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Abstract

We propose to use high-level visual information to im-
prove illuminant estimation. Several illuminant estimation
approaches are applied to compute a set of possible illu-
minants. For each of them an illuminant color corrected
image is evaluated on the likelihood of its semantic content:
is the grass green, the road grey, and the sky blue, in cor-
respondence with our prior knowledge of the world. The
illuminant resulting in the most likely semantic composition
of the image is selected as the illuminant color. To evalu-
ate the likelihood of the semantic content, we apply prob-
abilistic latent semantic analysis. The image is modelled
as a mixture of semantic classes, such as sky, grass, road,
and building. The class description is based on texture, po-
sition and color information. Experiments show that the
use of high-level information improves illuminant estima-
tion over a purely bottom-up approach. Furthermore, the
proposed method is shown to significantly improve seman-
tic class recognition performance.

1. Introduction
Light reflected by an object which enters the eye, or a

camera, is a product of the object reflectance properties and
the illuminant spectrum. The task of color constancy is to
disentangle the two, allowing to recognize the colors of ob-
jects independent of the color of the illuminant. Computa-
tional color constancy is relevant for many computer vision
task such as object recognition, tracking, and surveillance
[3, 4, 11]. In addition, it allows for illuminant correction
of images, with the aim to present images consistent with
human perception of the world.

Computational color constancy research can be roughly
divided in two approaches. One line of research focusses
on illuminant invariant representations, which are primar-
ily based on color differences between different patches in
the image [14, 16, 17, 30]. The second, and more promi-
nent line of color constancy research aims at estimating the
color of the illuminant, after which the image can be cor-

rected to how it would appear under a canonical, usually
white, illuminant [4, 6, 9, 10, 13, 29]. This second line of
color constancy research has the advantage that it allows for
correcting the image for deviations from a canonical light
source.

Several color constancy methods return a set of possible
illuminants, from which one is to be selected [9, 13]. The
subsequent selection procedures are often based on a heuris-
tic, such as taking the average color of all possible illumi-
nants [1]. Tous [28] considers the low-level image infor-
mation, on which these color constancy methods are based,
insufficient to select between a set of possible illuminants.
Consequently, he proposes to return a set of solutions to
the computer vision application, leaving the selection of the
actual illuminant to the application. Another approach has
been proposed by Gijsenij and Gevers [18], who use image
statistics to decide on the most appropriate color constancy
method given an image. All these methods are similar in
that the illuminant estimation is based purely on bottom-up
information, and high-level top-down information is disre-
garded. In this paper, we will explore the use of high-level
visual information to select the most likely illuminant of a
scene.

A motivation for the use of high-level visual information
for color constancy can be found in recent human vision re-
search. The mechanisms underlying human color constancy
are still poorly understood. Most research uses collages of
color patches in a 2D plane, so called Mondrian images, to
infer mechanism of human color constancy [23]. Experi-
ments on more real world like settings were performed by
Kraft and Brainard [21], in which they proved that bottom-
up clues, such as inter-reflections, specularities, and the
range of colors present in a scene, all contribute to human
color constancy. However, the scene still consisted of ab-
stract objects, such as colored squares, and specular cylin-
ders. Only recently research investigated the use of high-
level visual information to obtain color constancy. Hansen
et al. [19] illuminated fruit objects with an adjustable light
source. They asked human observers to adjust the color of
the light source such that the natural fruit objects appeared



achromatic. When the illuminant was adjusted to the point
that the physical reflectance of the object was achromatic,
observers still perceived a color sensation. The fruit objects
only looked achromatic when the illuminant was shifted fur-
ther away from the grey point in the direction opposite to the
fruit color. This implies that high-level information of the
objects color plays a role in human color constancy.

The first contribution of this article is the use of high-
level visual information to select the best illuminant out of a
set of possible illuminants. We achieve this by restating the
problem in terms of semantic interpretability of the image.
Which of the illuminants results in a likely image interpre-
tation, i.e., an image where the sky is blue and in the top
of the image, and the road is grey and in the bottom can be
considered more likely than an image with purple grass sur-
rounding a reddish cow. Several color constancy methods
are applied to generate a set of illuminant hypotheses. For
each illuminant hypothesis, we correct the image, and eval-
uate the likelihood of the semantic content of the corrected
image. Finally, the most likely illuminant color is selected.

