obtained
from all the categories. We also compare our approach with color-texture de-
scriptors proposed in literature [11, 7].

5.1 Experiment 1: Pure Color Descriptors

We start by providing results on the pure color descriptors discussed in Section 3.
The results are presented in Table 1. On both datasets, the baseline RGB pro-
vides improved results compared to several other sophisticated color desccriptors.
Among all the descriptors, the color names descriptor provides best results on
both datasets. Note that color names being additionally compact, possesses a
certain degree of photometric invariance together with discriminative power. It
has the ability to encode achromatic colors such as grey, white etc. Based on
these results, we propose to use color names as an explicit color representation
to combine with texture cue.

Method Size OT [9] Texture
RGB 45 43 51

rg 30 39 50
HUE 36 38 43

C 36 39 41
Opp-angle 36 33 27

Transformed color 45 40 41
Color moments 30 42 50

Color moments inv 24 23 34
HS 36 37 42

Color names 11 46 56

Method Size OT [9] Texture
RGB LBP 383 + 45 79 74

rg LBP 383 + 30 80 69
HUE LBP 383 + 36 80 74

C LBP 383 + 36 79 73
Opp-angle LBP 383 + 36 79 74

Transformed color LBP 383 + 45 79 72
Color moments LBP 383 + 30 80 74

Color moments inv LBP 383 + 24 23 71
HS LBP 383 + 36 79 72

Color names LBP 383 + 11 82 77
(a) (b)

Table 1. Classification accuracy on the two datasets. (a) Results using different pure
color descriptors. Note that on both datasets color names being additionally compact
provides the best results. (b) Scores using late fusion approaches. On both datasets
late fusion using color names provides the best results while being low dimensional.



5.2 Experiment 2: Fusing Color and Texture

Here, we first show results obtain by late fusion approaches in Table 1. The
texture descriptor with 383 dimensions provides a classification score of 77%
and 69% respectively. The late fusion of RGB and LBP provides a classifica-
tion score of 79% and 74%. The STD [11] descriptor provides inferior results
of 58% and 67% respectively. The best results are obtained on both datasets
using the combination of color names with LBP. Table 2 shows results obtained
using early fusion approaches on the two datasets. The conventional pixel based
descriptors provide inferior results on both datasets. The LCVBP descriptor [7]
provides classification scores of 76% and 53% on the two datasets. By taking the
product histogram directly without compression provides an accuracy of 81%
and 72% while being significantly high dimensional. It is worthy to mention that
both JTD and LCVBP descriptors are also significantly high dimensional. The
portmanteau fusion provides the best results among early fusion based methods
while additionally being compact in size.

In summary late fusion provides superior performance while being compact
on both datasets. Among early fusion based methods portmanteau fusion pro-
vides improved performance on both datasets. The best results are achieved
using the color names descriptor. Color names having only an 11 dimensional
histogram is compact, possesses a certain degree of photometric invariance while
maintaining discriminative power. Note that in this paper we investigate global
color-texture representation. Such a representation can further be combined with
local bag-of-words based descriptors for further improvement in performance.

Method Dimension OT [9] Texture

RGBLBP 1149 79 70
CLBP 1149 78 69

OPPLBP 1149 80 70
HSVLBP 1149 78 71
JTD [11] 15625 57 61

LCVBP [7] 15104 76 53
Product 4213 81 72

Portmanteau fusion 500 82 73
Table 2. Classification accuracy using early fusion approaches. Among early fusion
approaches, portmanteau fusion provides the best results on both datasets while addi-
tionally being compact.

6 Conclusions

We evaluate a variety of color descriptors and fusion approaches popular in
image classification for texture recognition. Our results suggest that color names
provides the best performance for texture recognition. Late fusion is an optimal
approach to combine the two cues. Portmanteau fusion provides superior results
compared to conventional pixel level early fusion. On scenes and texture datasets,



color names in a late fusion settings significantly improve the performance by
5% to 8% compared to texture alone.
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