As a second contribution, we extend the set of illumi-
nant hypotheses with a set of top-down hypotheses based
on the assumption that the average reflectance of semantic
classes in an image is equal to the average reflectance of
the semantic topic in the database. For each of the seman-
tic classes present in the image we compute the illuminant
which transforms the pixels assigned to this class in such a
way that the average reflectance is in accordance with the
average color of the class in the database. For example, a
patch of grass which turned reddish in the evening light,
will correctly hypothesize a red illuminant, since such an
illuminant will transform it to green under white light.

In contrast with existing work on color constancy, which
uses a purely bottom-up approach, we investigate to what
extent top-down color constancy can improve results. Both
contributions, the selection mechanism based on the seman-
tic likelihood and the generation of top-down illuminant hy-
potheses, are derived from the idea that high-level informa-
tion plays an important role in color constancy.

2. Probabilistic Color Constancy
In this section, we state the illuminant estimation prob-

lem in a probabilistic manner and give an overview of our
method.

Probabilistic approaches compute the probability of an
illuminant given the image data P (c| f). The illuminant
of a scene is that illuminant which is most likely given the
image data

cmax = argmax
c∈C

log (P (c| f)) (1)

where f = (R, G,B)T , and C is the set of possible illumi-
nants c, which choice we will discuss later. Bold fonts are

applied for vectors. Now assume that we have a function g
which, if we know the illuminant of the scene, transforms
the image as if it were taken under white light

g (fc, c) = fw, (2)

where superscript c denotes the image’s illuminant and w
indicates the white illuminant. Then, the probability that
the image f is taken under illuminant c is equal to the prob-
ability that the transformed image g (fc, c) is taken under a
white illuminant:

P (c| f) = P (w| g (f , c)) . (3)

Applying this to Eq. 1 yields

cmax = argmax
c∈C

log (P (w| g (f , c))) . (4)

This equation will be applied to select the illuminant color.
This equation selects that illuminant cmax which maximizes
the probability that the color corrected image g (f , cmax)
was taken under white lighting.

Probabilistic color constancy is based on choosing the
most likely illuminant given the image data. Methods very
close to the formulation in Eq. 4 have been proposed in lit-
erature [5, 10]. However, these methods interpret the prob-
ability in a purely bottom-up way. They are based on the
probability of an RGB value to occur under a particular
light source. Here we will propose an integrated bottom-
up and top-down approach, where both the pixel values in
the image and the semantic interpretation of the image as a
whole influence the probability of the illuminant given the
image data.

The success of color constancy as derived from Eq. 4 de-
pends on two points. Firstly, how do we compute the chance
that an image is taken under white light P (w| f), and how
can we incorporate high-level information in this probabil-
ity. Secondly, since it is unfeasible to evaluate Eq. 4 for all
possible illuminants c, how do we select a plausible set of
color illuminants for a scene. An overview of our approach
is given in Fig. 1. For an input image a set of bottom-up and
top-down illuminant hypotheses are computed (explained in
Section 4). For each of these hypotheses the image is cor-
rected and subsequently evaluated on the likelihood of its
semantic content (explained in Section 3). The illuminant
which results in the most probable image content is con-
sidered to be the illuminant of the input image. In the de-
picted case, the method estimates the illuminant to be red-
dish, since after correcting for this light source the image
could be interpreted as green grass under a blue sky.

For the function g, which transforms an image fc taken
under illuminant c to an image fw taken under a white illu-
minant, we use a multiplication with a diagonal matrix.

g (fc, c) = Dcfc = fw (5)



with
D = diag (w) (diag (c))−1 (6)

This model is called the diagonal model, or von Kries
model, and has been proven to sufficiently approximate re-
ality [2, 8].

3. Images as a Mixture of Semantic Classes
In this section, we describe how to compute the proba-

bility of an image to occur under a white light source. For
this purpose we will model images as a mixture of semantic
classes, such as sky, grass, road and building. Each class is
described by a distribution over visual words, which are de-
scribed by three modalities texture, color and position. As
an example, consider an image with sky and grass. This im-
age will consist of visual words which are drawn form the
distributions of sky and grass. Given these visual words, we
will attempt to infer what classes are present in the image.
Given the inferred classes and the visual words we compute
a likelihood of the image, which we call the semantic like-
lihood of the image. For this purpose we use Probabilistic
Latent Semantic Analysis (PLSA), a generative model in-
troduced by Hofmann [20] for document analysis. Recently,
PLSA models have shown good results for classification of
pixels into semantic classes [27, 31].

Images are modelled as a mixture of latent topics. The
topics are semantic classes in the image such as sky, grass,
road, building, etc. They are described by a distribution
over visual words. As visual descriptors we use 20x20
patches which are extracted on a regular grid from the im-
age. Each patch, or visual word, is described by three
modalities: 1. texture, which is described with the SIFT de-
scriptor [24] , 2. color, which is described by the Gaussian
averaged RGB value over the patch, and 3. position, which
is described by imposing a 8x8 grid of regular cells on the
image. Both the texture and color features are discretized
by Kmeans clustering. We use a texture vocabulary of 750
words, and a color vocabulary of 1000 words. The position
is described by 64 words, each referring to one of the 64
cells.

Given a set of images F = {f1, ..., fN} each described in
a visual vocabulary V = {v1, ..., vM}, the words are taken
to be generated by latent topics Z = {z1, ..., zK}. In the
PLSA model the conditional probability of a visual word v
in an image f and an illuminant c is given by:

P (v| f , c) =
∑

zc∈Zc

P (v| zc)P (zc| f) . (7)

where zc indicates that the topic distribution has been com-
puted from a data set which was taken under illuminant c.
Similar to the approach of Verbeek and Triggs [31], we as-
sume the three modalities to be independent given the top-
ics,

P (v|z) = P
(
vT |z)

P
(
vC |z)

P
(
vP |z)

, (8)
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Figure 1. Overview of our approach. See text for details.

where vT , vC , vP , are successively the texture, color and
position word. The distributions P (z|f) and the vari-
ous P (v|z)’s are discrete, and can be estimated using an
EM algorithm [20].

We set out to compute the chance that an image was
taken under white light, which according to Bayes law is
proportional to

P (w|f) ∝ P (f |w) P (w) . (9)

If we assume a uniform distribution over the illuminants
p (w), this can be rewritten using Eq. 7 to,

P (w|f) ∝ P (f |w) =
M∏

m=1
P (vm|f ,w)

=
M∏

m=1

∑
zw∈Zw

P (vm|zw)P (zw|f),
(10)

where P (vm|zw) means that the visual word topic distribu-
tions are learned from images taken under white light.

Let us consider what happens with Eq. 10 when we eval-
uate various illuminants. For the sake of simplicity we
consider here that the texture descriptors do not change
when varying the illuminant, although in the real imple-
mentation they are recomputed for each illuminant. By
varying the illuminant color we change the color word vC

and via P
(
vC |z)

both P (v|z) and the topic distribution in
the image P (z|f). The image will be more likely when



P
(
vC |z)

corresponds with the combined distribution of
P

(
vT |z)

P
(
vP |z)

. This means that illuminants become
more likely when the color words they generate are in ac-
cordance with the texture and position information. Hence,
color words representing green are more likely together
with texture words describing grass, and a sky like texture
in the top of the image is more likely to be blue.

The approach described here is related to the work of
Manduchi [25], who uses the color similarity between a test
image and labelled classes1 in one training image taken un-
der white light to estimate the illuminant color. The classes
are described by a Gaussian color distribution. Each pixel
is assigned to a class and an illuminant to optimize the like-
lihood of the image. The method has the advantage that
multiple illuminants are allowed within an image. How-
ever, the methods is only demonstrated to succeed when a
single training image, similar to the test image, is available.
This might be due to the limited discriminative power of the
class description, in which multi-modality in color space, as
well as texture and position information are disregarded.

4. Casting Illuminant Hypotheses
Evaluating Eq. 4 for all possible illuminants is not feasi-

ble. Instead, we propose to evaluate only a subset of color
illuminants, which we call illuminant hypotheses. From
these illuminant hypotheses the illuminant which is most
likely given the image is selected. We propose two ways to
generate hypotheses: a bottom-up approach and a top-down
approach.
Bottom-up hypotheses: We can use existing color con-
stancy algorithms to generate a set of possible illuminant
colors for a scene. We call this approach bottom-up because
these color constancy methods do not use any high-level vi-
sual information in the image. Here we choose to use a
set of color constancy methods based on low-level features.
Finlayson and Trezzi [12] unified two simple, broadly used,
color constancy methods, by proving that the two methods
are actually two instantiations of the Minkowski norm of an
image: (

N∑

i=1

(fi (x))p

) 1
p

= kc (11)

where i is counter over the N pixels fi, and k is a con-
stant which is chosen such that the illuminant color c has
unit length. The parameter p is the Minkowski norm. For
p = 1 the illuminant estimate is equal to color constancy
derived from the Grey-World hypothesis, which assumes
the average reflectance in a scene to be grey [6]. Using
p = ∞ the illuminant estimate is equal to the max-RGB
method [22] which assumes the maximum responses of the

1These classes are not semantically meaningful as in this paper and are
labelled ”class I”, ”class II”, etc.
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Figure 2. Overview of top-down casting of illuminant hypotheses.
See text for details.

separate channels to be equal to the illuminant color. Re-
cently this framework was further extended to include edge-
based color constancy [29]:

(
N∑

i=1

∣∣∣∣
∂nfi (x)

∂xn

∣∣∣∣
p
) 1

p

= kc (12)

where n indicates the order of differentiation. For n = 1
the method is equal to assuming that the average edge dif-
ference in a scene is grey.

In the experimental section we apply Eq. 12 to gen-
erate a set of illuminant color hypotheses. We will use
n = {0, 1, 2} and p = {2, 12} to compute six illuminant
estimates. These six hypotheses are subsequently evaluated
with Eq. 4 to select the most probable bottom-up illumi-
nant. In the literature [12, 29] these color constancy meth-
ods were found to achieve comparable results to more com-
plex methods such as color-by-correlation [10] and gamut
mapping [13]. We cast one extra hypothesis which states
that the image was taken under white light and no color cor-
rection is required.
Top-down hypotheses: Bottom-up approaches typically
fail when the statistics of the image values are insufficiently
distributed. For such images ignoring color information for



recognition of semantic classes and relying instead on only
position and texture information might yield a better inter-
pretation of the image. We will here propose a method to
exploit this information to compute a set of top-down color
illuminant hypotheses. This is the second contribution of
our paper.

In an extension to the Grey-World algorithm, which as-
sumes the average reflectance in a scene to be achromatic,
Gershon et al. [15] showed that for a coherent database,
assuming the average of a scene to be equal to the aver-
age reflectance of the database, improves results over the
Grey-World algorithm. As an example, they mention for-
est pictures full of green colors. In that case, most color
constancy methods will predict illuminants biased towards
the green color, whereas the database compensated algo-
rithm resolves this problem. Since the eighties in which this
algorithm has been proposed, the ability to extract the se-
mantic information of an image has improved significantly.
This increased semantic understanding of images can be
used to precise Gershon’s approach to semantic classes in
the image. Therefore we propose the following color con-
stancy hypothesis, which we call the Green-Grass hypothe-
sis: the average reflectance of a semantic class in an image
is equal to the average reflectance of the semantic topic in
the database

∑
i∈T s

fi (x) = k diag (ds) cs

ds =
∑

i∈Ds

Fi (x), (13)

where T s is the set of indexes to pixels in image f assigned
to semantic topic s, F is the collection of all pixels in the
training data set, Ds are the indexes to all pixels assigned
to semantic topic s, and cs is the estimate of the illuminant
color based on topic s.

Fig. 2 presents an overview of the top-down casting of
illuminant hypotheses. For each detected class in the im-
age an illuminant hypothesis is casted. These hypotheses
are subsequently evaluated based on the likelihood of their
semantic content. In the above example the road is wrongly
identified as water. The derived illuminant transforms the
road pixels into blue which is the database average for the
class water. The semantic likelihood, however, will prefer
the hypothesis based on the tree-class, which considers the
image to exist out of green trees above a grey road, thereby
correctly estimating a reddish-yellow evening sun.

As depicted in Fig. 1 the bottom-up and top-down hy-
potheses are combined to compute a most likely illuminant
for an image.

5. Experiments
In the experiments we evaluate the performance-gain of

using high-level visual information. Firstly, we test our

method on a traditional color constancy task, where the aim
is to estimate the color of the illuminant and ground truth
information is available. Secondly, we test the performance
of the color constancy algorithm on a computer vision task,
namely the classification of image pixels into a set of se-
mantic classes.

5.1. Illuminant Estimation

In this experiment we apply our method to estimate the
illuminant color of a scene. For evaluation the angular error
between the estimated light source ce and the actual light
source cl is used:

angular error = cos−1 (ĉl · ĉe) , (14)

where the (̂.) indicates a normalized vector.
Data set: We test our approach on a data set assembled by
Ciurea and Funt [7]. The database contains 11,000 images
extracted from 2 hours of digital video. Both indoor and
outdoor scenes from a wide variety of locations are repre-
sented, see Fig. 3. A small grey sphere was mounted onto
the video camera, appearing in all images in the right bot-
tom corner. The sphere is used to estimate the illuminant
color in the scene. This color illuminant estimation is avail-
able with the database and is used as a ground truth. The
original images were extracted from 15 different film clips
taken at different locations. Because of the high correlation
between the images in the database, the experiments are per-
formed on a subset of 600 images taken at equal spacings
form the set. We divide the set in 320 indoor images, of
which 160 training and 160 test images, and 280 outdoor
images of which 140 training and 140 test images. The
pixels in the right bottom corner, which contains the grey
sphere, are excluded from color constancy computation.
Training topic-word distribution: For all the images in
the training data set the ground truth of the illuminant is
given. We correct the images in the training data set for
their illuminant using Eq. 6, and obtain a set of images un-
der white light. Subsequently we compute the distribution
of visual words over the topics P (v|zw) on this set. For
these images no labels of the semantic content are available,
therefore we apply PLSA to discover the topics from the
unlabelled data, similarly as in [27, 31]. We found that for
topic discovery it proved beneficial to only use the texture
modality. The assignments of patches to topics based on
texture P (vT |z) were then used to estimate the word-topic
distributions for the other modalities P (vC |z) and P (vP |z).
We used 20 topics for both the indoor and the outdoor set.
Results: The results for the indoor and the outdoor images
are given in Table. 12. For both sets we give the results
without applying color constancy (i.e. assuming the illu-
minant to be white), and for the worst and the best of the

2See also the erratum appended after the ICCV paper



1.8 7.8 1.4

22.1 1.610.4

Figure 3. From left to right. Input image, Grey-World approach and the most likely top-down illuminant hypothesis. The angular error is
indicated in the right bottom corner.

standard color constancy high-level selection using Eq.4

no cc worst BU best BU BU TD BU & TD

indoor 10.2 8.6 4.8 4.8 4.8 4.8

outdoor 5.8 7.7 5.2 4.1 4.5 3.7

Table 1. Mean angular error for several color constancy methods.
From left to right: without applying color constancy, worst and
best result of Eq. 12, select the best estimate for only the bottom-up
(BU) hypotheses, only the top-down (TD) hypotheses, or the com-
bination of bottom-up and top-down hypotheses. The last three
columns use the methods proposed in this paper.

bottom-up approach, when we would use a single approach
on all images. Next we give results where we use the likeli-
hood to select between only the bottom-up hypotheses, only
the top-down hypotheses and both bottom-up and top-down
hypotheses. On the indoor images the proposed approach
is not able to perform better than the best of the bottom-up
approaches (obtained with n = 0 and p = 12 in Eq. 12).
This might be caused by the fact that in an indoor envi-
ronment the semantic topics have a high variety of color
appearances: doors, floors, chairs, clothes, all change color
from one setting to another. On the outdoor set our approach
obtains significantly better results than any of the bottom-up
approaches. Here the best bottom-up approach achieves an
angular error of 5.2, ( obtained with n = 1 and p = 12).
Combining the bottom-up approaches yields a performance
gain of 20%. If we also consider top-down hypothesis we
improve results by almost 30% to an angular error of 3.7.

Fig. 3 shows two images on which the bottom-up ap-

proaches fail and the top-down approach finds a reasonable
illuminant estimate. The bottom-up results are computed
with the Grey-World algorithm. Assuming an average grey
reflectance yields for both images an unsatisfying illumi-
nant estimation. For example, the reddish sand image in
the first row is turned grey by the bottom-up approach. The
top-down method succeeds, because one of the topics de-
scribes brown sand like structures, which resulted in a good
top-down hypothesis with a high semantic likelihood.

In conclusions, the results show that selecting color con-
stancy methods based on the likelihood that an image is gen-
erated by a mixture of topics learned under white lighting,
improves color constancy results significantly for outdoor
data. On indoor data, results are comparable to the best
bottom-up approach.

5.2. Image Pixel Classification

In this experiment we will test the proposed approach on
pixel classification. Pixels are to be classified as one of nine
classes: building, grass, tree, cow, sheep, sky, water, face,
and road. Because we already computed P (vm|f ,w) for
each illuminant, pixel classification is only one step away.
It is simply obtained by taking the most likely topic for each
visual word.
Data set: To learn the nine semantic classes we use
the labelled images of the Microsoft Research Cambridge
(MSRC) set [26]. We remove images which we consider
to be taken under non-white light, and those which did not
contain any of the nine semantic classes (resulting in 240
training images). To extend the variability of the training



standard color constancy high-level selection using Eq.4

no cc worst BU best BU BU TD BU & TD

39.6 41.4 52.2 53.4 59.5 64.2

Table 2. Percentage of correctly classified pixels.

data we labelled another ten images collected from Google
Image for each class. As a test set we selected four im-
ages per class from Google Image. These images were not
present in the training set, and contained varying lighting
conditions. The total test set contained 36 hand-labelled
images (see Fig. 4).
Training Topic-Word Distribution: In this case the train-
ing data set is pixel labelled. The distributions of the visual
words over the topics P (v|zw) are then obtained by assign-
ing the visual words in the training data set to the topic dis-
tribution of their label. We did not have a ground truth of
the illuminant for these images, and there exist many small
deviations from white light. We assume, however, that all
classes occur most often under white lighting.
Results: In Table 2 the results of the pixel classification
is given. Not applying color constancy, as is done in most
current state-of-the-art pixel classification systems [27, 31],
obtains unsatisfying results on images with varying lighting
conditions, with only 40% of the pixels correctly classified.
The best bottom-up color constancy method correctly clas-
sifies 52% of the pixels. The top-down hypotheses obtain
a very good score indicating that hypotheses based on the
semantic content often yield reasonable estimates. These
hypotheses often differ from the bottom-up hypotheses, as
shown by the gain in performance when combining bottom-
up and top-down hypotheses.

In Fig. 4 we show illustrations of images for which the
top-down approach improved classification results. For all
four images, classification without the use of any color con-
stancy on the input image completely failed, except for
the face image where the grass was recognized but not the
face. For all images a number of top-down hypotheses were
casted. We only show results of the hypotheses which re-
sulted in the most likely image content. Although the classi-
fication results (see row 3 Fig. 4) still contain wrongly clas-
sified pixels, the results are good considering the difficult
input images. The fourth column shows an example of the
danger of top-down hypotheses. Based on the pixels which
were identified as tree pixels, the illuminant is chosen, such
that these tree pixels turn green. Although this improved
pixel classification, the illuminant estimation is false, be-
cause the image depicts a reddish-brown tree in autumn.

In conclusions, using the likelihood of images to select
the best illuminant to use for pixel classification is proven to
be beneficial. The proposed method significantly improved
results over standard color constancy methods.

6. Conclusions
This paper has presented a method to exploit high-level

visual information for color constancy. Existing color con-
stancy methods, as well as a new method based on prior
knowledge of semantic classes in the world, are used to cast
illuminant hypotheses. For each of the hypotheses we an-
alyze the semantic likelihood based on a PLSA algorithm.
The illuminant resulting in the most likely semantic com-
position of the image is selected as the illuminant color of
the image. Results for both illuminant estimation and pixel
classification into semantic classes demonstrate that using
high-level image information improves results significantly.
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Erratum (23 September 2008)

A bug occurred in our implementation of experiment 5.1.
For the bottom-up approaches we included the whole im-
age in the illuminant calculation. The grey ball should have
been excluded.

The correct results of the experiment are shown in Ta-
ble. 3. Selection of the color constancy method based on
the semantic likelihood of the images is shown to improve
results. For both indoor and outdoor the selected bottom-up
approach outperforms the best hand-picked bottom-up ap-
proaches (obtained with n = 0 and p = 2 for indoor, and
n = 2 and p = 2 for outdoor). Combining the bottom-up
and top-down cues is shown to help in the case of outdoor
images. In conclusion, using semantic likelihood to select
the color constancy method obtains a improvement of 10%
on the outdoor set and of 20% on the indoor set against the
best hand-picked bottom-up approach.

standard color constancy high-level selection using Eq.4

no cc worst BU best BU BU TD BU & TD

indoor 12.8 12.3 6.1 5.3 5.6 5.3

outdoor 5.5 7.4 4.9 4.7 4.7 4.5

Table 3. Mean angular error for several color constancy methods.
From left to right: without applying color constancy, worst and
best result of Eq. 12, select the best estimate for only the bottom-up
(BU) hypotheses, only the top-down (TD) hypotheses, or the com-
bination of bottom-up and top-down hypotheses. The last three
columns use the methods proposed in this paper.

We thank both Peter Gehler and Mark Everingham for
bringing this error to our attention.


